
Modeling Metaheuristic Algorithms to Optimal Pathfinding for

Vehicles

AHMAD SHARIEH
Computer Science Department,

The University of Jordan,
Queen Rania Street,

JORDAN

Abstract: - Finding optimal path (pathfinding problem) in terrain for vehicles, robots, and network routes
(roads, pipes for water or gas, and network cables) is very complex and costly. Exhausted, heuristic, and meta-
heuristic algorithms can be utilized to solve pathfinding problems. In this paper, we proposed a framework that
finds an optimal path based on the objectives of the specifications and requirements of the pathfinding
problems, terrain characteristics, and a metaheuristic algorithm. In this framework, a pathfinding problem is
represented in a graph and a metaheuristic algorithm is modeled with optimal objective function F to find the
optimal path. Thus, we present an overview of the most common metaheuristic pathfinding algorithms with
heuristic objective functions. Many objective functions are modeled to find the optimal path in terms of
distance, time, cost, energy, … etc., or in terms of a combination of two or more of these terms. The F is
evaluated to find an optimal path from a starting point to a target point, subjective to constraints such as
obstacles, barriers, and other constraints to satisfy the characteristics of the terrain. In this framework, the
problem locations and links in terrain are represented in graph vertices and edges, respectively. The graph is
implemented in adjacent matrices and the paths as vectors. We overview these algorithms with examples of
their applications in vehicle scenarios. The framework will help interested readers understand how pathfinding
algorithms work and pick the best fit for a particular application.

Key-Words: - Framework, Heuristic, Graph, Metaheuristic Algorithms, Model, Objective Function, Optimal

Pathfinding, Vehicles.

Received: April 7, 2024. Revised: October 29, 2024. Accepted: November 28, 2024. Published: December 31, 2024.

1 Introduction
Pathfinding is one of the most concerning problems
in mobile robotics and vehicles, and it is an NP-hard
problem, [1], [2].

The length, safety, and smoothness of a path are
optimized simultaneously in multi-objective
functions. The weighted multi-objective path
planning methods and Pareto-based multi-objective
path planning methods share the overarching aim of
finding trade-off solutions and they differ in their
optimization strategies, [1].

Metaheuristic algorithms provide a set of
strategies for developing optimization problems
including optimal path-finding problems. There are a
variety of challenges and constraints to solving
optimal path-finding problems in very large and
complex search spaces. The challenges include the
correct specifications of the environment
characteristics, graph representation of the
environment, objective function subjective to a set
of constraints, and suitable metaheuristic algorithms
or parallel algorithms to solve the problems. Thus,

exploring an overview of metaheuristic algorithms
and proposing a model will help solve pathfinding
problems.

Our objective is to present the specifications of
heuristic or metaheuristic algorithms for pathfinding
problems in a framework, which will be explained in
Section 3. The framework has the following
components: the aim(s) of an algorithm to optimize
the path in a given terrain, problem representation,
key components of the selected algorithm, objective
function to optimize the total cost of the path, and
the algorithm steps. These steps include
initialization, deploying exploration and/or
exploitation and fitness functions to reduce the
number of iteration and update positions, selecting
the updated agent(s) to retain better positions, and
producing the best path as an optimal or near-
optimal path in the given graph.

To derive a mathematical model for finding an
optimal path in an environment, start by specifying
the locations or points (nodes) and the links between
these points. In order to compute the cost value of

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 300 Volume 23, 2024

the optimal path, the points and the links will be
mapped into a graph. A graph is a set of collective
vertices and a set of edges denoted by G = (V, E),
where the number of vertices is denoted by |V| = n
and the number of edges denoted by |E| = m [3]. The
set of points and set of links are mapped into the set
of vertices and the set of edges, respectively.
Adjacent vertices v ϵV are the set of all vertices that
are connected to v by an edge, {x: (v, x) ϵ E}. A
subgraph of a graph is a graph where all its vertices
and edges are a subset of this graph. A path in a
graph is a sequence of vertices connected by edges.
A search space of locations and links is represented
by a graph G = (V, E). A starting location is s and a
target location is t, and the objective is to find the
optimal path from s to t. A cost function C (xi, xj)
that assigns a cost (or weight) to traversing from
vertex xi to vertex xj, and a set of constraints Co that
specifies permissible paths. Each edge in the graph
is assumed to have a weight that represents the cost
from a vertex to its neighbor. We need to find a path
P = {x1, x2, ..., xn} from s to t that optimizes the
objective function F(X), similar to function (1). The
F(X) can optimize multiple criteria simultaneously,
such as distance, energy, and time using a weighted
sum of different objective functions F1, F2, F3, ..., Fm

as shown in function (2). The F(P) evaluates the
optimal path. The F(P) can be computed by an
exhausted or an approximated algorithm on an
available suitable platform.

Optimize 𝐹(𝑃) = ∑ C(
𝑛−1

𝑖=1
xi, xi+1) (1)

Subject to Co.

Optimize F(X)= ∑ wj Fj(X) 𝑚
𝑗=1 (2)

Subject to constraints Cj in each optimized Fj and
∑ wj = 1𝑚

𝑗=1 .

An optimal path can be through locations known
before or to be constructed, [3]. Table 1 shows
examples of previously specified locations and
possible links in pathfinding applications and graph
representations.

In a weighted graph and edge e ∈ E, the weight
C(e) represents a cost or effort to traverse the e from
its start vertex to its end vertex. The weight can be
distance, energy, time, elevation, flow, resource,
hiker, capacity, etc., or combinations of some of
these with percentage share or weighted averages.
In optimal pathfinding problems, certain cost
functions or objective function F assign value or cost
to potential solutions that meet criteria. This cost
computed by F guides the algorithm in its search for
the most efficient path from the source point to the
target point.

Table 1. Examples of pathfinding applications and
their graph representations

Application Graph Representation
Shortest path
problem

Terrain grid points →V
Paths between the points → E

Transportation
networks

Locations including airports, train
stations, bus stations, intersections, or
ports →V
Routes including flights, railways,
roads, roads or railways, or ships,
respectively →E

Tele-
communication
networks

Devices or routers →V
Communication links between the
devices →E

Warehouses,
suppliers, and
retailers

Warehouses, suppliers, and retailers
→V
 Transportation routes → E

Urban planning
and GIS

Base camp, checkpoints, buildings, or
landmarks →V
Roads, paths, trails, and other links
→ E

There are some common objective functions and

algorithms used for optimizing path-finding
problems. Table 2 (Appendix) shows examples of
applications with possible optimization functions,
[4], [5]. For example, in road networks and robotic
path planning, the F is to minimize the total
distance. Some functions maximize the benefits. For
example, in resource allocation, the F is to maximize
access to resources. In applications such as
emergency response routing and transportation
planning, the cost can be computed in terms of time,
resource utilization, and monetary variables. In some
applications like complex routing problems, trade-
offs between multiple factors such as time, distance,
and elevation must be considered in computing the
cost by using a weighted sum of several objective
functions.

 Our main contributions are:
1. Presenting a framework and its utilization to

solve pathfinding problems.
2. Reviewing the pathfinding problems and their

representations in a graph.
3. Presenting objective functions to optimize

pathfinding problems.
4. Overviewing metaheuristic algorithms to solve

pathfinding problems and their classifications.

In this section, we introduce our objectives, the
problem and its representation in graphs, and some
pathfinding applications with its optimization
functions. Section 2 reviews optimization algorithms
utilized in solving the pathfinding problems and
their classifications. Section 3 explains how the
framework can be followed to solve the problem.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 301 Volume 23, 2024

Section 4 shows examples of how to implement a
few metaheuristic algorithms. Section 5 concludes
the manuscript.

2 Algorithms and Pathfinding

 Problems
In [6], they reported that the design of the optimal
path planning algorithm needs to consider its
theoretical efficiency, the difficulty of reducing the
computer implementation, and the resource
requirements of the computer hardware system.
They also reported that at present, there are many
mature algorithms to solve the shortest path
problem. These algorithms include the Dijkstra
algorithm, Bellman-Ford's algorithm, Floyd's
algorithm, and heuristic search algorithms such as
the A* algorithm. There are also many improved
algorithms for vehicle navigation, such as K-shortest
path algorithms, genetic algorithms, and neural
network-based algorithms, [6].

According to the research background and the
current status of domestic and international research,
it can be seen that the shortest path problems are a
hot research topic in GIS, computers, and other
sciences, [6], [7]. In the literature [7], a shortest path
algorithm was tested in a stochastic planar network
by selecting the more representative shortest path
algorithms from the available ones, and the results
showed that no single algorithm can be adapted to
all types of networks.

There are many common algorithms utilized for
optimization pathfinding problems. These use brute
force, heuristic, or metaheuristic techniques, [8], [9].
In this section, we briefly review these algorithms.

