
On the Development of Table Oriented Programming with o++o

KLAUS BENECKE

beneckeSysteme,

Schröders Garten 5,

39175 Gerwisch,

GERMANY

Abstract: - The paper describes the essential steps in the so-far development of o++o. It started with some

papers on the Relational data model, SQL, and CONVERT. Further, it was based on my PhD on a powerful

algebraic specification language. The objects of our data model o++o will be described in detail. The operations

of the data model were designed step by step, often redesigned, when other operations were introduced or

changed. This holds also for the objects. The essential redefinition of tabments was influenced by XML and

XQuery. It is demonstrated that a lot of problems can be formulated very compactly. The next-recursion is not

as powerful as general recursive functions, but this kind of recursion seems to be easier to understand because

all intermediated steps are gathered in a table. The bill of the material problem is solved in a new way with

o++o-numbers and a slightly changed recursive operation nextonr. o++o allows querying and visualizing not

only fact- but also (structured) text data in combination. Further, an example in a few lines, which requires in

EXCEL more than 6 working sheets is presented. Then a very simple to use operation cross is introduced. It

allows to creation of structured pivot tables. Small companies often don’t like to use database systems, because

of their high complexity in usage. Finally, an example is presented that a query on many files can be formulated

also in a compact way.

Key-Words: - data model, tabment definition, structured table, structured document, mass data operations,

BOM-problem, cross-operation, queries to Wikipedia, queries to many files.

Received: March 22, 2024. Revised: October 21, 2024. Accepted: November 20, 2024. Published: December 31, 2024.

1 Introduction
The paper describes the essential steps in the so-far

development of o++o. It started in 1980 with some

papers about the Relational data model, [1], [2], [3]

SQL [4] and CONVERT [5]. Further, it was based

on my PhD on the powerful algebraic specification

language of [6] and [7]. [8] is the first motivational

publication for a new query language. The content

of this paper is contained in section 3. The objects

of our data model are described in section 2. The

operations of the data model were designed step by

step, often redesigned, when other operations were

introduced or changed. This holds also for the

objects. The essential redefinition of tabments was

influenced by XML [9] and XQuery [10] (section

2).
In section 4 it is demonstrated that a lot of

problems can be formulated very compactly in one

line simply as a term. The next recursion of section

5 is not as powerful as general recursive functions,

but this kind seems to be easier to understand

because all intermediated steps are gathered in a

table, such that errors can be fixed more easily. The

bill of the material problem is solved in a new way

with o++o-numbers – these are essentially section

numbers – and a slightly changed recursive

operation nextonr.
The next section 7 shows that o++o allows

querying and visualizing not only fact- but also

(structured) text data in combination. Section 8

presents an example in a few lines, which requires

in EXCEL more than 6 working sheets.
In section 9 a very simple-to-use operation cross

is introduced. It allows to creation of structured

pivot tables. Small companies often don’t like to use

database systems, because of the high complexity in

usage. In section 10 an example is presented that a

query on many files can be formulated also in a

compact way.

2 What is a Tabment?

2.1 What is a Relation?
Definition of a relation 1970 ([1], [2])

• A relation R is a subset of a Cartesian

Product dom1 × dom2 × … × domn

• Operations: permutation, selection, (nat-)

join, projection

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 270 Volume 23, 2024

Weaknesses of Codd’s Definition:

• no column names

• 2 is not an object of the relational model,

but {2}

• Bags, lists and arrays, +, … are outside the

Relational model

Definition of a relation 1983 ([11])

R = {A1,A2,…,An} (set of column names)

r(R) ={f: R -> Dom: Dom=dom1 Ս dom2 Ս …

 Ս domn: f(Ai) in domi}

r |×| s = {t: R Ս S -> dom: t↓R ϵ r & t↓S ϵ s}

This definition of a join is graceful but does not

help end-users. Algorithms seem to be better for

understanding operations.

2.2 What is a Structured Table?

Fig. 1: Zidsch-i Ulugh Beg, Samarkand

Is there a structured table in Figure 1?

Ulugh Beg wrote his Zidsch-i-Sultani from 1420

until 1437. It contains coordinates of 1018 stars.

