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Abstract: - Finding optimal path (pathfinding problem) in terrain for vehicles, robots, and network routes 
(roads, pipes for water or gas, and network cables) is very complex and costly. Exhausted, heuristic, and meta-
heuristic algorithms can be utilized to solve pathfinding problems. In this paper, we proposed a framework that 
finds an optimal path based on the objectives of the specifications and requirements of the pathfinding 
problems, terrain characteristics, and a metaheuristic algorithm. In this framework, a pathfinding problem is 
represented in a graph and a metaheuristic algorithm is modeled with optimal objective function F to find the 
optimal path. Thus, we present an overview of the most common metaheuristic pathfinding algorithms with 
heuristic objective functions. Many objective functions are modeled to find the optimal path in terms of 
distance, time, cost, energy, … etc., or in terms of a combination of two or more of these terms. The F is 
evaluated to find an optimal path from a starting point to a target point, subjective to constraints such as 
obstacles, barriers, and other constraints to satisfy the characteristics of the terrain. In this framework, the 
problem locations and links in terrain are represented in graph vertices and edges, respectively. The graph is 
implemented in adjacent matrices and the paths as vectors. We overview these algorithms with examples of 
their applications in vehicle scenarios. The framework will help interested readers understand how pathfinding 
algorithms work and pick the best fit for a particular application. 
 
Key-Words: - Framework, Heuristic, Graph, Metaheuristic Algorithms, Model, Objective Function, Optimal 

Pathfinding, Vehicles. 
 
Received: April 7, 2024. Revised: October 29, 2024. Accepted: November 28, 2024. Published: December 31, 2024.     
 
 
1  Introduction 
Pathfinding is one of the most concerning problems 
in mobile robotics and vehicles, and it is an NP-hard 
problem, [1], [2].  

The length, safety, and smoothness of a path are 
optimized simultaneously in multi-objective 
functions. The weighted multi-objective path 
planning methods and Pareto-based multi-objective 
path planning methods share the overarching aim of 
finding trade-off solutions and they differ in their 
optimization strategies, [1]. 

Metaheuristic algorithms provide a set of 
strategies for developing optimization problems 
including optimal path-finding problems. There are a 
variety of challenges and constraints to solving 
optimal path-finding problems in very large and 
complex search spaces. The challenges include the 
correct specifications of the environment 
characteristics, graph representation of the 
environment, objective function subjective to a set 
of constraints, and suitable metaheuristic algorithms 
or parallel algorithms to solve the problems. Thus, 

exploring an overview of metaheuristic algorithms 
and proposing a model will help solve pathfinding 
problems.  

Our objective is to present the specifications of 
heuristic or metaheuristic algorithms for pathfinding 
problems in a framework, which will be explained in 
Section 3.  The framework has the following 
components: the aim(s) of an algorithm to optimize 
the path in a given terrain, problem representation, 
key components of the selected algorithm, objective 
function to optimize the total cost of the path, and 
the algorithm steps. These steps include 
initialization, deploying exploration and/or 
exploitation and fitness functions to reduce the 
number of iteration and update positions, selecting 
the updated agent(s) to retain better positions, and 
producing the best path as an optimal or near-
optimal path in the given graph.  

To derive a mathematical model for finding an 
optimal path in an environment, start by specifying 
the locations or points (nodes) and the links between 
these points. In order to compute the cost value of 
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the optimal path, the points and the links will be 
mapped into a graph. A graph is a set of collective 
vertices and a set of edges denoted by G = (V, E), 
where the number of vertices is denoted by |V| = n 
and the number of edges denoted by |E| = m [3]. The 
set of points and set of links are mapped into the set 
of vertices and the set of edges, respectively. 
Adjacent vertices v ϵV are the set of all vertices that 
are connected to v by an edge, {x: (v, x) ϵ E}. A 
subgraph of a graph is a graph where all its vertices 
and edges are a subset of this graph. A path in a 
graph is a sequence of vertices connected by edges. 
A search space of locations and links is represented 
by a graph G = (V, E). A starting location is s and a 
target location is t, and the objective is to find the 
optimal path from s to t. A cost function C (xi, xj) 
that assigns a cost (or weight) to traversing from 
vertex xi to vertex xj, and a set of constraints Co that 
specifies permissible paths. Each edge in the graph 
is assumed to have a weight that represents the cost 
from a vertex to its neighbor. We need to find a path 
P = {x1, x2, ..., xn} from s to t that optimizes the 
objective function F(X), similar to function (1). The 
F(X) can optimize multiple criteria simultaneously, 
such as distance, energy, and time using a weighted 
sum of different objective functions F1, F2, F3, ..., Fm 

as shown in function (2). The F(P) evaluates the 
optimal path. The F(P) can be computed by an 
exhausted or an approximated algorithm on an 
available suitable platform.  

Optimize 𝐹(𝑃) = ∑  C(
𝑛−1

𝑖=1
xi, xi+1)  (1) 

 
Subject to Co. 

Optimize F(X)= ∑  wj Fj(X)      𝑚
𝑗=1  (2) 

Subject to constraints Cj  in each optimized Fj and 
∑  wj = 1𝑚

𝑗=1 .  
     

An optimal path can be through locations known 
before or to be constructed, [3]. Table 1 shows 
examples of previously specified locations and 
possible links in pathfinding applications and graph 
representations.  

In a weighted graph and edge e ∈ E, the weight 
C(e) represents a cost or effort to traverse the e from 
its start vertex to its end vertex. The weight can be 
distance, energy, time, elevation, flow, resource, 
hiker, capacity, etc., or combinations of some of 
these with percentage share or weighted averages.  
In optimal pathfinding problems, certain cost 
functions or objective function F assign value or cost 
to potential solutions that meet criteria. This cost 
computed by F guides the algorithm in its search for 
the most efficient path from the source point to the 
target point. 

Table 1. Examples of pathfinding applications and 
their graph representations 

Application Graph Representation  
Shortest path 
problem  

Terrain grid points         →V 
Paths between the points   → E  

Transportation 
networks  

Locations including airports, train 
stations, bus stations, intersections, or 
ports →V 
Routes including flights, railways, 
roads, roads or railways, or ships, 
respectively →E 

Tele-
communication 
networks  

Devices or routers →V 
Communication links between the 
devices →E 

Warehouses, 
suppliers, and 
retailers  

Warehouses, suppliers, and retailers 
→V 
 Transportation routes  → E 

Urban planning 
and GIS  

Base camp, checkpoints, buildings, or 
landmarks →V 
Roads, paths, trails, and other links  
→ E  

 
There are some common objective functions and 

algorithms used for optimizing path-finding 
problems. Table 2 (Appendix) shows examples of 
applications with possible optimization functions, 
[4], [5].  For example, in road networks and robotic 
path planning, the F is to minimize the total 
distance. Some functions maximize the benefits. For 
example, in resource allocation, the F is to maximize 
access to resources. In applications such as 
emergency response routing and transportation 
planning, the cost can be computed in terms of time, 
resource utilization, and monetary variables. In some 
applications like complex routing problems, trade-
offs between multiple factors such as time, distance, 
and elevation must be considered in computing the 
cost by using a weighted sum of several objective 
functions.  

