
Electronic Control Units for Electric Vehicles

CALIN CIUFUDEAN, CORNELIU BUZDUGA
Computers, Electronics and Automation,

Stefan cel Mare University,
13 University str., 720229, Suceava,

ROMANIA

Abstract: - This article discusses the development of a prototype electronic control unit for electric vehicles
developed in our discrete event systems laboratory. This system aims to enhance the tools for test and
diagnostics based on the controller area network for the automotive industry, mainly for electric vehicles (EV)
to ensure affordable integration on the market. The project's primary objective is to create a financially
affordable solution, i.e., lowering production costs by introducing tests and a diagnostic environment similar to
the electronic control units. This will finally deliver non-prohibitively expensive EVs for individual consumers.

Key-Words: - Automotive industry, electric vehicle, microcontroller, automated system, Unified Diagnostic
Services, Controller Area Network.

Received: April 16, 2024. Revised: November 11, 2024. Accepted: December 9, 2024. Published: December 31, 2024.

1 Introduction
This paper describes the development of a
communication simulator using the Controller Area
Network (CAN) bus and the Unified Diagnostic
Services (UDS) standard. The main goal of the work
is to create a test and diagnostic environment similar
to the electronic control units (ECUs) used in the
automotive industry. A development kit on Infineon
Tricore TC297 was used for the implementation.
The communication part was done using the C
programming language, and the software CAN UDS
Simulator, which was developed in C# using
Windows Forms, was used for the communication
part.

Because the Infineon Tricore TC297
microcontroller has high performance and native
CAN support, it was chosen to implement CAN
communication, [1], [2], [3], [4]. C source code
offers efficiency and direct control over hardware.
The CAN UDS Simulator software provides a user-
friendly testing interface that configures and sends
UDS commands to the simulator, making it easy to
test and diagnose ECU functionality
straightforwardly. As automotive technology rapidly
advances, the increasing complexity of
communication networks and control systems
becomes crucial for the operation of modern
vehicles. The Controller Area Network (CAN) is
widely utilized in the automotive industry due to its
efficiency and reliability. It enables Electronic
Control Units (ECUs) to communicate with one

another, coordinating essential vehicle functions
such as braking, steering, and engine control.

Numerous benefits can be obtained by using our
simulator, including the following:
• Students can develop the skills necessary for the

automotive industry by applying theoretical
knowledge to real-world situations.

• Safety: the ability to perform tests and failure
scenarios in a safe and controlled environment
without facing the risks associated with testing on
real vehicles

• Flexibility: the ability to configure and test a wide
range of communication and diagnostic scenarios
without the limitations of real hardware provides
students with a wide range of learning
experiences.

The remainder of this paper, section II discusses
the system architecture and section III focuses on
the software support of the CAN UDS Simulator.
Section IV concludes our work and suggests further
possible development of it.

2 The System Architecture
The system comprises the Infineon Tricore TC297-
based development kit and a USB to CAN FD
Automotive USB interface from Ixxat.
Communication starts at the TC297 microcontroller
level, which, through the CAN driver, prepares the
datagram to be transmitted by the TLE7250GVIO
integrated circuit, which translates from the CAN
protocol level to the bus level, [5], [6], [7].

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 347 Volume 23, 2024

The datagram is sent on the bus to the USB
interface, which receives and transmits data from an
easy-to-use interface on the Windows operating
system (Figure 1).

Fig. 1: The architecture of the developed system

The Unified Diagnostic Services (UDS)
diagnostic protocol, widely used in the automotive
industry, is designed to communicate and manage
diagnostic information between test devices and
electronic control units (ECUs). The ISO 14229
specification describes the UDS standard and
establishes the structure and functionality of
diagnostic messages transmitted over
communication buses such as Ethernet, CAN
(Controller Area Network), LIN, and FlexRay, [8],
[9], [10].

UDS possesses multiple diagnostics
departments specialized in performing certain tasks.
Each service may have a unique code, which may
have additional parameters to define diagnostic
„operations” and is referred to as service ID or
service code.

Unified services diagnostics are necessary for
almost all modern vehicle service and repair
operations. The main UDS activities include, [10],
[11], [12].

Diagnostics and Repair: Reading and clearing
Diagnostic Trouble Codes (DTCs) helps in
pinpointing and correcting technical problems of the
vehicles.
• Firmware Update: In this section, updates may be

loaded, and also downloaded from the ECU.
• Systems Setup: This function helps in setting up

and re-calibrating some of the vehicle components
for proper operation.

• Performance Monitoring: This function allows
retrieval of performance information and the state
of the vehicle systems for evaluation and analysis.

Each group of functions solves a set of
maintenance or diagnostics problems about the
vehicles. It provides an integrated solution for
communication management and ECU control in

modern vehicles. These are the basic functions
important for the problem-free operation of the
vehicle and software maintenance, and fast, precise,
and effective diagnostics.

The structure of a UDS datagram is accompanied by
the following points:
• UDS Service ID (SID): The first octet of the
datagram is the UDS Service ID (SID) which
indicates the type of service request.