That seems to mean, it contains 1018 small tables. It

is visible already on the open page that the mini-

tables contain red and black headlines. One of the

headline types is probably a constellation and the

other is the name of the star. Therefore, in o++o

notation the scheme of the whole list of stars could

be CONSTALLATION,(STAR,(COOR,… l) l) l

Here, l is a symbol for list.

o++o offers several representations for structured

tables, but the one presented in this old book is not

directly implemented. You need an additional

formatting.

In the following, we present algebraic

specifications in short, because they contain only the

essential parts of a definition. If implementation-

related “details” are omitted, then one can more

easily design new operations. For example, the

below scheme specification contains 4 generating

operations, where the last two are recursive and the

properties that the error-scheme empty_s is a neutral

value for the pair_s operation and the pair_s

operation is associative.

sorts Field, Coll_sym …

sorts Scheme

opers empty_s -> Scheme

 inj (Field) -> Scheme

 coll (Coll_sym,Scheme) -> Scheme

 pair_s (Scheme, Scheme) -> Scheme

axioms pair_s(s,empty_s)=pair_s(empty_s,s) =s

 pair_s(pair_s(s,s’),s’’)

 = pair_s(s,pair_s(s’,s’’))

The sort Value is the disjoint union of words,

texts, integers, floats, bools, and rational numbers.

For the school, we introduced also a bar. The sort

contains only one element (|) . It is useful only in

combination with lists. Then 4 can be represented

for lower classes or preschool children for example

by the list | | | | .

The below operation add is partial. It is defined

only if the second argument is of the element type of

the first. E.g., you can add a word to a set of words,

but not a set of words to a set of words. The last

axiom expresses: A second addition of an element to

a set does not change the set, which results from

adding the element once to the set. The last but one

axiom expresses that the order of adding elements to

sets and bags is not of importance. iff abbreviates if

and only if. Empty is therefore a partial operation. It

is defined only for collection schemes, e.g. Xl or X,Y

l.

sorts Value (all elementary values)

sorts Table

opers abs_empty -> Table

 empty (s:Scheme iff coll?(s)) -> Table

 el_tab(Field, Value) -> Table

 head (Table) -> Scheme

 add (t1:Table,t2: Table

 iff red(head(t1)) = head(t2)) -> Table

 pair (Table,Table) -> Table

axioms head(abs_empty)=empty_s

 head(ele_tab(f,v))=inj(f)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 271 Volume 23, 2024

 if red(head(t1))=head(t2)

 then head(add(t1,t2))=head(t1)

 head(pair_t(t1,t2))=pair_s(head(t1),head(t2))

 pair(abs_empty,t)=pair(t,abs_empty)=t

 pair(t1,pair(t2,t3))=pair(pair(t1,t2),t3)

 if coll_type(head(t1))!=list &

 red(head(t1))=head(t2)=head(t3)

 then add(add(t1,t2),t3) = add(add(t1,t3),t2))

 if coll_type(head(t1))= set

 then add(add(t1,t2),t2)) =add(t1,t2)

By this definition, 2 is yet not a structured table, but

2 is tagged by X, for example.

2.3 Algebraic Tabment Definition

Because of the rise of XML our table definition was

modified. The introduction of column names is not

restricted to values, now. By tag0 a column name or

better a tag can be made around an arbitrary table.

alternate converts a tabment into a choice element.

Therefore, especially documents can be handled by

the definition, so we called the objects

TABledocuMENT.

We do not repeat the introduction of the

operations empty_t, empty, add and pair. el_tab is

now replaced by el_tab and tag0.

sorts Tabment

opers …

 ele_tab Value -> Tabment

 tag0(Field,Tabment) -> Tabment

 alternate(Scheme,Scheme,Tabment)

 -> Tabment

axioms …

 head(tag0(f,t))=inj f

 head(ele_tab(v))=inj”TEXT” ,…,inj”BOOL”

 head(alternate(s1,s2,t))=alternate_s(s1,s2)

end

Now, 2 is a tabment, for example. An alternate is

until now rarely used.