    Our main contributions are: 
1. Presenting a framework and its utilization to 

solve pathfinding problems. 
2. Reviewing the pathfinding problems and their 

representations in a graph. 
3. Presenting objective functions to optimize 

pathfinding problems. 
4. Overviewing metaheuristic algorithms to solve 

pathfinding problems and their classifications. 
   

In this section, we introduce our objectives, the 
problem and its representation in graphs, and some 
pathfinding applications with its optimization 
functions. Section 2 reviews optimization algorithms 
utilized in solving the pathfinding problems and 
their classifications. Section 3 explains how the 
framework can be followed to solve the problem. 
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Section 4 shows examples of how to implement a 
few metaheuristic algorithms. Section 5 concludes 
the manuscript.  
 
 
2 Algorithms and Pathfinding 

 Problems 
In [6], they reported that the design of the optimal 
path planning algorithm needs to consider its 
theoretical efficiency, the difficulty of reducing the 
computer implementation, and the resource 
requirements of the computer hardware system. 
They also reported that at present, there are many 
mature algorithms to solve the shortest path 
problem. These algorithms include the Dijkstra 
algorithm, Bellman-Ford's algorithm, Floyd's 
algorithm, and heuristic search algorithms such as 
the A* algorithm. There are also many improved 
algorithms for vehicle navigation, such as K-shortest 
path algorithms, genetic algorithms, and neural 
network-based algorithms, [6]. 

According to the research background and the 
current status of domestic and international research, 
it can be seen that the shortest path problems are a 
hot research topic in GIS, computers, and other 
sciences, [6], [7]. In the literature [7], a shortest path 
algorithm was tested in a stochastic planar network 
by selecting the more representative shortest path 
algorithms from the available ones, and the results 
showed that no single algorithm can be adapted to 
all types of networks.  

There are many common algorithms utilized for 
optimization pathfinding problems. These use brute 
force, heuristic, or metaheuristic techniques, [8], [9]. 
In this section, we briefly review these algorithms. 

 
2.1  Brute Force and Algebraic Algorithms 
In solving pathfinding problems, the brute force or 
the exhausted algorithms explore all possible options 
to find the optimal solution, and then select the best 
one based on specified criteria, [10], [11].  Some 
common brute force algorithms are depth-first 
search (DFS), breadth-first search (BFS), 
backtracking (BT) [12], branch and bound (BB) 
[11], dynamic programming (DP), Dijkstra 
algorithm (DA) [13], and Floyd-Warshall (FW) 
algorithm [14].  The DFS is useful where the 
solution is likely to be found far from the starting 
point [11]. The BFS is used to find the shortest path 
in unweighted graphs, [3]. The BB algorithm 
searches by trying different paths and eliminating 
those that don’t lead to a solution, [15].  A DP uses a 
grid-based approach for pathfinding to solve 
problems like the shortest path, [2]. The DA is a 

greedy algorithm, and it is used to find the shortest 
path between vertices in a graph with non-negative 
weight edges and select the vertex with the smallest 
distance. It is used in road networks. 

The advantages of brute force algorithms are: 
explore all possible solutions, guarantee to find the 
correct or optimal path and provided it exists, do not 
require prior knowledge or assumptions about the 
problem domain, and do not rely on specific 
properties of the problem, [16]. Their limitations are: 
inefficient for large or complex problems, their time 
complexity is typically exponential, impractical for 
large-scale or real-time pathfinding problems 
because they consume significant amounts of 
memory when storing all possible paths, and are 
unmanageable for very large grid size, [16].  

In algebraic approaches, the graph's weights 
reflect the cost of traversing a terrain. Vehicle 
pathfinding in terrains can be formulated as a linear 
programming problem (LP), where the objective 
function is to minimize the cost. Approaches like the 
simplex method can be used to solve such problems 
using matrix operations to find the shortest path, 
[17]. In stochastic terrain environments, the Markov 
decision process (MDP) can help in moving to 
adjacent vertices, and dynamic programming 
approaches can model decision-making under 
uncertainty, [18]. When a vehicle navigates a terrain, 
it can use a weighted graph to represent a terrain 
type and slope obstacles, a tropical semi-ring to find 
a path with minimum cost, an LP model to handle 
vehicle energy, and an MDP to handle uncertain 
conditions. Algebraic approaches often lead to 
mathematically optimal solutions in travel time, 
distance, and energy consumption. These approaches 
provide deterministic results. They can be adapted to 
solve pathfinding problems such as weighted, 
directed, or multi-constraint problems. Algebraic 
techniques are powerful for theoretical and 
structured pathfinding problems, but they have 
drawbacks such as: 1) may not handle applications 
such as dynamic traffic conditions and obstacles in 
the world, 2) may become computationally 
expensive for large or dense graphs, 3) they phase 
difficulty in handling non-linear applications for 
vehicle routing, 4) and they are often static. 
 
2.2  Heuristic Algorithms 
Heuristic algorithms make guesses to speed up the 
search process and find a solution very close to the 
optimal one and do not guarantee finding the best 
solution, [19]. The heuristic techniques are designed 
to solve problems quickly when classic methods are 
slow to find an exact or approximate solution, or 
when classic methods fail to reach an exact solution 
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in a search space. It finds optimal or near-optimal 
solutions to the optimal pathfinding problems faster 
and more efficiently than exhaustive search 
methods.     

There are heuristic algorithms commonly used 
for pathfinding across various applications, 
including robotics, gaming, and logistics. Examples 
of heuristic algorithms for pathfinding are A* (A-
star) search, Hill Climbing (HC), Greedy Best-First 
Search (GBFS), Simulated Annealing (SA), Beam 
Search (BS), Iterative Deepening A* (IDA*), and 
Theta* algorithm, [5], [9], [10], [16], [19]. The A* 
search algorithm is a popular heuristic one, [20], 
[21], [22]. The DAH adds a heuristic function to 
prioritize vertices and improve its efficiency, [8]. 
The GBFS focuses on the estimated cost to the 
target vertex t, it is similar to A*, but f(v) = h(v). 
This is achieved by trading optimality, 
completeness, accuracy, and precision for speed, 
[20].  
 
In their analysis [22], the authors conclude that:  
a.  The results of the Greedy algorithm analysis 

with several trials can find the shortest path in a 
fast time, but there are some cases where the 
optimal solution is not found or the final state is 
not found at all,    

b.  The results of the A* algorithm analysis with 
several trials can find the shortest path better 
than the Greedy algorithm, [23].  

c.  The results of Dijkstra algorithm analysis with 
several trials can find the shortest path better 
than the Greedy and A* algorithms. In this case, 
the Dijkstra algorithm can find a solution that 
tends to be better than the two and always finds 
the optimal solution.  

d.  The weakness of the greedy algorithm is that it 
tends to make choices that do not take into 
account the next event, while the weakness of 
the A* algorithm is that the graph must have 
complex data such as straight-line distance to 
node (final state), while the weakness of Dijkstra 
algorithm tend to be slow in finding solutions 
because they have to compare the cost of one 
path with the cost of another path, [24]. 

