
Sensor fusion is crucial in autonomous driving and
robotics, leveraging multiple sensors to improve perception
and decision-making. Radar and cameras are popular due to
their complementary strengths: radar provides robust range and
velocity measurements, while cameras offer detailed visual
information for object recognition [2], [7], [12].

Accurate extrinsic calibration between radar and camera
systems is vital for effective sensor fusion, ensuring coher-
ent spatial alignment [3], [8], [14], [15], [32]. Traditional
calibration methods rely on target-based approaches requiring
specific objects and controlled environments, which limit their
practicality in dynamic scenarios [9], [10], [16]. Recent ad-
vancements in deep learning have led to targetless calibration
methods that utilize natural scene features, simplifying the
process [3], [11], [20], [21].

This paper reviews state-of-the-art techniques for radar-
camera extrinsic calibration, comparing target-based and tar-
getless methods. We assess the benefits, limitations, accuracy,
robustness, and computational complexity of each approach.
We also present a comparative study of experimental re-
sults and discuss challenges and future directions, guiding

Fig. 1. Illustration of a camera-radar fusion technique for person detection in
an indoor setting, employing YOLOv5 [5] for object identification with con-
fidence in the camera frame. Bounding boxes are generated around detected
individuals, emphasizing those with higher density, and are subsequently
projected onto the radar frame. Initially captured in polar coordinates, the
radar data is converted into Cartesian coordinates to align with the camera’s
visual output. This example, implemented utilizing the RaDICaL [29] dataset,
notes that metallic or dense materials produce more intense radar returns due
to higher reflectivity. The integrated system supports advanced applications
such as precise estimation of speed and position of the tracked individuals.

researchers and practitioners in selecting and improving cali-
bration techniques for real-world applications.

The remainder of this paper is structured as follows: Section
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II discusses radar-camera extrinsic calibration, Section III
reviews target-based methods, Section IV explores targetless
methods, Section V provides a comparative analysis of target-
based and targetless calibration, Section VI examines deep
learning’s role, Section VII highlights relevant datasets, Sec-
tion VIII addresses hardware configuration challenges, Section
IX discusses radar outputs, and Section XI concludes with a
summary and future research directions.

Extrinsic calibration refers to the process of determining
the relative pose (position and orientation) between radar
and camera sensors. This calibration is crucial for effective
sensor fusion, enabling coherent spatial alignment of data from
different sensors [3], [8], [17].

Extrinsic calibration involves calculating the transformation
matrix that describes how the coordinate system of the radar
sensor relates to the coordinate system of the camera sensor.
This matrix includes both rotational and translational compo-
nents, which together define the spatial relationship between
the sensors. Accurate extrinsic calibration is essential for the
performance of sensor fusion algorithms, as misalignment can
lead to incorrect interpretations, affecting tasks such as object
detection, tracking, and classification [2], [10], [18].

The goal of extrinsic calibration is to find the transformation
matrix that aligns the coordinate system of the radar sensor
with that of the camera sensor. This transformation can be
represented as a combination of rotation and translation.

Let pr = [xr, yr, zr]
T be a point in the radar coordinate

system and pc = [xc, yc, zc]
T be the corresponding point in

the camera coordinate system. The transformation between
these coordinate systems can be expressed as:

pc = Rpr + t (1)

where:
• R ∈ R3×3 is the rotation matrix.
• t ∈ R3 is the translation vector.
To find the extrinsic calibration parameters (R and t), we

need to solve the following optimization problem:

min
R,t

N∑
i=1

∥pc,i − (Rpr,i + t)∥2 (2)

where N is the number of corresponding point pairs
{pc,i,pr,i}.

The combined transformation can be represented as a ho-
mogeneous transformation matrix T:

T =

[
R t
0T 1

]
(3)

where:

• R ∈ R3×3 is the rotation matrix.
• t ∈ R3 is the translation vector.
• 0T is a row vector of zeros [0, 0, 0].
Using the homogeneous transformation matrix, the trans-

formation of a point pr in homogeneous coordinates
[xr, yr, zr, 1]

T to the camera coordinate system can be written
as: 

xc

yc
zc
1

 =

[
R t
0T 1

]
xr

yr
zr
1

 (4)

The rotation matrix R must satisfy the orthogonality con-
straint, meaning RRT = I, where I is the identity matrix.
One common method to estimate R and t is to use Singular
Value Decomposition (SVD):