CAN request a message (Table 1):

Table 1. CAN request message.
Message
ID

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x101 0x3E 0x0 0x0 0x0 0x0 0x0 0x0 0x0

CAN response message (Table 2):

Table 2. CAN response message.
Message
ID

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x102 0x7E 0x0 0x0 0x0 0x0 0x0 0x0 0x0

CAN request message (Table 3):

Table 3. CAN request message.
Message
ID

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x101 0x2E 0xB5 Buzz 0x00 0x0 0x0 0x0 0x0

CAN possible response messages (Table 4 and
Table 5)

Table 4. Positive answer.
Message
ID

Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7

0x102 0x6E 0xB5 0x0 0x0 0x0 0x0 0x0 0x0

Table 5. Negative answer

Messa
ge ID

Data
0

Data
1

Data
2

Data
3

Data
4

Data5 Data6 Data7

0x102 0x7
F

0x2
E

0xB
5

Err 0x0 0x0 0x0 0x0

3 Development of the CAN UDS

Simulator Software Application
The "CAN UDS Simulator" application was
developed to automate the testing functions
implemented in the embedded system application.
This application was made in the C# programming
language, using the Ixxat development library.

It is a robust and reliable technology for
developers who want to create Windows desktop
applications with short development time and
extensive functionality (Figure 2).

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 348 Volume 23, 2024

Fig. 2: The main function of the CAN UDS
Simulator app

In the application's main function, a class
necessary for using the CAN interface is instantiated
for the first time. Next are the functions for selecting
the device, initializing the communication channel,
and starting a thread to receive datagrams. After
that, the application configuration is initialized, the
class representing the visual interface is instantiated,
the CAN interface is passed, and the visual
application starts running. The last three functions
are required to complete the running so that
resources are reallocated, and no manual
intervention is required.

For the best datagram processing time, a parallel
thread has been implemented. This thread runs in
the background and calls the message reading
function when a receive event is detected (Figure 3).

Fig. 3: Parallel thread start function for receiving
CAN datagrams

When a message is successfully received, the
routine to read the CAN message from the USB
interface receive stack is called. The validated
message is passed to the message verification
routine. Three additional routines are required to
complete the application run. First, the variable that
closes the execution of the receiving parallel thread
must be set. Setting this variable stops the while
loop in Figure 4.

Fig. 4: Function to set parallel thread stop variable

Afterwards, the execution thread must be
closed. This operation is done by the "Join()"
method specific to the class that describes the
threads. This closes the instantiated objects for
reading and writing messages and uninitialized the
CAN channel, the CAN controller, and the USB
interface (Figure 5).

Fig. 5: The function that closes the thread of
execution

Creating an automated test requires two aspects:
the front end and the back end. The front end
involves adding a label with the test name, a test
box for the parameters, a submit button, and a label
for the result, which is updated by the back end with
the test result, pass or fail (Figure 6 and Figure 7).

Fig. 6: Launching the CAN UDS Simulator
application

The back-end part of the "Tester Present" test is
described next.

Fig. 7: The source code behind the "Send" command

When the "Send" button is pressed, the request
message is sent over the CAN to the embedded
system, then it waits 101 milliseconds to receive the
response (Figure 8).

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 349 Volume 23, 2024

Fig. 8: The function of transmitting a message on
CAN

The function of sending a message on CAN is
specific to each test. A message is instantiated and
configured with a time stamp, identifier, frame type,
and data length. The message is then populated with
the data to be transmitted and sent. The send
confirmation variable for the test is set, then the
program continues its execution (Figure 9).

Fig. 9: Verification of receipt of the "Tester Present"
message

Through the parallel thread, when the message
is successfully received, it is checked to see if it
matches the expected one. If the validation is
positive, the result variable is set with the value
"true" and otherwise with false. Through a "getter"
type method, the test result of the CAN adapter class
is obtained. If the result is positive, the text "Passed"
written in green will be displayed next to the text. If
it fails, it will show "Failed" written in red (Figure
10 and Figure 11).

The "setter" and "getter" type methods, specific
to object-oriented programming, ensure the
communication between the CAN interface class
and the visual application class. For each test, two
static variables are created in the CAN interface
class, each having one method for setting, and one
for obtaining, with the role of being accessed from
other classes (Figure 12).

Fig. 10: Positive result for the "Tester Present" test.

Fig. 11: Negative results for the "Tester Present" test

Fig. 12: Variables and methods required for the
"Tester Present" test

4 Conclusion
This project required the development of a CAN bus
communication simulator that conforms to the UDS
standard. This simulator has been implemented on
an Infineon Tricore TC297 development kit. This is
in line with the research aim of the paper, which
was ‘To design and develop a CAN UDS Simulator
to capture and interpret data from CAN
communication and also to develop command test
software to test the data received from the simulator
in an efficient and easily interpretable manner as
possible. Reason: Enhanced comprehension and
clarity through the application of more complex

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 350 Volume 23, 2024

language structures and increased use of technical
terminology. To prove, we have been able to
simulate CAN bus communication and also apply
the UDS standard in a practical and convenient way.
We have developed a strong and flexible application
using C programming and the Infineon Tricore
TC297 Development Kit. The CAN UDS Simulator
software, developed in C# and Windows Forms, is a
graphical user interface (GUI) used to test and
diagnose different types of CAN communication.
Reason: Expanded vocabulary and improved writing
with some adjustments made for easier reading and
verification of information. This simulator was
useful for users to get a feel and have a go in a safe
and controlled way without messing up real vehicle
testing, thus increasing their knowledge of CAN
protocols, UDS standards, and the critical technical
skills needed in the automotive industry.