 
The authors in [26] reported that the IDA* has 

the following characteristics: it performs DFS using 
the same cost function as A*, its memory usage is 
lower than in A*, it concentrates on exploring the 
most promising nodes, and does not go to the same 
depth everywhere in the search tree, and unlike A* it 
does not utilize and ends up exploring the same 
nodes many times. Its advantages are [26]: if an 
optimum solution exists, it will be discovered 

(completeness), it only keeps one path in memory at 
a time (memory efficiency), may be employed with 
several heuristic functions (flexibility), and 
sometimes outperforms other search algorithms like 
uniform-cost search (UCS) or BFS. These 
algorithms utilize heuristic functions to guide their 
search to estimate the cost to reach the goal vertex 
from a given vertex. The choice of heuristic function 
impacts the efficiency and accuracy of the 
pathfinding process.  A heuristic algorithm deploys a 
heuristic function that depends on the specifications 
of the problem to be solved. The heuristic function 
can be as in function (3). Heuristics functions 
include Manhattan distance (MD) where h(v)=∣xtarget 

− xcurrent∣+∣ ytarget − ycurrent ∣, for grid-based maps, 
Euclidean distance (ED) h(v)= sqrt((xtarget − xcurrent)2+ 
( ytarget – ycurrent) 2), for maps, and Octal distance (OD) 
h(v)=max(∣xtarget − xcurrent∣, ∣ ytarget − ycurrent ∣) for 
diagonal moves in grids [22]. The MD is used for 
grids where movement is restricted to four directions 
(up, down, left, right), ED is used where diagonal 
movement is allowed, and OD which combines MD 
and ED is used for diagonal moves in grids, [27].  

In [28], they proposed to use A* for finding the 
shortest path on the rough area with possible 
obstacles in the movement path. Compared to 
Dijkstra, the A* using Manhattan distance evaluated 
25.16% fewer nodes, was 31.4% faster, and had a 
clear advantage in memory and speed. When A* 
used the Euclidean distance, it expanded 21.8% 
fewer nodes than Dijkstra, and 5.3% faster. 

There are algorithms such as Ant Colony 
Optimization (ACO) and Simulate Annealing (SA) 
for Pathfinding that use heuristic functions when 
they compute the optimal objective functions, [29]. 
The heuristic function is used by ACO equals to1/dij, 
for edge e(i,j), where dij is the distance between 
vertex i and vertex j, [30], [31]. Simulate Annealing 
(SA) for pathfinding involves a heuristic function 
that guides the acceptance of new solutions based on 
a cost function equals to exp((E− E′)/T), where E 
and E′ are the energies of the current and new 
solutions, respectively, and T is the temperature, 
[11]. 

In A* search algorithm, the g(v) function 
evaluates the exact cost from the start vertex s to the 
vertex v, and h(v) function evaluates the heuristic 
estimated cost from v to the target vertex t. Other 
heuristic algorithms that use function (3) are: Beam 

Search (BS) which uses f(v) to rank the vertices to 
determine which ones to keep [33], Dijkstra 

Algorithm with a Heuristic (DAH) [25], Iterative 

Deepening A* (IDA*) [34], [35],  Jump Point Search 

(JPS), [36], [37], [38], and Theta* (Theta-Star) 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 303 Volume 23, 2024



Algorithm, [37], [38] [39], [40]. Greedy Best-First 

Search (GBFS) considers h(v) similar to A*.  
f(v) = g(v) + h(v)  (3) 

     
Among the advantages of heuristic algorithms 

are reducing the number of paths explored in large 
complex pathfinding problems, often find a solution 
much faster than brute force methods by using 
heuristics to estimate the cost of reaching the goal, 
guarantee finding the optimal solution, scale better 
to larger problems to handle more complex 
pathfinding without a significant increase in 
computation time, and can be adapted to different 
types of problems including robotics, [1], [2], [8], 
[16]. The drawbacks of heuristic algorithms in 
pathfinding are their performance depends on the 
quality of the heuristic function and can lead to 
suboptimal paths or longer computation times, the 

complexity can limit the applicability of heuristic 
algorithms if they use unsuitable heuristic, the 
heuristic evaluation can add computational 
overhead, and some heuristic algorithms may not 
find a best possible solution, [20]. 
 
2.3  Metaheuristic Algorithms 
Metaheuristics provide a set of strategies for 
developing heuristic optimization algorithms and 
they are utilized in optimal pathfinding problems. 
Metaheuristic is a higher-level technique designed to 
find, generate, tune, or select a heuristic that may 
provide a sufficiently good solution to an 
optimization problem and machine learning 
problem, [41]. Metaheuristics may make relatively 
few assumptions about the optimization problem 
being solved and so may be usable for a variety of 
problems, [42]. They are used when exact or other 
approximate methods are not available. The 
characteristics of metaheuristics include [12]: 1) 
Techniques that constitute meta-heuristic algorithms 
range from simple local search procedures to 
complex learning processes, 2) The basic concepts 
of metaheuristics permit an abstract level 
description, 3) They may incorporate mechanisms to 
avoid getting trapped in confined areas of the search 
space, 4) They are approximate and usually non-
deterministic, and 5) Metaheuristics may make use 
of domain-specific knowledge in the form of 
heuristics that are controlled by the upper-level 
strategy, and 6) More advanced metaheuristics use 
search experience to guide the search. 

Metaheuristic algorithms are not problem-
specific, generally nature-inspired, and can be used 
for many different problems, [35]. The goal is to 
efficiently explore the search space in order to find 
optimal or (near-) optimal solutions. Examples of 

metaheuristic algorithms are Ant Colony 
Optimization (ACO), Artificial Bee Colony (ABC), 
Particle Swarm Optimization (PSO), and Genetic 
Algorithm (GA), [34]. There are several 
classifications of metaheuristic algorithms, and one 
is reported in [42]: Nature-Swarm intelligence 
algorithms are a flexible and solid method that is 
developed inspired by animals’ swarm behaviors. 
ACO and PSO are two of the most used swarm 
intelligence algorithms. ACO algorithm is mostly 
used in solutions of combinational optimization 
problems and the PSO algorithm is mostly used in 
continuous optimization algorithms. For example, 
vehicle routing can be solved using ACO, and 
problems that need function optimization in many 
different engineering fields can be solved using 
PSO. Swarm can be defined as discrete individuals 
influencing each other. Individuals can be humans or 
ants. In swarms-based, N individuals work together 
to achieve a purpose [8]. The PSO, ACO, Grey Wolf 
Optimization (GWO), Chickens Swarm 
Optimization (CSO), and Cat Swarm Optimization 
Algorithms (CSOA) are swarm-based, [43].  

In [42], the authors reported the classification of 
algorithms as: Complete (or exact) algorithms and 
approximate methods. Approximate algorithms can 
be divided into local-search algorithms and 
constructive algorithms. Memory-less algorithms 
(keeps track of recently visited solutions (moves)) 
and memory-usage algorithms (there is a huge 
storage of information about the entire search 
process). Metaheuristics can be classified in 
different ways depending on the specific point of 
view of interest [42]:  
1. Nature-inspired algorithms such as Genetic 

Algorithms (GAs), Ant Colony Algorithms, 
Cuckoo Search Algorithm (CSA), Beatle 
Antennae Search (BAS), Teaching Learning 
Based Optimization (TLBO), Moth Flame 
Optimization (MFO), … etc; and non-nature 

inspired ones (such as Tabu Search(TS) and 
Iterated Local Search (ILS) … etc.  