1. Compute the centroids of the point sets:

p̄c =
1

N

N∑
i=1

pc,i, p̄r =
1

N

N∑
i=1

pr,i (5)

2. Subtract the centroids from the point sets to obtain
centered vectors:

qc,i = pc,i − p̄c, qr,i = pr,i − p̄r (6)

3. Construct the covariance matrix H:

H =
N∑
i=1

qr,iq
T
c,i (7)

4. Perform SVD on H:

H = UΣVT (8)

5. Compute the rotation matrix R:

R = VUT (9)

6. Compute the translation vector t:

t = p̄c −Rp̄r (10)

This method ensures that the estimated rotation matrix R
is orthogonal and the translation vector t correctly aligns the
point sets.

After obtaining initial estimates of R and t, further refine-
ment can be achieved using non-linear optimization techniques
such as Levenberg-Marquardt [6]. The refined optimization
problem aims to minimize the reprojection error between the
radar and camera points:

min
R,t

N∑
i=1

∥pc,i −Π(Rpr,i + t)∥2 (11)

where Π represents the camera projection function, trans-
forming 3D points to 2D image coordinates for comparison.
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Monocular Camera

mmWave Radar

Camera Data Frame

Radar Data Examples

Calibration Process

Fusion Output

Fig. 2. Illustration of automotive sensor data fusion. The monocular camera provides frame data, while Radar can provide several data representations. (a)
ADC signal in the format of a Simple Chirp-Antenna tensor. (b) Radar tensor represented by a 3D Range-AzimuthDoppler tensor. (c) Point cloud projected
on a 2D image plane. (d) Micro-Doppler signature showing a pedestrian walking. Image adapted from [4]. These data then undergo the calibration process
where we estimate the transformation matrix. This calibration matrix is used in fusion for downstream tasks like vehicle velocity estimation. Example adapted
from [22]

In conclusion, the mathematical formulation for radar-
camera extrinsic calibration involves finding the optimal rota-
tion and translation that aligns the radar and camera coordinate
systems. This process requires knowing the corresponding
point pairs between the radar and camera coordinate systems.
By leveraging techniques such as SVD for initial estimation
and non-linear optimization for refinement, accurate calibra-
tion can be achieved, enabling effective sensor fusion.

The monocular camera provides frame data, which captures
the visual scene in 2D images. These frames can be used
for object detection, classification, and tracking. However, the
camera alone cannot provide reliable depth information or
precise velocity estimation, making it necessary to integrate
data from other sensors.

Radar sensors, on the other hand, can provide several data
representations:

1) ADC Signal: The radar’s Analog-to-Digital Converter
(ADC) signal is represented in the format of a Simple
Chirp-Antenna tensor. This representation captures raw
radar data, including the reflected signal’s amplitude and
phase information, which can be further processed to
extract useful features.

2) 3D Range-Azimuth-Doppler Tensor: This radar data
format combines range (distance), azimuth (horizontal
angle), and Doppler (velocity) information into a 3D
tensor. This rich representation helps in identifying the
position and speed of objects relative to the vehicle,
crucial for tasks like obstacle detection and collision
avoidance.

3) Point Cloud: The radar data can be transformed into
a point cloud and projected onto a 2D image plane.
This transformation aligns the radar data with the camera
frame, facilitating the fusion of visual and radar infor-
mation. The point cloud provides spatial coordinates of
detected objects, enhancing depth perception.

4) Micro-Doppler Signature: This specific radar signature
captures detailed velocity changes over time, revealing
patterns associated with different types of motion, such
as a pedestrian walking. Micro-Doppler signatures are
essential for distinguishing between different objects and
their movements.

After acquiring these diverse data formats, they undergo a
calibration process to estimate the transformation matrix. This
matrix aligns the coordinate systems of the camera and radar
sensors, ensuring accurate data fusion Figure 2. The calibration
matrix is crucial for downstream tasks, such as vehicle velocity
estimation, where precise and reliable sensor data integration
is required to enhance the vehicle’s perception and decision-
making capabilities.

Calibration techniques for radar and camera systems can be
broadly classified into two categories: target-based methods
and targetless methods [7], [9], [10].

1) Target-Based Methods: Target-based calibration meth-
ods rely on specific calibration objects placed in the environ-
ment. These objects are designed to be easily detectable by
both radar and camera sensors, providing a common reference
point and easy to find for calibration. The process typically

2.5 Data Representations 

2.6 Sensor Data Fusion 

2.7 Overview of Calibration Techniques 
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involves capturing multiple images of the target from different
positions and orientations, and using these images to compute
the transformation matrix [8], [11], [19]. These methods
are known for their high accuracy but require controlled
environments and specific calibration objects, limiting their
practicality in dynamic scenarios.