2.4 OCaml Tabment Definition

The below OCaml definition is more complicated

than the above algebraic specification. It is a little

more complicated than necessary from a purely

logical point of view. Namely, it contains a subtype

tabtree. This binary tree is introduced for sets and

bags for quick access. Therefore, it is also possible

to introduce indexes in RAM.

type tabment =

| Empty_t (* Tabment with empty head:error *)

| El_tab of value (* elementary Value *)

| Tuple_t of tabment list (* n-Tuple *)

| Coll_t of coll_sym * scheme * tabcontainer

 (* collection *)

| Alternate_t of (scheme list) * tabment

| Tag0 of name * tabment

and tab_tree= (* binary tree for direct access *)

| Empty_set_btree

| Node_set_btree

 of tab_tree * tabment * tab_tree * int

and tabcontainer =

| Empty_c

| Single_c of tabment

| CList of clist

| CTree of ctree

and clist = { len: int; l: tabment list }

and ctree = { leng: int; typ: coll_sym; tr: tab_tree }

3 SQL Criticism 1982
In [8], SQL already 1982 was criticized from the

point of view of structured tables. The below

student file contains an ID (PKZ) and 2 repeating

groups. For children data and foreign languages.

This was some of the essential information at this

time for GDR students. Here, l abbreviates list and

m set (German: Menge).

STUDENT:PKZ,NAME,FIRSTNAME,LOC,

 GROUP,FAC,SEX,

 (CHILDDAT,CHILDCARD l),

 (LANGUAGE,GRADE l)m

For the first 2 queries, it is important to know

that Alikendorf is a very small village and

Magdeburg a big town, where the university is

situated. Here is assumed that the user wants a

structured output-table, if the output will be

relatively large.

1. Find all students living in Alikendorf!

 aus STUDENT

 sel LOC=Alikendorf

 gib NAME,PKZ,GROUP m

 2. Find all students living in Magdeburg!

 aus STUDENT

 sel LOC=Magdeburg

 gib FAC,(GROUP,(NAME,PKZ m)m)m

 3. Find for each student of seminar group

LM3/80 the set of languages with Grade 4!

 aus STUDENT

 sel GROUP=“LM3/80”

 sel LANGUAGE! GRADE=4

 gib NAME,PKZ,LANGUAGEm m

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 272 Volume 23, 2024

The second condition does not select students,

such that all students probably some with an empty

set of languages will appear in the result. There is

no need for the NULL of SQL. The next query is

motivated by the fact, that you need two sub-queries

with SQL, if you want to apply the 2 conditions

SEX=male and SEX=female

4. Bring the data of girls and boys in different

columns!

aus STUDENT

BOY :=NAME if SEX=male

GIRL:=NAME if SEX=female

gib GROUP,(BOY,PKZ m),(GIRL,PKZ m)m

Better?:

BOY?,GIRL?:=NAME,_ if SEX=male !
 (_,NAME)

By the fifth example, it is demonstrated that

even preschool children are able to understand and

realize the basic algorithm behind gib on paper or

on a blackboard.

5. Three examples of the stroke-list operation

Given: a “stream of cars”:

Golf Han Polo Han Wartburg Atto
Golf Trabant Golf Han Polo

Count companies
BYD ||||

IFA ||

VW |||||

Count models with company
BYD Atto |

BYD Han |||

IFA Trabant |

IFA Wartburg |

VW Golf |||

VW Polo ||

structured table

BYD Atto |

 Han |||

IFA Trabant |

 Wartburg |

VW Golf |||

 Polo ||

Corresponding heads:

COMPANY,STROKEl m

COMPANY,MODEL,STROKEl m

COMPANY,(MODEL,STROKEl m)m

The above algorithm counts and sorts

simultaneously. Because the result of a query is in

general relatively small, we have relatively small

amounts of data to sort. If the result table is not very

small, then the user can choose a structured output

table (third example). If we assume that we have 10

companies and each company has 10 models, then

we need on average not more than 5 company

comparisons and 5 model comparisons. This seems

to be an efficient sorting algorithm, not yet

mentioned in [12].

4 One-line Programs
Average (++:) is an important aggregation. ++

(sum) stands for many plus signs. All basic

aggregations are unary operations and written

postfix. Binary operations like rnd (round) are

written always infix. They are applied in the written

order from left to right and top down.