2. Population-based such as GAs, Single point 
search methods (such as Tabu Search (TS), 
Iterated Local Search (ILS), and Simulated 
Annealing (SA)). These metaheuristics compute 
simultaneously a set of points at each time step of 
the search process, describing the evolution of an 
entire population in the search domain. 

3. Trajectory methods because they work on a single 
solution at each time step describing a curve 
(trajectory) in the search space during the 
progress of the search. These include SA, TS, 
Guided Learning Search (GLS), etc. 
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Metaheuristics also can be classified according 
to the way they make use of the objective function: 
Dynamic objective function if during the search, the 
objective function is altered based on information 
collected during the search process or Static 

objective function if techniques keep the objective 
function as it is given by the problem, [42].  

In [41], they classified the metaheuristic 
algorithms into Evolutionary-based, Nature-based, 
and Trajectory-based. The nature-based algorithms 
are Swarm-based such as PSO, Bio-inspired such as 
GWO, Physics/Chemistry such as Chemical 
Reaction Optimization (CRO), Human-based such 
as Cultural Algorithm (CA), and Plant-based such as 
Invasive Weed Optimization (IWO). 

There are a variety of metaheuristic algorithms, 
[20]. Some were proposed to improve local search 
heuristics as in the SA and TS algorithms. Some are 
based on ant colony optimization, evolutionary 

computation, and particle swarm optimization 
algorithms. Most metaheuristics algorithms intend to 
employ a fitness function to evaluate the candidate 
solutions. The SA is used in very large and complex 
spaces, and its heuristic function helps to escape 
from local optima to the global optimum of a given 
function based on a probability technique, [19]. 
Tomar, Bansal, and Singh [10] classified the 
metaheuristic algorithms into:  
1. Evolution-Based Algorithms (EBA), where the 

optimization techniques are inspired by natural 
evolution. These include GA, Differential 
Evolution (DE) algorithms, Flower Pollination 
Algorithm (FPA), etc. 

2. Particle Swarm Algorithms (PSA) are modeled 
after social animals and insect’s behaviors in 
group. Examples include BAT which was 
inspired by bat echolocation, Cuckoo Search 
(CS) algorithm which was inspired by the 
breeding behavior of cuckoo birds, Grasshopper 
Optimization Algorithm (GOA), Firefly 
Algorithm (FA), Dragonfly Algorithm (DA), Ant 
Lion Optimizer (ALO), Grey Wolf 
Optimizer(GWO), Flower Pollination Algorithm 
(FPA), and Whale Optimization Algorithm 
(WOA).  

3. Physics-based algorithms (PBA) are motivated by 
the physical principles of nature and replicate 
physical rules during optimization [44].  These 
include SA, the Lightning Search Algorithm 
(LSA) which is influenced by the natural factors 
of lightning strikes, Gravitational Search 
Algorithm (GSA) is influenced by gravity and 
motion principles, and Electromagnetic Field 
Optimization (EFO). There are other PBAs 

including the multi-verse optimizer and the sine–
cosine algorithm. 

4. Human-Related Algorithms are driven by social 
interaction or behavioral patterns in people. 
Examples are the Brainstorm Optimization 
algorithm (BSO), Teaching learning optimization 
(TBLO), and the Gaining Sharing Knowledge-
Based Algorithm (GSKA).  

5. Hybrid Metaheuristic Algorithms: These are 
developed from other metaheuristic algorithms to 
avoid local optimization trapping, upgrade 
efficiency, and effectively explore the search 
space for better solutions.  

 
Since sometimes it is not possible to classify an 

algorithm to only one of the classes [42] and some 
hybrid algorithms fit both classes at the same time, 
the Euler diagram of the different classifications of 
metaheuristics is used as in Fig.1, [43]. 

 

 
Fig. 1: The Euler diagram of different classifications 
of metaheuristics, [43] 
 

The advantages of metaheuristic algorithms 
include: 1. Global Search Capability: MA are 
designed to explore the search space broadly and 
avoid getting stuck in local optima and finding a 
near-optimal or optimal solution, 2. Highly Flexible 

and Adaptable: to various problem domains of 
pathfinding problems with complex, non-linear, or 
dynamic environments, 3. Handling of Complex 

Problems: MA is effective in scenarios with 
multiple objectives, constraints, or conflicting goals, 
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4. Some Balance Exploration (searching new areas 
of the search space) and Exploitation (intensifying 
the search around promising areas), 5. Can be Scaled 

to larger problems by Adjusting parameters like 
population size or iteration count; which makes them 
suitable for large-scale pathfinding problems, and 6. 
Their Stochastic components help to diversify the 
search and explore different areas of the search 
space. 

However, the MAs have drawbacks including: 1. 
Some MAs do not guarantee finding the optimal 
solution, 2. Finding the right parameter settings can 
be difficult and may require extensive 
experimentation, 3. Can be computationally 
expensive and slower than some heuristic methods 
in real-time applications, 4. Their implementations 
may require a deep understanding of the algorithm’s 
mechanics, parameters tuning, and problem-specific 
adaptations, and  5. MA can lead to inefficiencies or 
failure to find a good solution, and different runs of 
the algorithm might yield different results because of 
the stochastic nature of metaheuristics even with the 
same initial conditions. 
 
 
3  Methodology 
In this section, the proposed framework is explained 
to find solutions to pathfinding problems using 
metaheuristic algorithms. Fig. 2 shows the 
components of the framework. Developing solutions 
for pathfinding problems for robots and/or vehicles 
can be guided by this framework. Because of space 
limitations in this paper, three examples will be 
presented showing the steps following this 
framework. The examples are A* algorithm-
example of the heuristic algorithm, Flower 
Pollination Algorithm (FPA)- an example of a 
metaheuristic algorithm with a single objective 
function, and Moth Flame Optimization (MFO)- an 
example of a metaheuristic algorithm with an 
objective function with multiple factors. Other 
samples of metaheuristic algorithms are listed with 
their objective functions as in Table 2 (Appendix).  

 
Fig. 2: Framework for developing solutions for 
pathfinding problems 
 

Our objective is to present the specifications of 
heuristic or metaheuristic algorithms for pathfinding 
problems in a framework with the following 
components: 1. Objective: specify what is/are the 
aim(s) of an algorithm to optimize the path in a 
given terrain. It includes statements indicating how 
the algorithm is inspired and mimics the navigation 
behavior of the agents. 2. Problem Representation: 
specify how the pathfinding problem is represented 
as a graph, how the path from the start vertex to the 
target vertex is represented, and what are the 
populations and their potential solutions to choose 
the best solution from. 3. Key Components of the 

selected algorithm: specify what represents the 
candidate solutions (paths), and the best solution, 
and simulate the behavior.  4. Objective Function: 
express the objective function mathematically in the 
context of pathfinding to optimize (maximize or 
minimize) the total cost of the path. Algorithm 

Steps: Initialization: initialize a population of the 
path(s) randomly or using heuristics, evaluate the 
initial path(s) using a fitness function(s), and sort the 
solution(s) based on the fitness function.  Update: 
deploy exploration and/or exploitation and fitness 
function to reduce the number of iterations, and 
update positions. Selection: Compare the fitness of 
the updated agents with their previous fitness and 
retain better positions. Convergence: The algorithm 
iterates through updating and selection steps until a 
stopping criterion is met. Output: consider the 
founded best path as an optimal or near-optimal path 
in the given graph. 
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Example 1: Heuristic-based- A* Algorithm 

1. Objective: The goal is to find the shortest path 
between a start node (represented as vertex s in 
the graph) and a target node (represented as 
vertex t in a graph) using the A* algorithm, based 
on function (3).  