To illustrate a practical indoor application, Figure 1 demon-
strates a camera-radar fusion technique for person detection in
an indoor setting. This example employs YOLOv5 for object
identification in the camera frame and projects the bounding
boxes onto the radar frame, supporting advanced applications
such as precise estimation of speed and position of tracked
individuals.

2) Targetless Methods: Targetless calibration methods do
not require specific calibration objects. Instead, they utilize
natural environmental features, such as edges, corners, and
textures, to perform calibration. Advanced feature extraction
and matching techniques, including those based on deep
learning, identify correspondences between radar and camera
data. These methods offer greater flexibility and practicality
in dynamic and unstructured environments but come with
challenges related to computational complexity and the need
for extensive training data [1]–[3], [12].

For an outdoor application, Figure 2 illustrates automotive
sensor data fusion, where radar and camera data are integrated
for tasks such as vehicle velocity estimation. This example
highlights the different radar data representations and their
alignment with camera data to estimate the transformation
matrix, showcasing the potential of targetless methods in
dynamic outdoor environments.

In the following sections, we will delve deeper into the
specifics of target-based and targetless calibration methods,
examining their respective advantages, limitations, and current
state of research. We will also include a comparative study of
experimental results to provide empirical validation of these
methods.

Target-based calibration methods use specific calibration
objects with well-defined geometric features, allowing both
radar and camera sensors to detect and match these features
accurately. This common reference is essential for estimating
extrinsic parameters [3], [8], [16], [30].

Traditional target-based calibration employs specially de-
signed objects like checkerboards, corner reflectors, or custom
patterns. The calibration process typically includes:

1) Placement of Calibration Target: The calibration tar-
get is placed in the field of view of both the radar and
camera sensors.

2) Data Collection: Multiple images and radar scans of
the target are captured from different positions and
orientations.

3) Feature Detection: Features of the calibration target,
such as corners or edges, are detected in both the radar
and camera data.

4) Correspondence Matching: Correspondences between
the detected features in the radar and camera data are
established.

5) Transformation Computation: The transformation ma-
trix, which includes both rotational and translational
components, is computed using the correspondences.

Target-based methods have several advantages and limita-
tions:

1) Advantages:
• Accuracy: These methods can achieve high accuracy

due to the precise geometric properties of the calibration
targets [7], [19].

• Reliability: Calibration targets provide consistent and
reliable reference points for both sensors [8], [9].

• Well-Established Techniques: There are numerous well-
established algorithms and tools available for target-based
calibration [11], [19].

2) Limitations:
• Controlled Environments: Target-based methods often

require controlled environments, limiting their practical-
ity in real-world, dynamic scenarios [2], [12].

• Dependency on Calibration Objects: The need for
specific calibration objects makes the process less flexible
and more cumbersome [3], [8].

• Time-Consuming: The process of setting up calibra-
tion targets and capturing multiple images can be time-
consuming and labor-intensive [7], [16].

Several recent studies have employed target-based calibra-
tion methods, demonstrating their effectiveness and practical-
ity in various applications. For instance:

• Checkerboard Patterns: Researchers have used checker-
board patterns due to their easily detectable corners and
well-defined geometry. The corners detected in the cam-
era images are matched with the corresponding reflections
in the radar data to compute the extrinsic parameters [7],
[8].

• Corner Reflectors: Corner reflectors, which provide
strong radar returns, have been utilized to create clear and
unambiguous correspondences between radar and camera
data [3].

• Custom Calibration Targets: Some studies have de-
signed custom calibration targets tailored to the specific
characteristics of radar and camera sensors, enhancing
detection and matching accuracy [11].

To provide a comprehensive comparison, Table I summa-
rizes the key aspects of target-based and targetless calibration
methods.