2.1 Brute Force and Algebraic Algorithms
In solving pathfinding problems, the brute force or
the exhausted algorithms explore all possible options
to find the optimal solution, and then select the best
one based on specified criteria, [10], [11]. Some
common brute force algorithms are depth-first
search (DFS), breadth-first search (BFS),
backtracking (BT) [12], branch and bound (BB)
[11], dynamic programming (DP), Dijkstra
algorithm (DA) [13], and Floyd-Warshall (FW)
algorithm [14]. The DFS is useful where the
solution is likely to be found far from the starting
point [11]. The BFS is used to find the shortest path
in unweighted graphs, [3]. The BB algorithm
searches by trying different paths and eliminating
those that don’t lead to a solution, [15]. A DP uses a
grid-based approach for pathfinding to solve
problems like the shortest path, [2]. The DA is a

greedy algorithm, and it is used to find the shortest
path between vertices in a graph with non-negative
weight edges and select the vertex with the smallest
distance. It is used in road networks.

The advantages of brute force algorithms are:
explore all possible solutions, guarantee to find the
correct or optimal path and provided it exists, do not
require prior knowledge or assumptions about the
problem domain, and do not rely on specific
properties of the problem, [16]. Their limitations are:
inefficient for large or complex problems, their time
complexity is typically exponential, impractical for
large-scale or real-time pathfinding problems
because they consume significant amounts of
memory when storing all possible paths, and are
unmanageable for very large grid size, [16].

In algebraic approaches, the graph's weights
reflect the cost of traversing a terrain. Vehicle
pathfinding in terrains can be formulated as a linear
programming problem (LP), where the objective
function is to minimize the cost. Approaches like the
simplex method can be used to solve such problems
using matrix operations to find the shortest path,
[17]. In stochastic terrain environments, the Markov
decision process (MDP) can help in moving to
adjacent vertices, and dynamic programming
approaches can model decision-making under
uncertainty, [18]. When a vehicle navigates a terrain,
it can use a weighted graph to represent a terrain
type and slope obstacles, a tropical semi-ring to find
a path with minimum cost, an LP model to handle
vehicle energy, and an MDP to handle uncertain
conditions. Algebraic approaches often lead to
mathematically optimal solutions in travel time,
distance, and energy consumption. These approaches
provide deterministic results. They can be adapted to
solve pathfinding problems such as weighted,
directed, or multi-constraint problems. Algebraic
techniques are powerful for theoretical and
structured pathfinding problems, but they have
drawbacks such as: 1) may not handle applications
such as dynamic traffic conditions and obstacles in
the world, 2) may become computationally
expensive for large or dense graphs, 3) they phase
difficulty in handling non-linear applications for
vehicle routing, 4) and they are often static.

2.2 Heuristic Algorithms
Heuristic algorithms make guesses to speed up the
search process and find a solution very close to the
optimal one and do not guarantee finding the best
solution, [19]. The heuristic techniques are designed
to solve problems quickly when classic methods are
slow to find an exact or approximate solution, or
when classic methods fail to reach an exact solution

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 302 Volume 23, 2024

in a search space. It finds optimal or near-optimal
solutions to the optimal pathfinding problems faster
and more efficiently than exhaustive search
methods.

There are heuristic algorithms commonly used
for pathfinding across various applications,
including robotics, gaming, and logistics. Examples
of heuristic algorithms for pathfinding are A* (A-
star) search, Hill Climbing (HC), Greedy Best-First
Search (GBFS), Simulated Annealing (SA), Beam
Search (BS), Iterative Deepening A* (IDA*), and
Theta* algorithm, [5], [9], [10], [16], [19]. The A*
search algorithm is a popular heuristic one, [20],
[21], [22]. The DAH adds a heuristic function to
prioritize vertices and improve its efficiency, [8].
The GBFS focuses on the estimated cost to the
target vertex t, it is similar to A*, but f(v) = h(v).
This is achieved by trading optimality,
completeness, accuracy, and precision for speed,
[20].

In their analysis [22], the authors conclude that:
a. The results of the Greedy algorithm analysis

with several trials can find the shortest path in a
fast time, but there are some cases where the
optimal solution is not found or the final state is
not found at all,

b. The results of the A* algorithm analysis with
several trials can find the shortest path better
than the Greedy algorithm, [23].

c. The results of Dijkstra algorithm analysis with
several trials can find the shortest path better
than the Greedy and A* algorithms. In this case,
the Dijkstra algorithm can find a solution that
tends to be better than the two and always finds
the optimal solution.

d. The weakness of the greedy algorithm is that it
tends to make choices that do not take into
account the next event, while the weakness of
the A* algorithm is that the graph must have
complex data such as straight-line distance to
node (final state), while the weakness of Dijkstra
algorithm tend to be slow in finding solutions
because they have to compare the cost of one
path with the cost of another path, [24].

The authors in [26] reported that the IDA* has

the following characteristics: it performs DFS using
the same cost function as A*, its memory usage is
lower than in A*, it concentrates on exploring the
most promising nodes, and does not go to the same
depth everywhere in the search tree, and unlike A* it
does not utilize and ends up exploring the same
nodes many times. Its advantages are [26]: if an
optimum solution exists, it will be discovered

(completeness), it only keeps one path in memory at
a time (memory efficiency), may be employed with
several heuristic functions (flexibility), and
sometimes outperforms other search algorithms like
uniform-cost search (UCS) or BFS. These
algorithms utilize heuristic functions to guide their
search to estimate the cost to reach the goal vertex
from a given vertex. The choice of heuristic function
impacts the efficiency and accuracy of the
pathfinding process. A heuristic algorithm deploys a
heuristic function that depends on the specifications
of the problem to be solved. The heuristic function
can be as in function (3). Heuristics functions
include Manhattan distance (MD) where h(v)=∣xtarget

− xcurrent∣+∣ ytarget − ycurrent ∣, for grid-based maps,
Euclidean distance (ED) h(v)= sqrt((xtarget − xcurrent)2+
(ytarget – ycurrent) 2), for maps, and Octal distance (OD)
h(v)=max(∣xtarget − xcurrent∣, ∣ ytarget − ycurrent ∣) for
diagonal moves in grids [22]. The MD is used for
grids where movement is restricted to four directions
(up, down, left, right), ED is used where diagonal
movement is allowed, and OD which combines MD
and ED is used for diagonal moves in grids, [27].

In [28], they proposed to use A* for finding the
shortest path on the rough area with possible
obstacles in the movement path. Compared to
Dijkstra, the A* using Manhattan distance evaluated
25.16% fewer nodes, was 31.4% faster, and had a
clear advantage in memory and speed. When A*
used the Euclidean distance, it expanded 21.8%
fewer nodes than Dijkstra, and 5.3% faster.

There are algorithms such as Ant Colony
Optimization (ACO) and Simulate Annealing (SA)
for Pathfinding that use heuristic functions when
they compute the optimal objective functions, [29].
The heuristic function is used by ACO equals to1/dij,
for edge e(i,j), where dij is the distance between
vertex i and vertex j, [30], [31]. Simulate Annealing
(SA) for pathfinding involves a heuristic function
that guides the acceptance of new solutions based on
a cost function equals to exp((E− E′)/T), where E
and E′ are the energies of the current and new
solutions, respectively, and T is the temperature,
[11].

In A* search algorithm, the g(v) function
evaluates the exact cost from the start vertex s to the
vertex v, and h(v) function evaluates the heuristic
estimated cost from v to the target vertex t. Other
heuristic algorithms that use function (3) are: Beam

Search (BS) which uses f(v) to rank the vertices to
determine which ones to keep [33], Dijkstra

Algorithm with a Heuristic (DAH) [25], Iterative

Deepening A* (IDA*) [34], [35], Jump Point Search

(JPS), [36], [37], [38], and Theta* (Theta-Star)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 303 Volume 23, 2024

Algorithm, [37], [38] [39], [40]. Greedy Best-First

Search (GBFS) considers h(v) similar to A*.
f(v) = g(v) + h(v) (3)

Among the advantages of heuristic algorithms

are reducing the number of paths explored in large
complex pathfinding problems, often find a solution
much faster than brute force methods by using
heuristics to estimate the cost of reaching the goal,
guarantee finding the optimal solution, scale better
to larger problems to handle more complex
pathfinding without a significant increase in
computation time, and can be adapted to different
types of problems including robotics, [1], [2], [8],
[16]. The drawbacks of heuristic algorithms in
pathfinding are their performance depends on the
quality of the heuristic function and can lead to
suboptimal paths or longer computation times, the

complexity can limit the applicability of heuristic
algorithms if they use unsuitable heuristic, the
heuristic evaluation can add computational
overhead, and some heuristic algorithms may not
find a best possible solution, [20].

2.3 Metaheuristic Algorithms
Metaheuristics provide a set of strategies for
developing heuristic optimization algorithms and
they are utilized in optimal pathfinding problems.
Metaheuristic is a higher-level technique designed to
find, generate, tune, or select a heuristic that may
provide a sufficiently good solution to an
optimization problem and machine learning
problem, [41]. Metaheuristics may make relatively
few assumptions about the optimization problem
being solved and so may be usable for a variety of
problems, [42]. They are used when exact or other
approximate methods are not available. The
characteristics of metaheuristics include [12]: 1)
Techniques that constitute meta-heuristic algorithms
range from simple local search procedures to
complex learning processes, 2) The basic concepts
of metaheuristics permit an abstract level
description, 3) They may incorporate mechanisms to
avoid getting trapped in confined areas of the search
space, 4) They are approximate and usually non-
deterministic, and 5) Metaheuristics may make use
of domain-specific knowledge in the form of
heuristics that are controlled by the upper-level
strategy, and 6) More advanced metaheuristics use
search experience to guide the search.