2. Problem Representation:  The problem is 
represented in a graph G (V, E), where the set of 
locations or positions is represented in the set of 
vertices V and the set of links between locations 
are represented in E the set of edges. The path 
begins at vertex s and ends at the target location 
at vertex t. A path is represented as a sequence of 
vertices X={xs, x2,…, xt}. The moving from 
vertex xi to vertex xi+1 is represented by the cost 
function g(xi, xi+1).   

3. Key Components of A*: Open List: A priority 
queue that stores discovered vertices but not yet 
evaluated. The vertices in this list are prioritized 
based on their estimated total cost 
f(x)=g(x)+h(x). Closed List: A set that keeps 
track of vertices has been evaluated to avoid 
reprocessing. Cost Function g(x): Represents the 
cost from s to a current vertex x. Heuristic 

Function h(x): Represents the estimated cost 
from the current vertex x to t.  

4. Objective Function for A* Algorithm in 
pathfinding: is mathematically expressed as in 
formula (4). 

Minimize F(X) = ∑ (𝑔
𝒏−𝟏

𝒊=𝟏
(𝒙𝒊) + ℎ(𝒙𝑖))  (4) 

 
5.  Algorithm Steps: 

5.1 Initialization: Place the start vertex s in the 
open list with g(s)= 0 and h(s) = calculated 
value based on the heuristic function. Set the 
initial vertex as the current vertex. 

5.2 Select the vertex x from the open list with the 
lowest f(x)=g(x)+h(x). If x is the target 
vertex t, the algorithm terminates as the path 
is found. Move x from the open list to the 
closed list.  

5.3 Update: For each neighbor y of x: If y is in the 
closed list, ignore it. If y is not in the open 
list, calculate g(y)=g(x)+g(x, y) and estimate 
h(y), add y to the open list with 
f(y)=g(y)+h(y). 

 If y is already in the open list, check if the 
new path to y is better (lower g(y)), and 
update g(y) and the corresponding f(y). 

5.4 Convergence: iterate through the open list 
until it either finds the goal vertex t or the 
open list becomes empty. 

5.5 Output: The best path X from the start vertex s 
to the goal vertex t with the optimal cost 
(shortest path in this example). 
 

Example 2: Evolution-Based- Flower Plant (FPA) 

Algorithm 

1. Objective: The goal is to find the shortest or least-
cost path while traversing from a start vertex s to 
a target vertex t in a given network or graph using 
the metaheuristic evolutionary FPA algorithm. 

2. Problem Representation: The positions or 
locations and links of the network or robotics are 
represented as a graph G (V, E), where V is the 
set of vertices and E is the set of edges between 
vertices. The Path P represented as X ={xs, 
x2,…,xt}  is a sequence of vertices starting from s 
to t. Distance/cost function d(xi,xi+1) is associated 
with traveling between two consecutive vertices. 

3.  Key Components of FPA: 1. Global Pollination 

(Exploration) generates new solutions by 
combining the current best solution with 
random pollination from the global population; 
and mimics the process of cross-pollination by 
insects. 2. Local Pollination (Exploitation): 
refine solutions by perturbing the current 
solutions with nearby solutions; and mimics the 
process of self-pollination. 3. Switch a 

probability p value that decides whether global 
or local pollination will be applied to generate 
new solutions. 

4. Objective Function: It is to minimize the total 
path cost or distance D (single objective) and 
can be mathematically expressed as: Minimize 
the total travel distance F(X), as in formula (5).                  

Minimize F(X) = ∑ 𝑫𝒏−𝟏
𝒊=𝟏 (𝒙𝒊, 𝒙𝒊+𝟏)        (5) 

 where X = {xs, x2, …, xt} is a candidate solution 
representing a path from s to t. 

5. Steps of FPA: 

5.1 Initialization: Initialize a population of 
flowers (solutions), each representing a path 
through the graph, and assign random 
positions to each flower. 

5.2 Evaluation: Compute the F(X) for each 
solution in the population. 

5.3 Iteration: For each solution in the population, 
select and update as follows; With 
probability p, perform global pollination: 
Xnew=Xi+L(Xi−Xcurrent), where Xcurrent is the 
current best solution, and L(⋅) is a Lévy 
flight-based step size. With probability 1− p, 
perform local pollination: Xnew = Xi + 
ϵ(Xj−Xk), where Xj and Xk are randomly 
selected solutions from the population, and ϵ 
is a random number in [0, 1]. Evaluate the 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2024.23.30 Ahmad Sharieh

E-ISSN: 2224-2872 307 Volume 23, 2024



new solution Xnew and replace the old 
solution Xi  if the new solution is better.  

5.4 Convergence: Check the stopping criterion 
(maximum number of iterations or a 
convergence threshold). If it is satisfied, 
terminate, else repeat the iteration step.  

5.5 Output: The best solution X = {xs, x2, …, xt} 

is found, representing the optimal or near-
optimal path in the graph. 

 
Example 3.3: Moth Flame Optimization (MFO) 
The MFO is a nature-inspired metaheuristic 
algorithm based on the navigation behavior 
(transverse orientation) of moths. It is presented here 
because it can be adapted to explore and exploit 
solutions to find an optimal or near-optimal path 
while considering multiple objectives like distance 
D, energy E, obstacle avoidance O, and time T. It is 
effective for solving high-dimensional and complex 
pathfinding problems for robots and vehicles. It can 
be adapted to dynamic environments by adjusting 
the flame positions and making it suitable for real-
time pathfinding. Following are the specifications of 
MFO adapted for solving robotic and vehicle 
pathfinding problems with multiple objectives 
following the components of the proposed 
framework shown in Fig. 2. 
1. Objective: The goal is to find the shortest or least-
cost path while traversing from a start vertex s to a 
target vertex t in a given graph using the 
metaheuristic MFO while considering: Minimization 
of path length D, Minimization of energy 
consumption E, Avoidance of obstacles O, and 
Minimization of travel time T. 
2. Problem Representation: It is represented as G 
(V, E) as in the previous two examples. Each moth 
represents a potential path in the search space. Each 
moth is defined by a vector of coordinates 
corresponding to waypoints along the path. The 
flames represent the best solutions (paths) found so 
far; and moths are attracted to flames, with each 
flame representing a promising solution. 
3. Key Components of MFO: 1. Moths represent 
candidate solutions (paths), where each moth is 
attracted to a flame, and its position is updated 
accordingly. 2. Flames represent the best solutions 
in the population, where flames guide the search 
process, and the number of flames decreases as the 
iterations proceed, focusing the search. 3. 
Transverse Orientation: Moths update their 
positions by flying around flames in a logarithmic 
spiral pattern, similar to formula (6) simulating their 
natural behavior of moving towards light sources. 
M(t+1) = Di* e-b*l*cos(2πl) +Fi(t)   (6) 

 

Where: Mi(t+1) represents the position of moth i in 
the next iteration. Di represents the distance between 
the moth and the flame. Fi(t) represents the position 
of flame i at iteration t and b is a constant defining 
the shape of the logarithmic spiral. l is a random 
number in the interval [−1,1] that determines the 
direction of the movement (closer or further from 
the flame). 
5. Objective Function: It combines multiple factors 
as in formula (7). 