3. Target-based Calibration Methods 
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TABLE I
COMPARISON OF TARGET-BASED AND TARGETLESS CALIBRATION METHODS

Aspect Target-Based Calibration Targetless Calibration

Accuracy High due to precise targets Variable, high with advanced techniques
Flexibility Low; needs specific targets and controlled settings High; uses natural features, suitable for dynamic

environments
Environmental Dependency High; controlled conditions needed Moderate; robust to varying conditions
Setup Time Time-consuming; requires target placement Quick; uses existing features
Specialized Equipment Requires calibration objects (e.g., checkerboards) None; uses natural features
Computational Complexity Moderate; established algorithms High; advanced feature extraction and deep learning
Real-World Applicability Limited; controlled conditions required High; suitable for dynamic scenarios
Reliability High in controlled settings Variable; depends on feature quality and algorithm

robustness
Automation Potential Limited; manual setup needed High; potential for full automation with advanced

algorithms
Cost High; specialized targets and controlled environ-

ments
Low; no specialized targets needed

Scalability Limited; challenging for large environments High; applicable to diverse settings
Robustness to Changes Low; affected by dynamic changes High; adaptable to real-time changes
Example Applications Controlled labs, initial sensor setup Real-world scenarios, ongoing calibration
Training Data Dependency Minimal; relies on geometric properties High; needs large, diverse datasets
Error Sources Target misplacement/detection issues Poor feature quality, mismatches, insufficient data

Targetless calibration methods offer an alternative to tra-
ditional target-based approaches by eliminating the need for
specific calibration objects. These methods leverage natural
features present in the environment to achieve extrinsic calibra-
tion between radar and camera sensors. By utilizing advanced
feature extraction and matching techniques, including those
based on deep learning, targetless methods provide greater
flexibility and practicality in dynamic and unstructured en-
vironments [2], [3], [12], [20].

Targetless calibration relies on the identification and match-
ing of natural features such as edges, corners, and textures. The
process typically involves the following steps:

1) Feature Detection: Natural features are detected in both
radar and camera data using algorithms designed to
identify edges, corners, and other distinctive elements.

2) Feature Matching: Correspondences between the de-
tected features in radar and camera data are established
using matching algorithms. Techniques such as feature
descriptors and similarity measures are employed to find
the best matches [7], [21].

3) Transformation Estimation: The transformation matrix
is computed based on the matched features, determining
the relative pose between the radar and camera sensors.

Deep learning has significantly enhanced the capabilities of
targetless calibration methods. Convolutional Neural Networks
(CNNs) and other deep learning architectures can automati-
cally extract and match features from radar and camera data,
improving accuracy and robustness. These models are trained

on large datasets to learn the optimal feature representations
and correspondences [8], [9], [16].

1) Common Feature Extraction: Deep learning models can
be trained to extract common features from radar and camera
data, ensuring that the features are consistent and comparable
across different sensor modalities. This approach reduces
the complexity of the matching process and improves the
reliability of the calibration [2], [21].

2) Robustness to Environmental Variations: One of the
key advantages of deep learning-based targetless calibration
is its robustness to environmental variations. Deep learning
models can generalize across different conditions, such as
lighting changes for cameras and weather conditions for radar,
maintaining accurate calibration [3], [7].

Targetless calibration methods offer several advantages over
traditional target-based approaches:

1) Advantages:
• Flexibility: These methods do not require specific cali-

bration objects, making them more practical in dynamic
and unstructured environments [9], [12].

• Ease of Use: By leveraging natural features, targetless
methods simplify the calibration process, reducing the
need for extensive setup and controlled conditions [7],
[20].

• Scalability: Targetless methods are scalable to large and
complex environments, as they do not depend on the
placement and visibility of calibration targets [3], [8].

2) Limitations:
• Feature Quality: The accuracy of targetless calibration

depends on the quality and distinctiveness of the natural
features present in the environment [2].

4. Targetless Calibration Methods 

4.1 Feature Extraction and Matching 

4.2 Deep Learning Techniques 

4.3 Advantages and Limitations 
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• Computational Complexity: Deep learning-based fea-
ture extraction and matching can be computationally
intensive, requiring significant processing power and re-
sources [3].

• Training Data Requirements: Effective deep learning
models require large and diverse datasets for training,
which can be challenging to obtain [9].

To illustrate the practical application of targetless methods,
refer to Figure 2, which demonstrates automotive sensor
data fusion in dynamic outdoor environments. This example
highlights how natural scene features can be used for real-time
calibration and sensor fusion tasks.

To provide a comprehensive comparison, Table I summa-
rizes the key aspects of target-based and targetless calibration
methods.

In the subsequent sections, we will explore the role of
deep learning in radar-camera calibration in greater detail and
discuss the challenges and future directions in this field.