Metaheuristic algorithms are not problem-
specific, generally nature-inspired, and can be used
for many different problems, [35]. The goal is to
efficiently explore the search space in order to find
optimal or (near-) optimal solutions. Examples of

metaheuristic algorithms are Ant Colony
Optimization (ACO), Artificial Bee Colony (ABC),
Particle Swarm Optimization (PSO), and Genetic
Algorithm (GA), [34]. There are several
classifications of metaheuristic algorithms, and one
is reported in [42]: Nature-Swarm intelligence
algorithms are a flexible and solid method that is
developed inspired by animals’ swarm behaviors.
ACO and PSO are two of the most used swarm
intelligence algorithms. ACO algorithm is mostly
used in solutions of combinational optimization
problems and the PSO algorithm is mostly used in
continuous optimization algorithms. For example,
vehicle routing can be solved using ACO, and
problems that need function optimization in many
different engineering fields can be solved using
PSO. Swarm can be defined as discrete individuals
influencing each other. Individuals can be humans or
ants. In swarms-based, N individuals work together
to achieve a purpose [8]. The PSO, ACO, Grey Wolf
Optimization (GWO), Chickens Swarm
Optimization (CSO), and Cat Swarm Optimization
Algorithms (CSOA) are swarm-based, [43].

In [42], the authors reported the classification of
algorithms as: Complete (or exact) algorithms and
approximate methods. Approximate algorithms can
be divided into local-search algorithms and
constructive algorithms. Memory-less algorithms
(keeps track of recently visited solutions (moves))
and memory-usage algorithms (there is a huge
storage of information about the entire search
process). Metaheuristics can be classified in
different ways depending on the specific point of
view of interest [42]:
1. Nature-inspired algorithms such as Genetic

Algorithms (GAs), Ant Colony Algorithms,
Cuckoo Search Algorithm (CSA), Beatle
Antennae Search (BAS), Teaching Learning
Based Optimization (TLBO), Moth Flame
Optimization (MFO), … etc; and non-nature

inspired ones (such as Tabu Search(TS) and
Iterated Local Search (ILS) … etc.

2. Population-based such as GAs, Single point
search methods (such as Tabu Search (TS),
Iterated Local Search (ILS), and Simulated
Annealing (SA)). These metaheuristics compute
simultaneously a set of points at each time step of
the search process, describing the evolution of an
entire population in the search domain.

3. Trajectory methods because they work on a single
solution at each time step describing a curve
(trajectory) in the search space during the
progress of the search. These include SA, TS,
Guided Learning Search (GLS), etc.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 304 Volume 23, 2024

Metaheuristics also can be classified according
to the way they make use of the objective function:
Dynamic objective function if during the search, the
objective function is altered based on information
collected during the search process or Static

objective function if techniques keep the objective
function as it is given by the problem, [42].

In [41], they classified the metaheuristic
algorithms into Evolutionary-based, Nature-based,
and Trajectory-based. The nature-based algorithms
are Swarm-based such as PSO, Bio-inspired such as
GWO, Physics/Chemistry such as Chemical
Reaction Optimization (CRO), Human-based such
as Cultural Algorithm (CA), and Plant-based such as
Invasive Weed Optimization (IWO).

There are a variety of metaheuristic algorithms,
[20]. Some were proposed to improve local search
heuristics as in the SA and TS algorithms. Some are
based on ant colony optimization, evolutionary

computation, and particle swarm optimization
algorithms. Most metaheuristics algorithms intend to
employ a fitness function to evaluate the candidate
solutions. The SA is used in very large and complex
spaces, and its heuristic function helps to escape
from local optima to the global optimum of a given
function based on a probability technique, [19].
Tomar, Bansal, and Singh [10] classified the
metaheuristic algorithms into:
1. Evolution-Based Algorithms (EBA), where the

optimization techniques are inspired by natural
evolution. These include GA, Differential
Evolution (DE) algorithms, Flower Pollination
Algorithm (FPA), etc.

2. Particle Swarm Algorithms (PSA) are modeled
after social animals and insect’s behaviors in
group. Examples include BAT which was
inspired by bat echolocation, Cuckoo Search
(CS) algorithm which was inspired by the
breeding behavior of cuckoo birds, Grasshopper
Optimization Algorithm (GOA), Firefly
Algorithm (FA), Dragonfly Algorithm (DA), Ant
Lion Optimizer (ALO), Grey Wolf
Optimizer(GWO), Flower Pollination Algorithm
(FPA), and Whale Optimization Algorithm
(WOA).

3. Physics-based algorithms (PBA) are motivated by
the physical principles of nature and replicate
physical rules during optimization [44]. These
include SA, the Lightning Search Algorithm
(LSA) which is influenced by the natural factors
of lightning strikes, Gravitational Search
Algorithm (GSA) is influenced by gravity and
motion principles, and Electromagnetic Field
Optimization (EFO). There are other PBAs

including the multi-verse optimizer and the sine–
cosine algorithm.

4. Human-Related Algorithms are driven by social
interaction or behavioral patterns in people.
Examples are the Brainstorm Optimization
algorithm (BSO), Teaching learning optimization
(TBLO), and the Gaining Sharing Knowledge-
Based Algorithm (GSKA).

5. Hybrid Metaheuristic Algorithms: These are
developed from other metaheuristic algorithms to
avoid local optimization trapping, upgrade
efficiency, and effectively explore the search
space for better solutions.

Since sometimes it is not possible to classify an

algorithm to only one of the classes [42] and some
hybrid algorithms fit both classes at the same time,
the Euler diagram of the different classifications of
metaheuristics is used as in Fig.1, [43].

Fig. 1: The Euler diagram of different classifications
of metaheuristics, [43]

The advantages of metaheuristic algorithms
include: 1. Global Search Capability: MA are
designed to explore the search space broadly and
avoid getting stuck in local optima and finding a
near-optimal or optimal solution, 2. Highly Flexible

and Adaptable: to various problem domains of
pathfinding problems with complex, non-linear, or
dynamic environments, 3. Handling of Complex

Problems: MA is effective in scenarios with
multiple objectives, constraints, or conflicting goals,

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 305 Volume 23, 2024

4. Some Balance Exploration (searching new areas
of the search space) and Exploitation (intensifying
the search around promising areas), 5. Can be Scaled

to larger problems by Adjusting parameters like
population size or iteration count; which makes them
suitable for large-scale pathfinding problems, and 6.
Their Stochastic components help to diversify the
search and explore different areas of the search
space.

However, the MAs have drawbacks including: 1.
Some MAs do not guarantee finding the optimal
solution, 2. Finding the right parameter settings can
be difficult and may require extensive
experimentation, 3. Can be computationally
expensive and slower than some heuristic methods
in real-time applications, 4. Their implementations
may require a deep understanding of the algorithm’s
mechanics, parameters tuning, and problem-specific
adaptations, and 5. MA can lead to inefficiencies or
failure to find a good solution, and different runs of
the algorithm might yield different results because of
the stochastic nature of metaheuristics even with the
same initial conditions.

3 Methodology
In this section, the proposed framework is explained
to find solutions to pathfinding problems using
metaheuristic algorithms. Fig. 2 shows the
components of the framework. Developing solutions
for pathfinding problems for robots and/or vehicles
can be guided by this framework. Because of space
limitations in this paper, three examples will be
presented showing the steps following this
framework. The examples are A* algorithm-
example of the heuristic algorithm, Flower
Pollination Algorithm (FPA)- an example of a
metaheuristic algorithm with a single objective
function, and Moth Flame Optimization (MFO)- an
example of a metaheuristic algorithm with an
objective function with multiple factors. Other
samples of metaheuristic algorithms are listed with
their objective functions as in Table 2 (Appendix).

Fig. 2: Framework for developing solutions for
pathfinding problems

Our objective is to present the specifications of
heuristic or metaheuristic algorithms for pathfinding
problems in a framework with the following
components: 1. Objective: specify what is/are the
aim(s) of an algorithm to optimize the path in a
given terrain. It includes statements indicating how
the algorithm is inspired and mimics the navigation
behavior of the agents. 2. Problem Representation:
specify how the pathfinding problem is represented
as a graph, how the path from the start vertex to the
target vertex is represented, and what are the
populations and their potential solutions to choose
the best solution from. 3. Key Components of the

selected algorithm: specify what represents the
candidate solutions (paths), and the best solution,
and simulate the behavior. 4. Objective Function:
express the objective function mathematically in the
context of pathfinding to optimize (maximize or
minimize) the total cost of the path. Algorithm

Steps: Initialization: initialize a population of the
path(s) randomly or using heuristics, evaluate the
initial path(s) using a fitness function(s), and sort the
solution(s) based on the fitness function. Update:
deploy exploration and/or exploitation and fitness
function to reduce the number of iterations, and
update positions. Selection: Compare the fitness of
the updated agents with their previous fitness and
retain better positions. Convergence: The algorithm
iterates through updating and selection steps until a
stopping criterion is met. Output: consider the
founded best path as an optimal or near-optimal path
in the given graph.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 306 Volume 23, 2024

Example 1: Heuristic-based- A* Algorithm

1. Objective: The goal is to find the shortest path
between a start node (represented as vertex s in
the graph) and a target node (represented as
vertex t in a graph) using the A* algorithm, based
on function (3).