Minimize F(X)= 𝑤1 ∑ (𝐷
𝑛

𝑖=1
(𝑥𝑖) +

𝑤1 ∑ 𝑂𝑛
𝑖=1 (𝑥𝑖) + 𝑤3 ∑ 𝐸𝑛−1

𝑖=1 (𝑥𝑖) + w4∑ 𝑇𝑛−1
𝑖=1 (𝑥𝑖)         

(7) 
 
where: D(𝒙𝒊): Distance traveled at point 𝒙𝒊 (path 
length), O(𝒙𝒊): Obstacle avoidance term, where 
proximity to obstacles or collisions leads to a higher 
penalty, E(𝒙𝒊): Energy consumption at point 𝒙𝒊 (e.g., 
fuel, battery, etc.), and T(𝒙𝒊): Time taken to travel 
through point 𝒙𝒊; and w1, w2, w3, and w4 are 
weight coefficients that balance the importance of 
each factor. The distance metric can be computed 
using Euclidean distance between waypoints or 
other appropriate distance measures depending on 
the environment. The obstacle avoidance term O(x) 
which can be defined as O(𝒙𝒊) = ∞ if the path 
intersects with an obstacle, and O(𝒙𝒊)=1 if the path 
is near obstacle. A penalty is applied when the path 
intersects with obstacles to avoid collision. Energy 
consumption E(x) can be based on the vehicle’s or 
robot's speed, acceleration, or path complexity as 
shown in formula (8). 

E(𝒙𝒊)=c1*(d(𝒙𝒊, 𝒙𝒊+𝟏)*v(𝒙𝒊))+c2⋅a(𝒙𝒊)      (8) 
 
where: c1 and c2 are constants defining the energy 
cost per distance and acceleration, respectively, 
v(𝒙𝒊) denotes velocity at point 𝒙𝒊, and a(𝒙𝒊) denotes 
acceleration. The time factor T(x) can be modeled as 
the time required to traverse each segment of the 
path as in formula (9). 

T(𝒙𝒊) = D(𝒙𝒊)*v(𝒙𝒊)          (9) 
 

5. MFO Algorithm Structure: 

5.1 Initialize Population: Initialize the positions of 
moths randomly within the defined search space, set 
the number of flames- based on the problem’s 
requirements, and define the search boundaries for 
the pathfinding space. 
5.2 Initial Solutions: Evaluate the fitness of each 
moth based on the multi-objective criteria: path 
length, obstacle avoidance, energy consumption, and 
time as in formulas (8), (9), and (7). Rank the moths 
based on their fitness values, where moths with 
lower fitness are ranked higher. Select the top moths 
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as flames. Each moth updates its position by moving 
(movement uses the logarithmic spiral to simulate 
the transverse orientation mechanism as in formula 
(6)) toward one of the flames. The number of flames 
decreases as iterations progress, encouraging 
exploration in the early stages and exploitation in 
later stages. Ensure that the new positions of the 
moths remain within the predefined search space 
boundaries.  
5.3 Evaluate and Update Solutions: Evaluate the 
new solutions (updated moth positions) based on the 
objective function. Update the positions of the 
flames if better solutions are found.  
5.4 Output: When a stopping criterion is met, such 
as a maximum number of iterations, convergence, or 
achieving a threshold fitness value, output or display 
the best solution X = {xs, x2, …, xt} representing the 
optimal or near-optimal path in the graph. One 
example of the MFO implementation is similar to 
the MFO algorithm 1.  

Over the last five years (2019- 2024), more than 
500 metaheuristic algorithms have been developed 
and applied to solve pathfinding problems [44], [45].   
Table 3 (Appendix) shows a list of 12 different 
metaheuristic algorithms with inspiration-based, 
solution representations, and their objective 
functions. These algorithms are Genetic algorithm 
(GA), Particle Swarm Optimization (PSO), 
Simulation Annealing, Ant Colony Optimization 
(ACO), Differential Evolution (DE), Grey Wolf 
Optimization (GWO), Bat Algorithm (BA), Firefly 
Algorithm (FA), Harmony Search (HS), Cuckoo 
Search, Whale Optimization Algorithm (WOA), 
Crow Search Algorithm (CSA). You can follow the 
guidelines of the proposed framework to implement 
each of these algorithms in solving the pathfinding 
problems. It is expected that each F(X) evaluates the 
minimum distance or cost of path X and other 
factors can be considered too.  

In the stochastic environment, pathfinding for 
vehicles faces various obstacles. These obstacles 

include environmental uncertainties, vehicle 
constraints, stochastic variability, and driver 
behavior [46]. Handling such obstacles requires 
advanced techniques such as probabilistic models 
(e.g. MDP), reinforcement learning, robust planning 
algorithms, and metaheuristic behavior. In this 
paper, we consider adaptive heuristics and operators, 
enhanced fitness functions, and the hybrid approach 
of ACO and MFO. For example, pheromone levels 
in ACO are adjusted based on environmental 
conditions. In MFO, when obstacles disrupt the 
solution space, the MFO algorithm repositions the 
candidate solutions to reflect the updated 
environment. The ACO, MFO, and the combination 

of ACO and MFO algorithms include multiple 
criteria in the fitness function such as time, distance, 
obstacle avoidance, and energy consumption. These 
three algorithms add penalties for high-uncertainty 
regions or routes. We combine the ACO and MFO 
metaheuristics algorithms to leverage 
complementary strengths. 
 
 

4   Implementation and Results  
The algorithms A* search, ACO, MFO, and ACO+ 
MFO combination were implemented and tested on 
randomly generated sample dataset with sizes. 

The algorithms A* search, ACO, MFO, and 
ACO+ MFO combination were implemented and 
tested on randomly generated sample dataset with 
sizes of 100 by 100, 200 by 200, …, 1000 by 1000, 
and a mountainous area of Jibal Al-Sharat in Jordan. 
The second dataset includes a digital environment 
model (DEM) obtained from satellite imagery, a 
variety of elevation levels, obstacles, and 
geographical features [47]. Each algorithm was run 
five times and the average of the metrics were 
registered. The evaluated metrics are run time, 
consumed energy, number of obstacles encountered, 
length of the shortest path (distance), and number of 
explored vertices. The consumed energy indicates 
the amount of energy required by an agent to 
traverse a path from a start position to a target 
position. The number of obstacles encountered 
indicates the number of times the agents encountered 
obstacles (e.g. elevation based and slope) during 
their search for the optimal path in the terrain. The 
number of explored vertices indicates the number of 
unique nodes that were explored.  The cost of the 
optimal path with these or some of these factors can 
be computed by objective function C(X) = min 
(∑Xw1⋅D(xi, xi+1)+ w2⋅O(xi) +w3.E(xi)+ w4.T(xi)).  

Table 4 (Appendix)  shows samples of the 
performance results. It is clear that when the sizes 
increase, the run time increases in the four 
algorithms. The combination of the MFO+ACO 
algorithm outperforms the other three algorithms in 
the run time in all selected data sizes. The ACO 
performed the worst in the majority of cases. It 
almost produced the same average best for different 
sizes and fixed starting vertex and target vertex. The 
three algorithms explored less number of vertices 
than ACO.  