Further developments:

- Implementation of the Ethernet connection,
or another communication protocol
available on the development kit (CAN-FD,
UART, LIN, FlexRay);

- Improving the catalog of messages;
- Microcontroller reprogramming via a

communication protocol, without the help
of USB miniWiggler JDS.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work the authors used
Grammarly in order to improve the readability and
language of the manuscript. After using this tool, the
authors reviewed and edited the content as needed
and take full responsibility for the content of the
publication.

References:

[1] UDS Explained – A Simple Intro, 2024,
[Online].
https://www.csselectronics.com/pages/uds-
protocol-tutorial-unified-diagnostic-services
(Accessed Date: December 12, 2024).

[2] S. Shehryar, H. Jamil, N. Iqbal, S. Khan,
Evolving Electric Mobility: In-Depth Analysis
of Integrated Electronic Control Unit
Development in Electric Vehicles, IEEE

Access, p.p. (99):1-1, 2024, doi:
10.1109/ACCESS.2024.3356598.

[3] C. Armenta-Deu and Th. Coulaud, Control
Unit for Battery Charge Management in

Electric Vehicles (EVs), Future Transp., Vol.
4. No. 2, 429-449, 2024.

[4] Tesla’s New 12V Li-Ion Auxiliary Battery
Has CATL Cells Inside, Mark Kane. Inside

EVs, 7 November 2021.
[5] Tesla Flat 12 V Battery. Tesla Info. Updated

12 September 2022, [Online]. https://tesla-
info.com/blog/tesla-flat-battery.php
(Accessed Date: December 15, 2024).

[6] Tesla Confirms the Switch to 48 Volt System,
Mark Kane. Inside EVs, 11 March 2023,
[Online]. https://insideevs.com/news/656775/
tesla-switch-48v-voltage-system (Accessed
Date: December 10, 2024).

[7] C. Jia, H. He, J. Zhou, J. Li, Z. Wei, K. Li,
Learning-based model predictive energy
management for fuel cell hybrid electric bus
with health-aware control. Appl. Energy, Vol.
355, 2024,
https://doi.org/10.1016/j.apenergy.2023.12222
8.

[8] C. Jia., J. Zhou, H. He, J. Li, Z. Wei, K. Li,
M. Shi, A novel energy management strategy
for hybrid electric bus with fuel cell health
and battery thermal and health-constrained
awareness. Energy, 271, 2023.

[9] H.S. Kim, M.H. Ryu, J.W. Baek, J.H. Jung,
High-efficiency isolated bidirectional AC–
DC converter for a DC distribution
system. IEEE Trans. Power Electron., 28,
1642–1654, 2012.

[10] M. A. Khan, Adaptive Control Mechanisms
for Electric Vehicles: A Study Based on
Driving Environments, JSM Computer

Science & Engineering, 3(1): 1008, 2024.
[11] ECU Testing for Electric and Hybrid

Vehicles, [Online].
https://cdn.vector.com/cms/content/know-
how/_technical-
articles/EMobility_VTSystem_AEL_201108_
PressArticle_EN.pdf (Accessed Date:
December 12, 2024).

[12] F. Un-Noor, S. Padmanaban, L. Mihet-Popa,
M.N. Mollah, A Comprehensive Study of Key
Electric Vehicle (EV) Components,
Technologies, Challenges, Impacts, and
Future Direction of Development, Energies,
2017, Vol.10, No. 8, doi:
10.3390/en10081217.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 351 Volume 23, 2024

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://tesla-info.com/blog/tesla-flat-battery.php
https://tesla-info.com/blog/tesla-flat-battery.php
https://insideevs.com/news/656775/tesla-switch-48v-voltage-system
https://insideevs.com/news/656775/tesla-switch-48v-voltage-system
https://doi.org/10.1016/j.apenergy.2023.122228
https://doi.org/10.1016/j.apenergy.2023.122228
https://cdn.vector.com/cms/content/know-how/_technical-articles/EMobility_VTSystem_AEL_201108_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/EMobility_VTSystem_AEL_201108_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/EMobility_VTSystem_AEL_201108_PressArticle_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/EMobility_VTSystem_AEL_201108_PressArticle_EN.pdf
https://www.researchgate.net/profile/Sanjeevikumar-Padmanaban?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed to the present
research, from formulating the problem to the final
findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received to conduct this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.34 Calin Ciufudean, Corneliu Buzduga

E-ISSN: 2224-2872 352 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