Deep learning has revolutionized the field of radar-camera
calibration by enabling more accurate, robust, and efficient
methods for determining the extrinsic parameters between
these sensors. This section explores the various ways in which
deep learning techniques have been applied to enhance radar-
camera calibration [8], [9], [21], [31].

Deep learning techniques leverage large datasets and pow-
erful neural network architectures to learn the complex re-
lationships between radar and camera data. The following
subsections outline some of the key deep learning approaches
used in radar-camera calibration.

1) Convolutional Neural Networks (CNNs): CNNs are
widely used for feature extraction and matching in radar-
camera calibration. These networks are capable of learning
hierarchical feature representations from raw sensor data, mak-
ing them well-suited for identifying correspondences between
radar and camera images [2], [7], [20]. CNNs can be trained
to detect and match features such as edges and textures that
are common to both sensor modalities.

2) Siamese Networks: Siamese networks consist of two
identical subnetworks that process radar and camera data in
parallel. These networks are trained to minimize the dis-
tance between matched features from the two sensors while
maximizing the distance between unmatched features. This
approach enhances the accuracy of feature matching and,
consequently, the calibration process [3], [8], [16].

3) Generative Adversarial Networks (GANs): GANs have
been employed to generate synthetic data that can augment
real-world datasets used for training deep learning models.
By generating realistic radar and camera images, GANs help
improve the robustness and generalization capabilities of cal-
ibration models, especially in scenarios with limited training
data [9], [21].

Training deep learning models for radar-camera calibration
requires large and diverse datasets that capture a wide range
of environmental conditions and sensor configurations. The
quality and variability of the training data significantly impact
the performance of the resulting models [7], [8]. Publicly
available datasets and synthetic data generated by GANs play
a crucial role in developing and validating these models [3],
[16], [33].

Deep learning-based calibration methods offer several ad-
vantages over traditional approaches:

• Accuracy: Deep learning models can learn complex fea-
ture representations, leading to more accurate calibration
results [2], [7].

• Robustness: These methods are less sensitive to environ-
mental variations, such as changes in lighting or weather
conditions, enhancing their robustness [3].

• Automation: Deep learning techniques can automate
the calibration process, reducing the need for manual
intervention and specialized calibration objects [9].

Despite their advantages, deep learning-based calibration
methods face several challenges:

• Data Requirements: Training effective models requires
large, annotated datasets, which can be difficult to obtain
[8].

• Computational Complexity: Deep learning models are
computationally intensive and require significant process-
ing power for both training and inference [3].

• Generalization: Ensuring that models generalize well
across different environments and sensor configurations
remains a challenging task [9].

In conclusion, deep learning techniques have significantly
enhanced the accuracy and robustness of radar-camera cali-
bration. However, addressing the challenges related to data
requirements, computational complexity, and model general-
ization is crucial for further advancements in this field. Future
research should focus on optimizing deep learning models,
improving data augmentation techniques, and developing more
efficient training methodologies.

The availability and quality of datasets play a crucial role in
the development and validation of deep learning models for
radar-camera extrinsic calibration. Various types of datasets
and configurations have been used in research to capture
diverse environmental conditions, sensor modalities, and cal-
ibration scenarios. This section reviews the key datasets and
their configurations that are relevant for radar-camera extrinsic
calibration using deep learning.

5. Comparative Analysis 
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6.1 Deep Learning Techniques for Calibration 
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Several publicly available datasets provide a valuable re-
source for researchers working on radar-camera calibration.
These datasets typically include synchronized radar and cam-
era data, along with ground truth annotations for extrinsic
calibration.

1) Oxford Radar RobotCar Dataset: The Oxford Radar
RobotCar Dataset is a comprehensive dataset collected using
a vehicle equipped with a Navtech CTS350-X radar, cameras,
LiDAR, and GPS. It includes diverse driving scenarios and
environmental conditions, making it suitable for developing
and testing calibration algorithms [23].

2) NuScenes Dataset: The NuScenes dataset provides 360-
degree sensor coverage using cameras, radar, and LiDAR,
along with precise localization information. It is designed for
autonomous driving research and includes annotated data for
object detection, tracking, and sensor calibration [28].

3) RaDICaL Dataset: The RaDICaL dataset offers a syn-
chronized collection of Frequency Modulated Continuous
Wave (FMCW) radar, depth, IMU, and RGB camera data. This
dataset includes low-level FMCW radar signals, providing a
rich source of information for developing and testing sensor
fusion and calibration algorithms [29].