Table 5 shows the performance of the average 
run time of various algorithms (ACO+ MFO, MFO, 
A*, and ACO) across different grid sizes, for other 
start and target points differ from those tested in 
Table 4 (Appendix). The hybrid approach of 
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ACO+MFO consistently exhibited the least average 
runtime across all grid sizes of randomly generated 
datasets. Thus, combining the exploration 
capabilities of MFO with the exploitation strengths 
of ACO yields less run time for vehicle pathfinding. 
The A* algorithm exhibited higher average runtimes 
compared to both MFO and ACO. This may be 
attributed to the heuristic nature of A*. 
      
Table 5. Average run time (seconds) for randomized 

generated datasets 
Algs/ 
Sizes 

600 700 800 900 1000 

ACO+ 
MFO 

0.70 0.73 
 

0.886 1.29 1.43 

MFO 1.34 1.58 1.10 1.22 1.69 
A* 2.28 2.30 1.26 1.50 1.73 
ACO 9.89 10.02 10.2 11.25 12.3 

 
Table 6 shows the average run time of the 

algorithms across different grid sizes obtained from  
Jibal Al-Sharat datasets. The hybrid approach of 
ACO+MFO exhibited the least average runtime 
across all shown grid sizes. Thus, combining the 
exploration capabilities of MFO with the 
exploitation strengths of ACO yields less run time 
for vehicle pathfinding. The A* algorithm exhibited 
higher average runtimes compared to both MFO and 
ACO.  
 

Table 6. Average Run Time (in seconds) from a 
sample of the Jibal Al-Sharat dataset 

Alg/ Sizes 600 700 800 900 1000 
ACO+ 
MFO 0.68 0.72 0.80 1.20 1.40 

MFO 1.30 1.50 1.00 1.20 1.60 
A* 2.20 2.40 1.30 1.60 1.80 
ACO 9.00 9.80 10.00 11.00 12.00 
    

Table 7. Cost functions for 1000*1000 randomize 
generated data, (D-Distance, O-obstacle, E-Energy, 

T-average run time) 
Algo. Cost 1 (D + 

O)  
Cost 2 (D 
+ O + E) 

Cost 3 (D 
+ O + E +  
T) 

ACO+ 
MFO 414.46 649.76 793.003 
MFO 493.42 782.916 951.915 
A* 693.42 1076.11 1249.11 
ACO 773.83 964.43 2194.43 

 
Table 7 and Tabble 8 show the cost functions 

performance of the four algorithms on a dataset 
generated randomly, and sample from the Jibal Al-
Sharat dataset, respectively, of 1000x1000 size. The 
hybrid algorithm has the lowest costs across all three 

categories, which means that it is the most efficient 
algorithm among the four algorithms on this grid 
size. The cost from the MFO is less than the costs 
from ACO and A* for the dataset size of 700 to 
1000. The ACO has the highest costs, especially in 
cost 3 because of the poor run-time efficiency. The 
A* algorithm encounters difficulties with scaling, 
which results in higher costs for larger grids 
especially in runtime and energy consumption. The 
MFO algorithm performs better than ACO and A* 
but continues to fall behind the ACO+MFO 
algorithm. 
 
Table 8. Cost functions for 1000*1000 from sample 

of Jibal Al-Sharat dataset  
Algorithm Cost 1 (D 

+ O)  
Cost 2 (D 
+ O + E) 

Cost 3 (D 
+ O + E +  
T) 

ACO+MFO 746.7 1099.6 1239.6 
MFO 822.2 1256.5 1416.5 
A* 1052.3 1626.3 1806.3 
ACO 773.8 1869.1 2069.1 

 
 

5   Conclusion 
In this paper, the specifications of heuristic or 
metaheuristic algorithms for pathfinding problems 
are presented in a framework. The pathfinding 
problems and their representations in a graph were 
presented. The objective functions to optimize 
pathfinding problems were clearly explained.  A 
framework and its components were proposed and 
explained how to be utilized to solve pathfinding 
problems. The metaheuristic algorithms and their 
classifications to solve pathfinding problems were 
overviewed.           

Sample examples of A*, ACO, MFO, and a 
combination of ACO and MFO were explained how 
to follow the framework to solve the pathfinding 
problems. The MFO algorithm alone performs well 
but lacks the refinement provided by ACO, while the 
ACO by itself explores more nodes and consumes 
more energy, making the hybrid MFO + ACO a 
balanced solution for scenarios requiring both path 
efficiency and obstacle avoidance. 

In conclusion, both ACO and MFO incorporate 
common strategies to handle dynamic obstacles such 
as: 1) incorporating real-time data to adjust paths 
accordingly, 2) utilizing fitness functions including 
penalties for collisions and encouraging exploration 
of safer paths, 3) ensuring exploration continues 
even when parts of the solution space are disrupted, 
and 4) using incremental learning for efficient 
adaptation when parts of the environment remain 
static.  
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This paper introduces how the proposed 
framework for metaheuristics techniques will help 
interested readers understand how pathfinding 
algorithms work and pick the best fit for a particular 
application. 

For future research, we plan to investigate how 
ACO and other metaheuristic optimization can 
leverage deep learning (DL) and machine learning 
(ML) techniques to enhance their ability to handle 
obstacles in dynamic environments for pathfinding 
problems. By integrating ML/DL, we expect that 
these metaheuristic algorithms can make smarter 
decisions, adapt faster to changes, and improve 
pathfinding efficiency. In the stochastic 
environment, the hybrid of ACO and MFO and other 
metaheuristic approaches can be investigated when 
using probabilistic models (e.g. MDP), 
reinforcement learning, robust planning algorithms, 
and metaheuristic behavior. Also, we intend to refine 
and combine metaheuristic algorithms to solve the 
pathfinding problems for autonomous vehicles 

and unmanned aircraft vehicles (UAV). 
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APPENDIX 

 
Table 2. Examples of pathfinding applications and the values to optimize [4], [5]. Those from 1 to 10, 11 to 17, 

and 18 minimize F(P), maximize F(P), and 21 optimizes F(P), respectively. Assume P = X path and (𝒗𝒊

, 𝒗𝒊+𝟏) = (𝒙𝒊, 𝒙𝒊+𝟏) 
Optimization functions F(P)= Applications 
1. Minimize the total cost of the path (P). Cost includes monetary, time, and 
resource usage. Minimize F(P) = 

 ∑ 𝒄𝒐𝒔𝒕𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 

Logistics, delivery routing, network 
traffic optimization. 

2.the total travel distance.  ∑ 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) Road networks and robotic path planning  

3.the total travel time, considering speed limits or constraints. 
 ∑ 𝒕𝒓𝒂𝒗𝒆𝒍𝒕𝒊𝒎𝒆

𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏); Subjective to: speed(𝒗𝒊, 𝒗𝒊+𝟏) 

Emergency response routing, and 
transportation planning. 

4.the risk or danger can be influenced by factors such as traffic congestion, 
crime rates, or environmental hazards.∑ 𝒓𝒊𝒔𝒌𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Safe route planning, disaster management. 

5.the energy consumption of the path relevant to electric vehicles or robots.  
 ∑ 𝒆𝒏𝒆𝒓𝒈𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Electric vehicle routing, autonomous 
robot navigation. 