2. Problem Representation: The problem is
represented in a graph G (V, E), where the set of
locations or positions is represented in the set of
vertices V and the set of links between locations
are represented in E the set of edges. The path
begins at vertex s and ends at the target location
at vertex t. A path is represented as a sequence of
vertices X={xs, x2,…, xt}. The moving from
vertex xi to vertex xi+1 is represented by the cost
function g(xi, xi+1).

3. Key Components of A*: Open List: A priority
queue that stores discovered vertices but not yet
evaluated. The vertices in this list are prioritized
based on their estimated total cost
f(x)=g(x)+h(x). Closed List: A set that keeps
track of vertices has been evaluated to avoid
reprocessing. Cost Function g(x): Represents the
cost from s to a current vertex x. Heuristic

Function h(x): Represents the estimated cost
from the current vertex x to t.

4. Objective Function for A* Algorithm in
pathfinding: is mathematically expressed as in
formula (4).

Minimize F(X) = ∑ (𝑔
𝒏−𝟏

𝒊=𝟏
(𝒙𝒊) + ℎ(𝒙𝑖)) (4)

5. Algorithm Steps:

5.1 Initialization: Place the start vertex s in the
open list with g(s)= 0 and h(s) = calculated
value based on the heuristic function. Set the
initial vertex as the current vertex.

5.2 Select the vertex x from the open list with the
lowest f(x)=g(x)+h(x). If x is the target
vertex t, the algorithm terminates as the path
is found. Move x from the open list to the
closed list.

5.3 Update: For each neighbor y of x: If y is in the
closed list, ignore it. If y is not in the open
list, calculate g(y)=g(x)+g(x, y) and estimate
h(y), add y to the open list with
f(y)=g(y)+h(y).

 If y is already in the open list, check if the
new path to y is better (lower g(y)), and
update g(y) and the corresponding f(y).

5.4 Convergence: iterate through the open list
until it either finds the goal vertex t or the
open list becomes empty.

5.5 Output: The best path X from the start vertex s
to the goal vertex t with the optimal cost
(shortest path in this example).

Example 2: Evolution-Based- Flower Plant (FPA)

Algorithm

1. Objective: The goal is to find the shortest or least-
cost path while traversing from a start vertex s to
a target vertex t in a given network or graph using
the metaheuristic evolutionary FPA algorithm.

2. Problem Representation: The positions or
locations and links of the network or robotics are
represented as a graph G (V, E), where V is the
set of vertices and E is the set of edges between
vertices. The Path P represented as X ={xs,
x2,…,xt} is a sequence of vertices starting from s
to t. Distance/cost function d(xi,xi+1) is associated
with traveling between two consecutive vertices.

3. Key Components of FPA: 1. Global Pollination

(Exploration) generates new solutions by
combining the current best solution with
random pollination from the global population;
and mimics the process of cross-pollination by
insects. 2. Local Pollination (Exploitation):
refine solutions by perturbing the current
solutions with nearby solutions; and mimics the
process of self-pollination. 3. Switch a

probability p value that decides whether global
or local pollination will be applied to generate
new solutions.

4. Objective Function: It is to minimize the total
path cost or distance D (single objective) and
can be mathematically expressed as: Minimize
the total travel distance F(X), as in formula (5).

Minimize F(X) = ∑ 𝑫𝒏−𝟏
𝒊=𝟏 (𝒙𝒊, 𝒙𝒊+𝟏) (5)

 where X = {xs, x2, …, xt} is a candidate solution
representing a path from s to t.

5. Steps of FPA:

5.1 Initialization: Initialize a population of
flowers (solutions), each representing a path
through the graph, and assign random
positions to each flower.

5.2 Evaluation: Compute the F(X) for each
solution in the population.

5.3 Iteration: For each solution in the population,
select and update as follows; With
probability p, perform global pollination:
Xnew=Xi+L(Xi−Xcurrent), where Xcurrent is the
current best solution, and L(⋅) is a Lévy
flight-based step size. With probability 1− p,
perform local pollination: Xnew = Xi +
ϵ(Xj−Xk), where Xj and Xk are randomly
selected solutions from the population, and ϵ
is a random number in [0, 1]. Evaluate the

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 307 Volume 23, 2024

new solution Xnew and replace the old
solution Xi if the new solution is better.

5.4 Convergence: Check the stopping criterion
(maximum number of iterations or a
convergence threshold). If it is satisfied,
terminate, else repeat the iteration step.

5.5 Output: The best solution X = {xs, x2, …, xt}

is found, representing the optimal or near-
optimal path in the graph.

Example 3.3: Moth Flame Optimization (MFO)
The MFO is a nature-inspired metaheuristic
algorithm based on the navigation behavior
(transverse orientation) of moths. It is presented here
because it can be adapted to explore and exploit
solutions to find an optimal or near-optimal path
while considering multiple objectives like distance
D, energy E, obstacle avoidance O, and time T. It is
effective for solving high-dimensional and complex
pathfinding problems for robots and vehicles. It can
be adapted to dynamic environments by adjusting
the flame positions and making it suitable for real-
time pathfinding. Following are the specifications of
MFO adapted for solving robotic and vehicle
pathfinding problems with multiple objectives
following the components of the proposed
framework shown in Fig. 2.
1. Objective: The goal is to find the shortest or least-
cost path while traversing from a start vertex s to a
target vertex t in a given graph using the
metaheuristic MFO while considering: Minimization
of path length D, Minimization of energy
consumption E, Avoidance of obstacles O, and
Minimization of travel time T.
2. Problem Representation: It is represented as G
(V, E) as in the previous two examples. Each moth
represents a potential path in the search space. Each
moth is defined by a vector of coordinates
corresponding to waypoints along the path. The
flames represent the best solutions (paths) found so
far; and moths are attracted to flames, with each
flame representing a promising solution.
3. Key Components of MFO: 1. Moths represent
candidate solutions (paths), where each moth is
attracted to a flame, and its position is updated
accordingly. 2. Flames represent the best solutions
in the population, where flames guide the search
process, and the number of flames decreases as the
iterations proceed, focusing the search. 3.
Transverse Orientation: Moths update their
positions by flying around flames in a logarithmic
spiral pattern, similar to formula (6) simulating their
natural behavior of moving towards light sources.
M(t+1) = Di* e-b*l*cos(2πl) +Fi(t) (6)

Where: Mi(t+1) represents the position of moth i in
the next iteration. Di represents the distance between
the moth and the flame. Fi(t) represents the position
of flame i at iteration t and b is a constant defining
the shape of the logarithmic spiral. l is a random
number in the interval [−1,1] that determines the
direction of the movement (closer or further from
the flame).
5. Objective Function: It combines multiple factors
as in formula (7).

Minimize F(X)= 𝑤1 ∑ (𝐷
𝑛

𝑖=1
(𝑥𝑖) +

𝑤1 ∑ 𝑂𝑛
𝑖=1 (𝑥𝑖) + 𝑤3 ∑ 𝐸𝑛−1

𝑖=1 (𝑥𝑖) + w4∑ 𝑇𝑛−1
𝑖=1 (𝑥𝑖)

(7)

where: D(𝒙𝒊): Distance traveled at point 𝒙𝒊 (path
length), O(𝒙𝒊): Obstacle avoidance term, where
proximity to obstacles or collisions leads to a higher
penalty, E(𝒙𝒊): Energy consumption at point 𝒙𝒊 (e.g.,
fuel, battery, etc.), and T(𝒙𝒊): Time taken to travel
through point 𝒙𝒊; and w1, w2, w3, and w4 are
weight coefficients that balance the importance of
each factor. The distance metric can be computed
using Euclidean distance between waypoints or
other appropriate distance measures depending on
the environment. The obstacle avoidance term O(x)
which can be defined as O(𝒙𝒊) = ∞ if the path
intersects with an obstacle, and O(𝒙𝒊)=1 if the path
is near obstacle. A penalty is applied when the path
intersects with obstacles to avoid collision. Energy
consumption E(x) can be based on the vehicle’s or
robot's speed, acceleration, or path complexity as
shown in formula (8).

E(𝒙𝒊)=c1*(d(𝒙𝒊, 𝒙𝒊+𝟏)*v(𝒙𝒊))+c2⋅a(𝒙𝒊) (8)

where: c1 and c2 are constants defining the energy
cost per distance and acceleration, respectively,
v(𝒙𝒊) denotes velocity at point 𝒙𝒊, and a(𝒙𝒊) denotes
acceleration. The time factor T(x) can be modeled as
the time required to traverse each segment of the
path as in formula (9).