4) KITTI Dataset: The KITTI dataset is widely used in
autonomous driving research and includes stereo camera, Li-
DAR, and radar data. The dataset provides calibration files that
include the extrinsic parameters between the sensors, which
are useful for training and evaluating calibration algorithms
[25].

Synthetic datasets generated using simulation environments
offer a controlled way to produce large amounts of labeled data
for training deep learning models. These datasets can simulate
various sensor configurations and environmental conditions.

1) CARLA Simulator: CARLA is an open-source simulator
for autonomous driving research. It supports the generation
of synthetic data for multiple sensor modalities, including
radar and camera. CARLA can simulate different weather
conditions, lighting scenarios, and dynamic objects, providing
a rich dataset for calibration purposes [26].

2) Unity-based Simulation Environments: Unity-based sim-
ulation environments allow for the creation of synthetic
datasets with precise control over the sensor placement, en-
vironmental variables, and object interactions. These environ-
ments can generate high-fidelity radar and camera data for
training and testing calibration algorithms [27].

The configuration of the data collection setup is crucial
for ensuring the quality and relevance of the calibration data.
Key considerations include the placement and synchronization
of sensors, the diversity of environmental conditions, and the
inclusion of dynamic scenarios.

1) Sensor Placement: Proper placement of radar and cam-
era sensors is essential to ensure overlapping fields of view
and consistent detection of features. Common configurations
involve mounting sensors on a vehicle or a stationary rig, with
careful alignment to minimize parallax effects [2], [8].

2) Synchronization: Accurate timestamping and synchro-
nization of radar and camera data are critical for reliable
calibration. Hardware and software synchronization methods
are used to ensure that data from both sensors are captured
simultaneously [3], [9].

3) Environmental Diversity: To develop robust calibration
algorithms, it is important to collect data in a variety of en-
vironmental conditions, including different lighting, weather,
and dynamic object scenarios. This diversity helps in training
models that generalize well across different real-world condi-
tions [2], [7].

In conclusion, the availability of diverse and high-quality
datasets, along with carefully designed data collection config-
urations, is fundamental to advancing radar-camera extrinsic
calibration using deep learning. By leveraging both publicly
available and synthetic datasets, researchers can develop more
accurate and robust calibration algorithms.

While significant progress has been made in radar-camera
extrinsic calibration using deep learning, several challenges re-
main. Addressing these challenges is crucial for advancing the
state-of-the-art and enabling practical, real-world applications
[3], [8], [12].

1) Environmental Dependencies: One of the primary chal-
lenges in radar-camera calibration is the dependency on en-
vironmental conditions. Factors such as lighting variations,
weather conditions, and the presence of dynamic objects can
affect the accuracy of feature extraction and matching. Ro-
bustness to these variations is essential for reliable calibration
in diverse scenarios [2], [9].

2) Computational Complexity: Deep learning models, par-
ticularly those with complex architectures, require significant
computational resources for training and inference. This com-
putational complexity can limit the real-time applicability of
these methods, especially in embedded systems with con-
strained resources. Efficient model architectures and optimiza-
tion techniques are needed to balance accuracy and speed [3],
[7].

3) Data Requirements: Deep learning approaches rely on
large datasets for training, which can be challenging to ac-
quire and annotate. The diversity and quality of the training
data significantly impact the model’s performance. Methods
for data augmentation, synthetic data generation, and semi-
supervised learning can help mitigate this issue but require
further research and development [2], [8].

7.1 Publicly Available Datasets 
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7.3 Configurations for Data Collection 

8. Challenges and Future Directions 
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4) Generalization to Different Scenarios: Ensuring that cal-
ibration models generalize well across different environments,
sensor configurations, and vehicle platforms is another critical
challenge. Models trained on specific datasets may not per-
form optimally in new or unseen scenarios. Transfer learning
and domain adaptation techniques can enhance generalization
capabilities but need to be more effectively integrated into
calibration frameworks [7], [9].

1) Improved Robustness and Adaptability: Future research
should focus on enhancing the robustness of calibration meth-
ods to environmental variations. This includes developing
algorithms that can adapt to changing conditions in real-time
and leveraging multi-modal sensor data to improve reliability.
Adaptive learning techniques and robust feature extraction
methods are promising areas for exploration [3], [8].

2) Efficient Model Architectures: Optimizing model ar-
chitectures to reduce computational complexity while main-
taining high accuracy is essential for real-time applications.
Techniques such as model pruning, quantization, and neural
architecture search (NAS) can help design efficient models
suitable for deployment on resource-constrained platforms [2],
[7].