6.the deviation from a predefined path or route. ∑ 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏(𝒗𝒊, 𝒗𝒊+𝟏) 
𝒏−𝟏

𝒊=𝟏
 Autonomous vehicle navigation, and 

guided tours [32]. 
7.the number of stops or nodes visited along the path. 
∑𝒏−𝟏

𝒊=𝟏 number_ of_ stops(𝒗𝟏…𝒗𝒏) 

Direct delivery routing, and express 
transport services. 

8.the environmental impact such as emissions or disturbance to wildlife.  
∑ 𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍_𝒊𝒎𝒑𝒂𝒄𝒕(𝒗𝒊, 𝒗𝒊+𝟏) 

𝒏−𝟏

𝒊=𝟏
 

Eco-friendly transportation planning, 
sustainable logistics. 

9.the complexity of the path, such as the number of turns or intersections. 
∑ 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒗𝒊, 𝒗𝒊+𝟏) 

𝒏−𝟏

𝒊=𝟏
 

Simple route planning, novice driver 
navigation. 

10.The detours or unnecessary deviations from the direct route. 
∑ 𝒅𝒆𝒕𝒐𝒖𝒓𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Efficient commuting, time-sensitive 
deliveries. 

11.Maximize the visibility or coverage of certain areas along the path. F(P) 

=∑ 𝒗𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 

 Surveillance drone path planning, 
wildlife monitoring. 

12.the comfort by considering factors like road quality, noise levels, or 
scenery.   ∑ 𝒄𝒐𝒎𝒇𝒐𝒓𝒕𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 

Tourist route planning, long-distance 
travel optimization 

13.tthe connectivity or access to resources or points of interest along the path.   
= ∑ 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Resource allocation, tourism planning. 

14.the flow or throughput of the path.  ∑ 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕𝒏−𝟏
𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) Network traffic optimization, and data 

routing in communication networks. 
15.the capacity of the path to handle traffic or load. 
    ∑ 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏)  

Traffic management, and load balancing 
in networks. 

16.the smoothness of the path by reducing abrupt changes in direction or 
speed. ∑ 𝒔𝒎𝒐𝒐𝒕𝒉𝒏𝒆𝒔𝒔𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Autonomous vehicle navigation, and 
comfortable travel routes. 

17. the reliability or robustness of the path against disruptions or failures.  
∑ 𝒓𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝒏−𝟏

𝒊=𝟏 (𝒗𝒊, 𝒗𝒊+𝟏) 
Critical infrastructure routing, military 
logistics. 

18. Optimize multiple criteria simultaneously, such as distance, energy, and 
time. Use a weighted sum of different objective functions F1, F2, F3, ... etc., 
as in function (2). Example: 
F(P)=w1×F1(distance)+w2×F2(energy)+w3×F3(time)  

Complex routing problems, where trade-
offs between different factors are 
necessary. 
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Table 3. list of 12 metaheuristic algorithms to optimize routes for robots and vehicles 
Name Inspired By Solution Representation and Objective Function 

GA Natural evolution 
The population of chromosomes represents different possible sets 
of routes. A gene in the chromosome represents a stop on a route.  
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.T(xi)+w3.O(xi)) 

PSO Bird flocking, fish 
schooling. 

A particle represents a set of routes for all vehicles. A particle's 
position corresponds to a complete vehicle routing solution.  
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.T(xi)+w3.E(xi)) 

SA Annealing process in 
metallurgy 

A single solution (a complete set of vehicle routes) is gradually 
improved by perturbing the current solution based on temperature 
parameters.    
F(X)=min(∑Xw1.D(xi,xi+1)+ w2.E(xi)+w3.O(xi)) 

ACO Behaviour of ant colonies in 
searching for food 

The sequence of customer stops makes up a vehicle route. The 
solution emerges from the collective behavior of ants finding 
optimal paths. 
 
F(X)=min(∑X1/τ(xi,xi+1).D(xi,xi+1) 

DE Evolutionary strategy 
A vector represents a solution. Each element of the vector 
corresponds to an agent and its assigned vehicle route.  
F(X)=min(∑X mutation(xi,xi+1) + cr (xi,xi+1)+ D(xi,xi+1)) 

GWO 
Leadership hierarchy and 
hunting mechanism of 
wolves 

A grey wolf represents a set of vehicle routes. Different wolves 
represent different solutions. 
 
F(X)=min(∑Xα.w1(xi,xi+1)⋅ D(xi,xi+1)) 

BA Echolocation of bats 

A bat represents a vehicle route. The position of the bat 
corresponds to the configuration of the routes, and it adjusts based 
on echolocation principles.  
 
F(X)=min(∑X loudness(xi,xi+1) + w1.D(xi,xi+1)+w2.E(xi)) 

FA Attraction of fireflies 
A firefly represents a set of routes, where the brightness of the 
firefly corresponds to how good the solution is.  
F(X)=min(∑XI/r(xi,xi+1)+ D(xi,xi+1)) 

HS Jazz improvisation process 
A harmony vector represents a candidate solution, where each 
element corresponds to a specific vehicle route.  
F(X)=min(∑X pitch(xi,xi+1)+ w1.D(xi,xi+1)+w2.T(xi)+w3.O(xi)) 

CS Brood parasitism of some 
cuckoo species 

A cuckoo egg represents a set of vehicle routes. It replaces less 
optimal nests with new ones as it searches for better routes.  
F(X)=min(∑Xw1.L(λ) + w2.D(xi,xi+1)+w3.O(xi)+ w4.T(xi)) 

WOA Bubble-net hunting strategy 
of humpback whales 

A whale represents a set of routes. The solution is adjusted by the 
whale's movements in the search space.   
F(X)=min(∑Xw1⋅D(xi,xi+1)+ w2⋅O(xi) +w3.T(xi)+w4.E(xi)) 

CS 
Intelligent caching behavior 
of crows 

 
A crow represents a set of routes. Each crow hides its solution in 
its memory. It updates the solution based on interactions between 
crows and their stored routes.  
 
F(X)=min(∑w1⋅D(xi , xi+1)+w2⋅O(xi)) 
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Table 4. Samples of results on data sizes 500 by 500 to 1000 by1000. Runtime in seconds, and Length or 
distance in meters 

500*500 
Algorithm  Average of 

runtime 
Best Path 
Length 

Number 
of vertices 
Explored   

MFO + 
ACO 

0.546 49 15 

MFO  1.123 55 14 

A* 1.24 57 40 

ACO 8.19 112 106 

600*600 
MFO +  
ACO 

0.096 89 16 

MFO 1.245 59 14 
A* 22.76 57 40 
ACO 9.0 113 122 
700*700 
MFO +  
ACO 

0.231 
 

90 14 

MFO 1.085 136 15 
A* 12.0 56 40 
ACO 9.90 113 104 
800*800 
MFO +  
ACO 

0.886 136 15 
 

MFO 1.104 57 17 
A* 1.26 57 40 
ACO 10.2 111 104 
900*900 
MFO +  
ACO 

0.193 59 14 
 

MFO 1.22 65 16 
A* 1.50 49 85 
ACO 11.25 113 128 
1000*1000 
MFO +  
ACO 

1.23 48 13 

MFO 1.29 49 15 
A* 1.73 56 40 
ACO 12.3 64 157 
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