T(𝒙𝒊) = D(𝒙𝒊)*v(𝒙𝒊) (9)

5. MFO Algorithm Structure:

5.1 Initialize Population: Initialize the positions of
moths randomly within the defined search space, set
the number of flames- based on the problem’s
requirements, and define the search boundaries for
the pathfinding space.
5.2 Initial Solutions: Evaluate the fitness of each
moth based on the multi-objective criteria: path
length, obstacle avoidance, energy consumption, and
time as in formulas (8), (9), and (7). Rank the moths
based on their fitness values, where moths with
lower fitness are ranked higher. Select the top moths

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 308 Volume 23, 2024

as flames. Each moth updates its position by moving
(movement uses the logarithmic spiral to simulate
the transverse orientation mechanism as in formula
(6)) toward one of the flames. The number of flames
decreases as iterations progress, encouraging
exploration in the early stages and exploitation in
later stages. Ensure that the new positions of the
moths remain within the predefined search space
boundaries.
5.3 Evaluate and Update Solutions: Evaluate the
new solutions (updated moth positions) based on the
objective function. Update the positions of the
flames if better solutions are found.
5.4 Output: When a stopping criterion is met, such
as a maximum number of iterations, convergence, or
achieving a threshold fitness value, output or display
the best solution X = {xs, x2, …, xt} representing the
optimal or near-optimal path in the graph. One
example of the MFO implementation is similar to
the MFO algorithm 1.

Over the last five years (2019- 2024), more than
500 metaheuristic algorithms have been developed
and applied to solve pathfinding problems [44], [45].
Table 3 (Appendix) shows a list of 12 different
metaheuristic algorithms with inspiration-based,
solution representations, and their objective
functions. These algorithms are Genetic algorithm
(GA), Particle Swarm Optimization (PSO),
Simulation Annealing, Ant Colony Optimization
(ACO), Differential Evolution (DE), Grey Wolf
Optimization (GWO), Bat Algorithm (BA), Firefly
Algorithm (FA), Harmony Search (HS), Cuckoo
Search, Whale Optimization Algorithm (WOA),
Crow Search Algorithm (CSA). You can follow the
guidelines of the proposed framework to implement
each of these algorithms in solving the pathfinding
problems. It is expected that each F(X) evaluates the
minimum distance or cost of path X and other
factors can be considered too.

In the stochastic environment, pathfinding for
vehicles faces various obstacles. These obstacles

include environmental uncertainties, vehicle
constraints, stochastic variability, and driver
behavior [46]. Handling such obstacles requires
advanced techniques such as probabilistic models
(e.g. MDP), reinforcement learning, robust planning
algorithms, and metaheuristic behavior. In this
paper, we consider adaptive heuristics and operators,
enhanced fitness functions, and the hybrid approach
of ACO and MFO. For example, pheromone levels
in ACO are adjusted based on environmental
conditions. In MFO, when obstacles disrupt the
solution space, the MFO algorithm repositions the
candidate solutions to reflect the updated
environment. The ACO, MFO, and the combination

of ACO and MFO algorithms include multiple
criteria in the fitness function such as time, distance,
obstacle avoidance, and energy consumption. These
three algorithms add penalties for high-uncertainty
regions or routes. We combine the ACO and MFO
metaheuristics algorithms to leverage
complementary strengths.

4 Implementation and Results
The algorithms A* search, ACO, MFO, and ACO+
MFO combination were implemented and tested on
randomly generated sample dataset with sizes.

The algorithms A* search, ACO, MFO, and
ACO+ MFO combination were implemented and
tested on randomly generated sample dataset with
sizes of 100 by 100, 200 by 200, …, 1000 by 1000,
and a mountainous area of Jibal Al-Sharat in Jordan.
The second dataset includes a digital environment
model (DEM) obtained from satellite imagery, a
variety of elevation levels, obstacles, and
geographical features [47]. Each algorithm was run
five times and the average of the metrics were
registered. The evaluated metrics are run time,
consumed energy, number of obstacles encountered,
length of the shortest path (distance), and number of
explored vertices. The consumed energy indicates
the amount of energy required by an agent to
traverse a path from a start position to a target
position. The number of obstacles encountered
indicates the number of times the agents encountered
obstacles (e.g. elevation based and slope) during
their search for the optimal path in the terrain. The
number of explored vertices indicates the number of
unique nodes that were explored. The cost of the
optimal path with these or some of these factors can
be computed by objective function C(X) = min
(∑Xw1⋅D(xi, xi+1)+ w2⋅O(xi) +w3.E(xi)+ w4.T(xi)).

Table 4 (Appendix) shows samples of the
performance results. It is clear that when the sizes
increase, the run time increases in the four
algorithms. The combination of the MFO+ACO
algorithm outperforms the other three algorithms in
the run time in all selected data sizes. The ACO
performed the worst in the majority of cases. It
almost produced the same average best for different
sizes and fixed starting vertex and target vertex. The
three algorithms explored less number of vertices
than ACO.

Table 5 shows the performance of the average
run time of various algorithms (ACO+ MFO, MFO,
A*, and ACO) across different grid sizes, for other
start and target points differ from those tested in
Table 4 (Appendix). The hybrid approach of

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 309 Volume 23, 2024

ACO+MFO consistently exhibited the least average
runtime across all grid sizes of randomly generated
datasets. Thus, combining the exploration
capabilities of MFO with the exploitation strengths
of ACO yields less run time for vehicle pathfinding.
The A* algorithm exhibited higher average runtimes
compared to both MFO and ACO. This may be
attributed to the heuristic nature of A*.

Table 5. Average run time (seconds) for randomized

generated datasets
Algs/
Sizes

600 700 800 900 1000

ACO+
MFO

0.70 0.73

0.886 1.29 1.43

MFO 1.34 1.58 1.10 1.22 1.69
A* 2.28 2.30 1.26 1.50 1.73
ACO 9.89 10.02 10.2 11.25 12.3

Table 6 shows the average run time of the

algorithms across different grid sizes obtained from
Jibal Al-Sharat datasets. The hybrid approach of
ACO+MFO exhibited the least average runtime
across all shown grid sizes. Thus, combining the
exploration capabilities of MFO with the
exploitation strengths of ACO yields less run time
for vehicle pathfinding. The A* algorithm exhibited
higher average runtimes compared to both MFO and
ACO.

Table 6. Average Run Time (in seconds) from a
sample of the Jibal Al-Sharat dataset

Alg/ Sizes 600 700 800 900 1000
ACO+
MFO 0.68 0.72 0.80 1.20 1.40

MFO 1.30 1.50 1.00 1.20 1.60
A* 2.20 2.40 1.30 1.60 1.80
ACO 9.00 9.80 10.00 11.00 12.00

Table 7. Cost functions for 1000*1000 randomize
generated data, (D-Distance, O-obstacle, E-Energy,

T-average run time)
Algo. Cost 1 (D +

O)
Cost 2 (D
+ O + E)

Cost 3 (D
+ O + E +
T)

ACO+
MFO 414.46 649.76 793.003
MFO 493.42 782.916 951.915
A* 693.42 1076.11 1249.11
ACO 773.83 964.43 2194.43

Table 7 and Tabble 8 show the cost functions

performance of the four algorithms on a dataset
generated randomly, and sample from the Jibal Al-
Sharat dataset, respectively, of 1000x1000 size. The
hybrid algorithm has the lowest costs across all three

categories, which means that it is the most efficient
algorithm among the four algorithms on this grid
size. The cost from the MFO is less than the costs
from ACO and A* for the dataset size of 700 to
1000. The ACO has the highest costs, especially in
cost 3 because of the poor run-time efficiency. The
A* algorithm encounters difficulties with scaling,
which results in higher costs for larger grids
especially in runtime and energy consumption. The
MFO algorithm performs better than ACO and A*
but continues to fall behind the ACO+MFO
algorithm.

Table 8. Cost functions for 1000*1000 from sample

of Jibal Al-Sharat dataset
Algorithm Cost 1 (D

+ O)
Cost 2 (D
+ O + E)

Cost 3 (D
+ O + E +
T)

ACO+MFO 746.7 1099.6 1239.6
MFO 822.2 1256.5 1416.5
A* 1052.3 1626.3 1806.3
ACO 773.8 1869.1 2069.1

5 Conclusion
In this paper, the specifications of heuristic or
metaheuristic algorithms for pathfinding problems
are presented in a framework. The pathfinding
problems and their representations in a graph were
presented. The objective functions to optimize
pathfinding problems were clearly explained. A
framework and its components were proposed and
explained how to be utilized to solve pathfinding
problems. The metaheuristic algorithms and their
classifications to solve pathfinding problems were
overviewed.

Sample examples of A*, ACO, MFO, and a
combination of ACO and MFO were explained how
to follow the framework to solve the pathfinding
problems. The MFO algorithm alone performs well
but lacks the refinement provided by ACO, while the
ACO by itself explores more nodes and consumes
more energy, making the hybrid MFO + ACO a
balanced solution for scenarios requiring both path
efficiency and obstacle avoidance.