3) Advanced Data Augmentation and Synthetic Data Gen-
eration: Developing advanced data augmentation techniques
and leveraging synthetic data for training can address the
challenge of data scarcity. Synthetic data generation, using
methods like Generative Adversarial Networks (GANs), can
create diverse and realistic training datasets, enhancing the
model’s ability to generalize to different scenarios [3], [9].

4) Integration of Multi-Modal Sensor Fusion: Integrating
additional sensor modalities, such as LiDAR and inertial
measurement units (IMUs), can provide complementary in-
formation that improves calibration accuracy and robustness.
Multi-modal sensor fusion techniques can enhance feature
extraction and matching processes, leading to more reliable
calibration results [7], [8].

5) Real-Time Calibration Systems: Developing real-time
calibration systems that can continuously update the extrinsic
parameters during operation is a promising direction. These
systems would enable dynamic calibration adjustments in
response to changing environmental conditions and sensor
configurations, ensuring optimal sensor fusion performance
[2], [3].

1) Machine Learning for Uncertainty Estimation: Incor-
porating uncertainty estimation into calibration models can
provide insights into the confidence levels of the calibration
results. Techniques such as Bayesian neural networks and
dropout-based uncertainty estimation can help quantify the
reliability of the calibration process [9].

2) End-to-End Learning Frameworks: End-to-end learning
frameworks that jointly optimize feature extraction, matching,
and transformation estimation offer a streamlined approach to

calibration. These frameworks can leverage holistic learning
objectives to improve overall calibration performance and
simplify the calibration pipeline [7], [8].

3) Collaborative and Distributed Calibration: Exploring
collaborative and distributed methods, where multiple vehicles
or devices share calibration data and insights, can enhance
the calibration process. Collaborative approaches can leverage
collective knowledge to improve accuracy and robustness
across a fleet of autonomous systems [2].

In conclusion, addressing the challenges in radar-camera
extrinsic calibration requires ongoing research and innova-
tion. Future research can enhance the practical applicability
and reliability of these methods in real-world scenarios by
focusing on improved robustness, efficient model architectures,
advanced data techniques, and real-time calibration systems.

Implementing radar-camera extrinsic calibration using deep
learning methods involves several hardware-related challenges.
These challenges range from sensor placement and synchro-
nization to computational limitations and environmental ro-
bustness. This section discusses these challenges and presents
potential solutions to overcome them.

Proper sensor placement is critical for accurate calibration.
Misalignment can lead to significant errors in extrinsic param-
eter estimation.

1) Challenge: The physical installation of radar and camera
sensors must ensure overlapping fields of view and minimize
parallax effects. Inconsistent or suboptimal placement can
cause calibration errors and affect the performance of the
sensor fusion system [2], [8].

2) Solution: Using precise mechanical mounts and align-
ment tools can help achieve accurate sensor placement. Ad-
ditionally, employing automated calibration systems that use
visual feedback to adjust the sensors’ positions can improve
alignment accuracy [3]. Simultaneous Localization and Map-
ping (SLAM) techniques can also aid in verifying and correct-
ing sensor alignment post-installation [7].

Synchronizing the data streams from radar and camera
sensors is crucial for ensuring that corresponding features are
accurately matched.

1) Challenge: Radar and camera sensors often operate at
different frequencies and resolutions, making it challenging to
synchronize their data streams. Timing discrepancies can lead
to mismatches and inaccuracies in calibration [2].

2) Solution: Implementing hardware-based synchroniza-
tion, such as using a common clock source or hardware
triggers, can ensure precise timing alignment between sensors.
Software-based synchronization techniques, like timestamp in-
terpolation and synchronization algorithms, can further refine
the alignment during data processing [3], [8].

8.2 Future Directions 
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Deep learning models for calibration can be computationally
intensive, requiring significant processing power for real-time
applications.

1) Challenge: Embedded systems in autonomous vehicles
often have limited computational resources, which can hinder
the real-time performance of deep learning-based calibration
methods [7], [9].

2) Solution: Optimizing deep learning models through
techniques such as model pruning, quantization, and the use
of efficient architectures like MobileNets can reduce com-
putational demands. Edge computing solutions, where some
processing is offloaded to local edge servers, can also help
manage computational loads [2], [3].

Ensuring that the calibration process remains robust under
varying environmental conditions is essential for reliable sen-
sor fusion.