In conclusion, both ACO and MFO incorporate
common strategies to handle dynamic obstacles such
as: 1) incorporating real-time data to adjust paths
accordingly, 2) utilizing fitness functions including
penalties for collisions and encouraging exploration
of safer paths, 3) ensuring exploration continues
even when parts of the solution space are disrupted,
and 4) using incremental learning for efficient
adaptation when parts of the environment remain
static.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 310 Volume 23, 2024

This paper introduces how the proposed
framework for metaheuristics techniques will help
interested readers understand how pathfinding
algorithms work and pick the best fit for a particular
application.

For future research, we plan to investigate how
ACO and other metaheuristic optimization can
leverage deep learning (DL) and machine learning
(ML) techniques to enhance their ability to handle
obstacles in dynamic environments for pathfinding
problems. By integrating ML/DL, we expect that
these metaheuristic algorithms can make smarter
decisions, adapt faster to changes, and improve
pathfinding efficiency. In the stochastic
environment, the hybrid of ACO and MFO and other
metaheuristic approaches can be investigated when
using probabilistic models (e.g. MDP),
reinforcement learning, robust planning algorithms,
and metaheuristic behavior. Also, we intend to refine
and combine metaheuristic algorithms to solve the
pathfinding problems for autonomous vehicles

and unmanned aircraft vehicles (UAV).

Acknowledgement:

I appreciate and acknowledge the support of the
University of Jordan for granted me a sabbatical
leave during the academic year 2023-2024.

References:

[1] Peng Duan, Zhenao Yu, Kaizhou Gao, Leilei
Meng, Yuyan Han, Fan Ye, Solving the multi-
objective path planning problem for mobile
robot using an improved NSGA-II algorithm,
Swarm and Evolutionary Computation, Vol.
87, 2024, pp. 101576.
https://doi.org/10.1016/j.swevo.2024.101576.

[2] Daniele Ferone, Paola Festa, Serena Fugaro,
Tommaso Pastore, A dynamic programming
algorithm for solving the k-Color Shortest
Path Problem, Optimization Letters, Vol.15.
2021, pp. 1973–
1992.https://doi.org/10.1007/s11590-020-
01659-z.

[3] Shima Khoshraftar, and Aijun An, A Survey
on Graph Representation Learning Methods,
ACM Transactions on Intelligent Systems and

Technology, Vol. 15, Issue 1, 2024, pp.1 – 55.
https://doi.org/10.1145/3633518.

[4] Rakan Nasir H Alhwety and Nazar Elfadil,

Vehicle Tracking System Approaches: A
Systematic Literature, International Journal of

Computer Science and Mobile Computing,

Vol.13 Issue.8, 2024, pp. 23-31. DOI:
10.47760/ijcsmc.2024.v13i08.003.

[5] Saman M. Almufti, Ridwan Boya Marqas,
Vaman Ashqi Saeed, Taxonomy of bio-
inspired optimization algorithms, Journal of

Advanced Computer Science & Technology,

Vol. 8, No. 2, 2019, pp. 23-31.
https://doi.org/10.14419/jacst.v8i2.29402.

[6] Yan, Ying, Research on optimal path planning
technology for vehicle positioning and
navigation system, Applied Mathematics and

Nonlinear Sciences, Vol 9, No. 1, 2023, pp.1-
20. DOI: 10.2478/amns.2023.1.00397.

[7] Peng Liu, Xuekui Wang, Liangfei Yin, Beng
Liu. Flat random forest: a new ensemble
learning method towards better training
efficiency and adaptive model size to deep
forest. International Journal of Machine

Learning and Cybernetics, Vol.1, No. 2, 2024,
pp. 499-513. DOI: 10.1007/s13042-020-
01136-0.

[8] Chee Sheng Tan, Rosmiwati Mohd-Mokhtar,
and Mohd Rizal Arshad, A Comprehensive
Review of Coverage Path Planning in
Robotics Using Classical and Heuristic
Algorithms, IEEE Access, 2021, Vol. 9, 2021,
pp. 119310 -119342. DOI:
10.1109/ACCESS.2021.3108177.

[9] Vinita Tomar, Mimta Bansal, and Pooja
Singh, Metaheuristic Algorithms for
Optimization: A Brief Review, Engineering

Proceedings, Vol. 59, No.1, 2023, pp. 238.
https://doi.org/10.3390/engproc2023059238.

[10] M. Almufti, S., Ahmad Shaban, A., Ismael
Ali, R., & A. Dela Fuente, J., Overview of
Metaheuristic Algorithms. Polaris Global

Journal of Scholarly Research and Trends,
Vol. 2, No.2, 2023, pp.10–32.
https://doi.org/10.58429/pgjsrt.v2n2a144.

[11] Michahael T. Goodrich and RobTamassi,
Algorithm Design: Foundations, Analysis and
Internet Examples, 2009, John Wiley & Sons,
Inc. New York, NY, US, 2009, DOI:
10.1145/992287.992293.

[12] Vicky Indriyono and Widyatmoko,
Optimization of Breadth-First Search
Algorithm for Path Solutions in Mazyin
Games Bonifacius, International Journal of
Artificial Intelligence & Robotics (IJAIR) E-
ISSN: 2686-6269 Vol.3, No.2, 2021, pp.58-
66. DOI:10.25139/ijair.v3i2.4256.

[13] Anton Jesuthas, Nickson Joram and Suthakar,
Somaskandan, Path-finding and Planning in a
3D Environment An Analysis Using
Bidirectional Versions of Dijkstra’s, Weighted

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 311 Volume 23, 2024

https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation/vol/87/suppl/C
https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation/vol/87/suppl/C
https://doi.org/10.1016/j.swevo.2024.101576
https://doi.org/10.1007/s11590-020-01659-z
https://doi.org/10.1007/s11590-020-01659-z
https://doi.org/10.1145/3633518
http://dx.doi.org/10.47760/ijcsmc.2024.v13i08.003
https://doi.org/10.14419/jacst.v8i2.29402
https://doi.org/10.3390/engproc2023059238
https://doi.org/10.58429/pgjsrt.v2n2a144

A*, and Greedy Best First Search Algorithms,
2nd Asian Conference on Innovation in

Technology (ASIANCON), Pune, India,2022.
DOI:
10.1109/ASIANCON55314.2022.9909251.

[14] Ismail H. Toroslu, The Floyd-Warshall all-
pairs shortest paths algorithm for disconnected
and very sparse graphs, Software: Practice

and Experience, Vol 53, Issue 6, 2023,
pp. 1287-1303.
https://doi.org/10.1002/spe.3188.

[15] Joshua Erlangga Sakti, Muhammad Arzaki,
Gia Septiana Wulandari, A Backtracking
Approach for Solving Path Puzzles, Journal of

Fundamental Mathematics and

Applications(JFMA), Vol. 6, No.2, 2023,
pp.117-135. DOI: 10.14710/jfma.v6i2.18155.

[16] W. Susanto, S. Dennis, M. Brian Aqacha
Handoko and K. Margi Suryaningrum,
"Compare the Path Finding Algorithms that
are Applied for Route Searching in Maps,"
2021 1st International Conference on

Computer Science and Artificial Intelligence

(ICCSAI), Jakarta, Indonesia, 2021, pp. 178-
183, Doi:
10.1109/ICCSAI53272.2021.9609742

[17] Kui, L.; Yu, X. A Pathfinding Algorithm for
Large-Sca16le Complex Terrain
Environments in the Field. ISPRS Int. J. Geo-

Inf. Vol 13, Issue 7, 2024, pp. 251.
https://doi.org/10.3390/ ijgi13070251.

[18] Chen, Y.-J.; Jhong, B.-G.; Chen, M.-Y. A
Real-Time Path Planning Algorithm Based on
the Markov Decision Process in a Dynamic
Environment for Wheeled Mobile Robots.
Actuators, Vol.12, Vol. 4, 2023, pp. 166.
https://doi.org/10.3390/ act12040166.

[19] Gad, Ahmed G., Particle Swarm Optimization
Algorithm and Its Applications: A Systematic
Review, Archives of Computational Methods

in Engineering. Vol. 29, No. 5, 2022, pp.
2531–2561. DOI: 10.1007/s11831-021-09694-
4.

[20] Shubham Gupta, Hammoudi Abderazek, Betül
Sultan Yıldız, Ali Riza Yildiz, Seyedali
Mirjalili, Sadiq M. Sait, Comparison of
metaheuristic optimization algorithms for
solving constrained mechanical design
optimization problems, Expert Systems with

Applications, Vol. 183, 2021, pp. 115351,
https://doi.org/10.1016/j.eswa.2021.115351.

[21] Daniel Foeada, Alifio Ghifaria, Marchel Budi
Kusumaa, Novita Hanafiahb, and Eric
Gunawanb, A Systematic Literature Review of
A* Pathfinding, Procedia Computer Science,

Vol.179, 2021, pp. 507–514.
https://doi.org/10.1016/j.procs.2021.01.034.

[22]]Debora DiCaprio, Ali Ebrahimnejad, Hamidr
eza Alrezaamiri, Francisco J. Santos-Arteaga,
A novel Ant Colony Algorithm for Solving
Shortest Path Problems with Fuzzy Arc
Weights, Alexandria Engineering Journal,
Vol. 61, Issue 5, 2022, pp 3403-3415.
https://doi.org/10.1016/j.aej.2021.08.058.

[23] M. Rhifky Wayahdi, Subhan Hafiz Nanda
Ginting, Dinur Syahputra, Greedy, A-Star, and
Dijkstra’s Algorithms in Finding Shortest
Path, International Journal of Advances in

Data and Information Systems, Vol. 2, No. 1,
2021, pp. 45-52. DOI:
10.25008/ijadis.v2i1.1206 r 45.

[24] Hong, Z.; Sun, P.; Tong, X.; Pan, H.; Zhou,
R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.;
Xu, L. Improved A-Star Algorithm for Long-
Distance Off-Road Path Planning Using
Terrain Data Map. ISPRS Int. J. Geo-Inf., Vol.
10, No. 11, 2021, pp. 785.
https://doi.org/10.3390/ijgi10110785.

[25] Dian Rachmawati and Lysander Gustin,
Analysis of Dijkstra’s Algorithm and A*
Algorithm in Shortest Path Problem, Journal
of Physics: Conference Series, Vol. 1566,
2020, pp. 012061 DOI: 10.1088/1742-
6596/1566/1/012061.

[26] Daniel Harbor and Alban Grastien, Improving
Jump Point Search, Proceedings of the

International Conference on Automated

Planning and Scheduling 2014, 2014 pp.128-
135, Australia.
http://dx.doi.org/0.1609/icaps.v24i1.1363.

[27] Shrawan Kumar Sharma and Shiv Kumar,
Comparative Analysis of Manhattan, and
Euclidean Distance metrics using A*
Algorithm, Journal of Research in

Engineering and Applied Sciences, Vol. 1,
Issue 4, 2016, pp. 196-198. DOI:
10.46565/jreas.2016.v01i04.007.

[28] K Zhigalov, D K-S Bataev, E Klochkova, O A
Svirbutovich and G A Ivashchenko, Problem
solution of optimal pathfinding for the
movement of vehicles over rough
mountainous areas, IOP Conference Series:
Materials Science and Engineering, Saint-
Petersburg, Russian Federation, Vol. 1111,
No. 1, 2021, pp. 012033. DOI 10.1088/1757-
899X/1111/1/012033.

[29] Yella Swamy, K., Gogineni, S., Gunturu, Y.,
Gudapati, D., & Tirumalasetti, R. (2017).
Finding the shortest path using the ant colony
optimization. International Journal of

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 312 Volume 23, 2024

https://doi.org/10.1002/spe.3188
https://doi.org/10.3390/%20ijgi13070251
https://doi.org/10.3390/%20act12040166
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016/j.eswa.2021.115351
https://doi.org/10.1016/j.procs.2021.01.034
https://doi.org/10.1016/j.aej.2021.08.058
https://doi.org/10.3390/ijgi10110785
http://dx.doi.org/0.1609/icaps.v24i1.1363

Engineering & Technology, Vol. 7, No. 1.1,
pp. 392-396.
https://doi.org/10.14419/ijet.v7i1.1.9859.

[30] Russell, S., & Norvig, P., Artificial
Intelligence: A Modern Approach (4th ed.).
Pearson, 2021.
https://doi.org/10.1109/MSP.2017.2765202.

[31] Gede Putra Kusuma, Ricky Martin Goutama
and Steven Ferdianto. Comparing Pathfinding
Algorithms for Indoor Positioning System,
ICIC Express Letters, 2022, Vol. 16, No. 3,
2022, pp. 299–306. DOI:
10.24507/icicel.16.03.299.

[32] Reda Mohamed, Ahmed Onsya, Amira Y.
Haikalb, and Ali Ghanbaria, Path planning
algorithms in the autonomous driving system:
A comprehensive review, Robotics and

Autonomous Systems, Vol. 174, No. 10, 2024,
pp. 104630.
https://doi.org/10.1016/j.robot.2024.104630.

[33] Shabina Banu Mansuri, Shiv kumar,
Comparative Analysis of Path Finding
Algorithms, IOSR Journal of Computer

Engineering (IOSR-JCE), Vol. 20, Issue 5,
Ver. I, 2018, pp. 38-45. doi:10.9790/0661-
2005013845.Issue 12, 2019, pp. 83- 87.

[34] Ab Wahab, M. N., Nazir, A., Khalil, A., Ho,
W. J., Akbar, M. F., Noor, M. H. M., &
Mohamed, A. S. A., Improved genetic
algorithm for mobile robot path planning in
static environments. Expert Systems With

Applications, Vol. 249, No. 3, 2024, pp.
123762.
https://doi.org/10.1016/j.eswa.2024.123762.

[35] Wenrong Jiang, Analysis of Iterative
Deepening A* Algorithm, 8th Annual
International Conference on Geo-Spatial
Knowledge and Intelligence IOP Conf. Series:
Earth and Environmental Science Vol. 693,
2021, pp. 012028 IOP Publishing, Shaanxi,
China. DOI: 10.1088/1755-
1315/693/1/012028.

[36] Luo, Y.; Lu, J.; Zhang, Y.; Qin, Q.; Liu, Y. 3D
JPS Path Optimization Algorithm and
Dynamic-Obstacle Avoidance Design Based
on Near-Ground Search Drone, Applied

Science. Vol.12, No. 14, 2022, pp. 7333.
https:// doi.org/10.3390/app12147333.

[37] C. Van Dang, H. Ahn, D. S. Lee and S. C.

Lee, A Path Planning Method Based on Theta-
star Search for Non-Holonomic Robots, Joint
12th International Conference on Soft
Computing and Intelligent Systems and 23rd
International Symposium on Advanced

Intelligent Systems (SCIS&ISIS), Ise, Japan,
2022, pp. 1-6, DOI:
10.1109/SCISISIS55246.2022.10002141.

[38] Diego Carlos Luna M´arquez ∗ Dante
M´ujica-Vargas, Ana Monserrat Rojas
Fern´andez, The Theta* Algorithm for Path
Calculation, Jornada de Ciencia y Tecnología

Aplicada Tecnológico Nacional de

México/CENIDET, Vol. 2. 2019.
[39] Irfan Darwin and Suryadiputra Liawatimena,

Dynamic Map Pathfinding Using Hierarchical
Pathfinding Theta Star Algorithm, Journal of

Theoretical and Applied Information

Technology, Vol. 99, No. 20, 2019, pp. 4875-
4885, [Online].
https://api.semanticscholar.org/CorpusID:2450
19366 (Accessed Date: October 15, 2024).

[40] Guanghui Li, Taihua Zhang, Chieh-Yuan Tsai,
Liguo Yao, Yao Lu, Jiao Tang, Review of the
metaheuristic algorithms in applications:
Visual analysis based on bibliometrics, Expert

Systems with Applications, Vol. 255, Part D,
2024, 124857.
https://doi.org/10.1016/j.eswa.2024.124857.

[41] Franco, Dario Diaz, Jesus Hernandez-
Barragan, Nancy Arana-Daniel and Michel
Lopez-Franco , A Metaheuristic Optimization
Approach for Trajectory Tracking of Robot
Manipulators Carlos Lopez- Franco,
Mathematics, Vol. 10, 2022, 10, pp. 1051.
https://doi.org/10.3390/math10071051.

[42] Umit Can1, Bilal Alatas, Physics Based
Metaheuristic Algorithms for Global
Optimization, American Journal of

Information Science and Computer

Engineering, Vol. 1, No. 3, 2015, pp. 94-106.
http://www.aiscience.org/journal/ajisce.

[43] S. Kavita and S. S. K., Metaheuristic
Evolutionary Algorithms: Types,
Applications, Future Directions, and
Challenges, 2023 3rd International Conference
on Intelligent Technologies (CONIT), Hubli,
India, 2023, pp. 1-6, DOI:
10.1109/CONIT59222.2023.10205592.

[44] S. Consoli, Supervisor: Prof. K. Darby-
Dowman, Operational Research Report:
Combinatorial Optimization and
Metaheuristics, School of Information
Systems, Computing and Mathematics, Brunel
University, January 2006, [Online].
 http://hdl.handle.net/2438/503. (Accessed
Date: October 15, 2024).

[45] OpenAI. (2024). ChatGPT [Large language
model]. https://chatgpt.com/g/g-zRe3DR0KX-
login-page/c/4b1fff4a-dbbd-4df3-ae98-

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 313 Volume 23, 2024

https://doi.org/10.14419/ijet.v7i1.1.9859
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1016/j.robot.2024.104630
https://doi.org/10.1016/j.eswa.2024.123762
https://api.semanticscholar.org/CorpusID:245019366
https://api.semanticscholar.org/CorpusID:245019366
https://doi.org/10.1016/j.eswa.2024.124857
https://doi.org/10.3390/math10071051
http://www.aiscience.org/journal/ajisce
http://hdl.handle.net/2438/503
https://chatgpt.com/g/g-zRe3DR0KX-login-page/c/4b1fff4a-dbbd-4df3-ae98-fed46506c97c
https://chatgpt.com/g/g-zRe3DR0KX-login-page/c/4b1fff4a-dbbd-4df3-ae98-fed46506c97c

fed46506c97c (Accessed Date: September 20,
2024).