1) Challenge: Environmental factors such as lighting
changes, weather conditions, and the presence of dynamic
objects can affect the performance of calibration algorithms.
These variations can lead to inconsistencies and reduced
calibration accuracy [8], [9].

2) Solution: Incorporating data from multiple environmen-
tal conditions during training can help models learn to handle
variability. Real-time adaptation techniques, where the model
continuously learns and adjusts to new conditions, can enhance
robustness. Sensor fusion approaches that combine data from
radar, cameras, and other sensors like LiDAR can also mitigate
the impact of environmental changes [2], [7].

The format of radar outputs, whether raw data or point cloud
data, significantly impacts radar-camera extrinsic calibration.
This section compares these data formats, discussing benefits,
challenges, and their influence on the calibration matrix,
using mmWave radar sensors such as the Texas Instruments
AWR1642BOOST 77GHz and the Continental Radar ARS620
77GHz as examples.

Raw radar data includes intermediate frequency (IF) signals,
range-Doppler maps, and radar cube data, providing detailed
signal information.

1) Benefits:

• Detailed Information: Raw data retains comprehensive
signal details, which can be useful for advanced process-
ing and feature extraction.

• Flexibility: Researchers can apply custom processing
techniques to extract features most relevant to their spe-
cific calibration tasks.

2) Challenges:
• Complexity: Handling and processing raw data require

significant computational resources and expertise.
• Integration Difficulty: Converting raw data into a format

that can be easily fused with camera data adds an
additional layer of complexity.

Point cloud data represents the environment as discrete
points with 3D coordinates, often used in processed formats.

1) Benefits:
• Ease of Use: Point clouds simplify the spatial alignment

process, as they can be directly compared with 3D data
from cameras or LiDAR.

• Compatibility: Point cloud data is readily compatible
with other 3D data sources, facilitating sensor fusion.

2) Challenges:
• Less Detail: Processing into point clouds can result in

the loss of some detailed signal characteristics present in
raw data.

• Dependency on Processing: The quality of the point
cloud is highly dependent on the radar’s onboard pro-
cessing capabilities.

The choice between raw data and point cloud data influences
the computation of the calibration matrix, affecting both the
accuracy and the computational load.

1) Using Raw Data: For example, using raw data from the
Texas Instruments AWR1642BOOST allows for detailed sig-
nal analysis and custom feature extraction, potentially leading
to more precise calibration. However, it requires significant
processing power and expertise.

2) Using Point Cloud Data: Using point cloud data from
the Continental Radar ARS620 simplifies the feature matching
and calibration process due to its direct 3D representation. This
approach is generally easier and faster but may sacrifice some
accuracy and detail compared to raw data processing.

To illustrate the practical implications, refer to Figures 1
and 2. Figure 1 showcases an indoor application using detailed
raw radar data for precise person detection and tracking, while
Figure 2 demonstrates the use of point cloud data in an
automotive setting, highlighting its ease of integration with
other 3D sensor data for real-time vehicle velocity estimation.

Choosing between raw data and point cloud data for radar-
camera extrinsic calibration depends on the specific applica-
tion requirements and available computational resources. Raw
data offers detailed information and flexibility but demands
more processing power, while point cloud data provides ease
of use and compatibility at the expense of some detail and
accuracy. Understanding these trade-offs is essential for se-
lecting the appropriate data format for effective sensor fusion
and calibration.
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This paper reviewed radar-camera extrinsic calibration tech-
niques, comparing traditional target-based methods and deep
learning-based targetless approaches. Traditional methods of-
fer high accuracy in controlled environments but lack flexi-
bility for dynamic applications. Deep learning methods, while
more flexible, face challenges like computational complexity
and data requirements.

Key findings include the importance of high-quality datasets
(e.g., Oxford Radar RobotCar, NuScenes, KITTI, RaDICaL)
and the impact of radar data formats on calibration accuracy.
Future research should focus on:

• Developing algorithms for real-time adaptability to envi-
ronmental conditions.

• Optimizing deep learning models for better accuracy and
efficiency.

• Enhancing data augmentation and using synthetic data to
mitigate data scarcity.

• Integrating multi-modal sensor fusion for improved cali-
bration robustness.

• Creating real-time systems for continuous calibration
updates.

Emerging trends like uncertainty estimation in machine
learning, end-to-end learning frameworks, and collaborative
calibration methods show promise. Addressing these chal-
lenges will enhance the reliability of radar-camera calibration,
benefiting autonomous driving and robotics.
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