[46] Mahmoud Jahjouh, Uneb Gazder, Rashid
Abdulrahman Ismaeel, Development of a
Traffic Microsimulation Tool with the
Incorporation of Variations in Driver
Behaviors, WSEAS Transactions on

Computers, Vol. 21, 2024 pp. 226-236.
https://doi.org/10.37394/23205.2024.23.22.

[47] Earth Explorer. USGS, [Online].
https://earthexplorer.usgs.gov (Accessed Date:
December 21, 2024).

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

Conceptualization, methodology, validation
investigation, resources, data curation, writing draft
preparation, editing, Sharieh; Ahmad Sharieh carried
out the simulation and the optimization, he
organized and executed the experiments of Section
4, he implemented the Algorithms, and was
responsible for the Statistics.

The author contributed to the present research,
at all stages from the formulation of the problem to
the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The author has no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 314 Volume 23, 2024

https://chatgpt.com/g/g-zRe3DR0KX-login-page/c/4b1fff4a-dbbd-4df3-ae98-fed46506c97c
https://doi.org/10.37394/23205.2024.23.22
https://earthexplorer.usgs.gov/
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

APPENDIX

Table 2. Examples of pathfinding applications and the values to optimize [4], [5]. Those from 1 to 10, 11 to 17,

and 18 minimize F(P), maximize F(P), and 21 optimizes F(P), respectively. Assume P = X path and (𝒗𝒊

, 𝒗𝒊+𝟏) = (𝒙𝒊, 𝒙𝒊+𝟏)
Optimization functions F(P)= Applications
1. Minimize the total cost of the path (P). Cost includes monetary, time, and
resource usage. Minimize F(P) =

 ∑ 𝒄𝒐𝒔𝒕𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)

Logistics, delivery routing, network
traffic optimization.

2.the total travel distance. ∑ 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) Road networks and robotic path planning

3.the total travel time, considering speed limits or constraints.
 ∑ 𝒕𝒓𝒂𝒗𝒆𝒍𝒕𝒊𝒎𝒆

𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏); Subjective to: speed(𝒗𝒊, 𝒗𝒊+𝟏)

Emergency response routing, and
transportation planning.

4.the risk or danger can be influenced by factors such as traffic congestion,
crime rates, or environmental hazards.∑ 𝒓𝒊𝒔𝒌𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Safe route planning, disaster management.

5.the energy consumption of the path relevant to electric vehicles or robots.
 ∑ 𝒆𝒏𝒆𝒓𝒈𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Electric vehicle routing, autonomous
robot navigation.

6.the deviation from a predefined path or route. ∑ 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏(𝒗𝒊, 𝒗𝒊+𝟏)
𝒏−𝟏

𝒊=𝟏
 Autonomous vehicle navigation, and

guided tours [32].
7.the number of stops or nodes visited along the path.
∑𝒏−𝟏

𝒊=𝟏 number_ of_ stops(𝒗𝟏…𝒗𝒏)

Direct delivery routing, and express
transport services.

8.the environmental impact such as emissions or disturbance to wildlife.
∑ 𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍_𝒊𝒎𝒑𝒂𝒄𝒕(𝒗𝒊, 𝒗𝒊+𝟏)

𝒏−𝟏

𝒊=𝟏

Eco-friendly transportation planning,
sustainable logistics.

9.the complexity of the path, such as the number of turns or intersections.
∑ 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒗𝒊, 𝒗𝒊+𝟏)

𝒏−𝟏

𝒊=𝟏

Simple route planning, novice driver
navigation.

10.The detours or unnecessary deviations from the direct route.
∑ 𝒅𝒆𝒕𝒐𝒖𝒓𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Efficient commuting, time-sensitive
deliveries.

11.Maximize the visibility or coverage of certain areas along the path. F(P)

=∑ 𝒗𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)

 Surveillance drone path planning,
wildlife monitoring.

12.the comfort by considering factors like road quality, noise levels, or
scenery. ∑ 𝒄𝒐𝒎𝒇𝒐𝒓𝒕𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)

Tourist route planning, long-distance
travel optimization

13.tthe connectivity or access to resources or points of interest along the path.
= ∑ 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Resource allocation, tourism planning.

14.the flow or throughput of the path. ∑ 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) Network traffic optimization, and data

routing in communication networks.
15.the capacity of the path to handle traffic or load.
 ∑ 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)

Traffic management, and load balancing
in networks.

16.the smoothness of the path by reducing abrupt changes in direction or
speed. ∑ 𝒔𝒎𝒐𝒐𝒕𝒉𝒏𝒆𝒔𝒔𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Autonomous vehicle navigation, and
comfortable travel routes.

17. the reliability or robustness of the path against disruptions or failures.
∑ 𝒓𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)
Critical infrastructure routing, military
logistics.

18. Optimize multiple criteria simultaneously, such as distance, energy, and
time. Use a weighted sum of different objective functions F1, F2, F3, ... etc.,
as in function (2). Example:
F(P)=w1×F1(distance)+w2×F2(energy)+w3×F3(time)

Complex routing problems, where trade-
offs between different factors are
necessary.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 315 Volume 23, 2024

Table 3. list of 12 metaheuristic algorithms to optimize routes for robots and vehicles
Name Inspired By Solution Representation and Objective Function

GA Natural evolution
The population of chromosomes represents different possible sets
of routes. A gene in the chromosome represents a stop on a route.
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.T(xi)+w3.O(xi))

PSO Bird flocking, fish
schooling.

A particle represents a set of routes for all vehicles. A particle's
position corresponds to a complete vehicle routing solution.
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.T(xi)+w3.E(xi))

SA Annealing process in
metallurgy

A single solution (a complete set of vehicle routes) is gradually
improved by perturbing the current solution based on temperature
parameters.
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.E(xi)+w3.O(xi))

ACO Behaviour of ant colonies in
searching for food

The sequence of customer stops makes up a vehicle route. The
solution emerges from the collective behavior of ants finding
optimal paths.

F(X)=min(∑X1/τ(xi,xi+1).D(xi,xi+1)

DE Evolutionary strategy
A vector represents a solution. Each element of the vector
corresponds to an agent and its assigned vehicle route.
F(X)=min(∑X mutation(xi,xi+1) + cr (xi,xi+1)+ D(xi,xi+1))

GWO
Leadership hierarchy and
hunting mechanism of
wolves

A grey wolf represents a set of vehicle routes. Different wolves
represent different solutions.

F(X)=min(∑Xα.w1(xi,xi+1)⋅ D(xi,xi+1))

BA Echolocation of bats

A bat represents a vehicle route. The position of the bat
corresponds to the configuration of the routes, and it adjusts based
on echolocation principles.

F(X)=min(∑X loudness(xi,xi+1) + w1.D(xi,xi+1)+w2.E(xi))

FA Attraction of fireflies
A firefly represents a set of routes, where the brightness of the
firefly corresponds to how good the solution is.
F(X)=min(∑XI/r(xi,xi+1)+ D(xi,xi+1))

HS Jazz improvisation process
A harmony vector represents a candidate solution, where each
element corresponds to a specific vehicle route.
F(X)=min(∑X pitch(xi,xi+1)+ w1.D(xi,xi+1)+w2.T(xi)+w3.O(xi))

CS Brood parasitism of some
cuckoo species

A cuckoo egg represents a set of vehicle routes. It replaces less
optimal nests with new ones as it searches for better routes.
F(X)=min(∑Xw1.L(λ) + w2.D(xi,xi+1)+w3.O(xi)+ w4.T(xi))

WOA Bubble-net hunting strategy
of humpback whales

A whale represents a set of routes. The solution is adjusted by the
whale's movements in the search space.
F(X)=min(∑Xw1⋅D(xi,xi+1)+ w2⋅O(xi) +w3.T(xi)+w4.E(xi))

CS
Intelligent caching behavior
of crows

A crow represents a set of routes. Each crow hides its solution in
its memory. It updates the solution based on interactions between
crows and their stored routes.

F(X)=min(∑w1⋅D(xi , xi+1)+w2⋅O(xi))

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 316 Volume 23, 2024

Table 4. Samples of results on data sizes 500 by 500 to 1000 by1000. Runtime in seconds, and Length or
distance in meters

500*500
Algorithm Average of

runtime
Best Path
Length

Number
of vertices
Explored

MFO +
ACO

0.546 49 15

MFO 1.123 55 14

A* 1.24 57 40

ACO 8.19 112 106

600*600
MFO +
ACO

0.096 89 16

MFO 1.245 59 14
A* 22.76 57 40
ACO 9.0 113 122
700*700
MFO +
ACO

0.231

90 14

MFO 1.085 136 15
A* 12.0 56 40
ACO 9.90 113 104
800*800
MFO +
ACO

0.886 136 15

MFO 1.104 57 17
A* 1.26 57 40
ACO 10.2 111 104
900*900
MFO +
ACO

0.193 59 14

MFO 1.22 65 16
A* 1.50 49 85
ACO 11.25 113 128
1000*1000
MFO +
ACO

1.23 48 13

MFO 1.29 49 15
A* 1.73 56 40
ACO 12.3 64 157

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 317 Volume 23, 2024