Column names are assigned using the

assignment symbol (:=). They can make comments

superfluous. You cannot do without them for more

complex problems.

avg.otto: Compute an average of some marks
AVG:=1 3 5 4 3 4 2 ++: rnd 2
Result (tab)
AVG
3.14

x .. y generates all numbers from x to y.
factorial.otto: Make a great number better readable
TWELF_FACTORIAL:=1 .. 12 ** '3
Result (tab)
TWELF_FACTORIAL
479'001'600

Grouping numbers by apostrophe is an idea

from Switzerland. It has the advantage that there

will be no confusion with existing concepts. There

exist for example two versions of EXCEL. In one

the comma is used as a separator for decimal

numbers and the point (dot) to group the numbers

and in the other, it is vice versa. This causes serious

problems for international companies.

product.otto: Compute the product of 123 and 17 with

matrix multiplication.
100 20 3 *mat (10,7) giball ZAHLl ++
Result (tab)
ZAHL
2019

giball Xl corresponds to //X from XQuery resp.

XPATH. We remark that

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 273 Volume 23, 2024

100 20 3 *mat (10,7) ++

also computes the desired product.

percent.otto: Percent calculations
NET := 200
GROSS := NET +% 19
NET_WRONG:= GROSS -% 19
NET_OK := GROSS net 19
Result (tab)
NET ,GROSS ,NET_WRONG ,NET_OK
200 238. 192.78 200.

In a pocket calculator, the second line has to be

typed in the following order: 200 + 19 %

If we use brackets in both possible ways

(200 + 19) %

or

200 +(19 %)

than results 2.19, 200.19, respectively. Therefore,

new operations have to be introduced.

local_max.otto: Compute a local maximum of the

polynomial “-2*x^4 +2*x^3 +3*x^2+ 2* x +100” of

degree 4
MAX:= -5 ...5!0.0001 poly [-2 2 3 2 100] max
Intermediate result: diagram (bars) of the following

program: Yl:=-5 ...5!0.1 poly [-2 2 3 2 100]

Result (tab)
MAX
106.48568667

The diagram shows that the interval borders are

not the maximal points. That’s why the result has to

be a local maximum.

The second line of the below program starts

with more than 3 blanks. Because of this

indentation, both lines compose one logical program

line.

area.otto: Compute an approximation the blue area of

the below diagram
AREA:= -5 ...5!0.000'01 poly -2 2 3 2 100
 abs sqrt *0.000'01 ++
Diagram of the program:
Yl:= -5 ...5!0.1 poly [-2 2 3 2 100] abs sqrt

Result (tab)
AREA
128.930466378

The -coll operation is a "collection difference”-

operation. It is applied to a list and a set, below.
sieve_erathostenes.otto: Compute all primes until 120
PRIMEl:=2 ..120 -coll (2 ..60 *mat
 (2 ..13 transpose) giball ZAHLm)
Result (tabh)
PRIMEl
2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97
101 103 107 109 113

5 Simple Recursive Assignments
pred denotes the predecessor. By the first line, each

of the numbers 2025 to 2055 is tagged by YEAR.

Next can be considered as a binary operation. As

already mentioned, binary operations are always

written infix. Below, preds abbreviates AMOUNT1

pred, AMOUNT11 pred.

interests1and11.otto: Compare the development

of an account within 30 years, with 1 and 11

percent interests (compounded yearly). Print

only each fifth line.
YEARl:=2025 .. 2055
AMOUNT1,AMOUNT11:=100.,100. next
 preds +% (1,11) at
YEAR
rnd 2
sel YEAR rest 5 =0
Result (tab)
YEAR ,AMOUNT1 ,AMOUNT11 l
2025 100.00 100.00

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 274 Volume 23, 2024

2030 105.10 168.51
2035 110.46 283.94
2040 116.10 478.46
2045 122.02 806.23
2050 128.24 1358.55
2055 134.78 2289.23

gdp.poland_gdr.otto: Compare the GDP

development of Poland and East Germany for

the years, where both data exist.
INCREASE_POLANDl:= 0. 3.3 3.8 -7.2

 -7.0 2.0 4.3 5.2 6.7 6.2 6.5 4.6

 4.6 4.6 1.2 2.0 3.6 5.1

 3.5 6.2 7.0 4.2 2.8 3.6

 5.0 1.6 1.4 3.3 3.8 3.1

 4.8 5.4 4.7 2.0 6.9 5.6

 0.2

YEAR:=INCREASE_POLAND pos +1986

 leftat INCREASE_POLAND

INCREASE_GDRl:=0. 1.85 -47.8 0. 6.2

 8.7 8.1 3.5 1.6 0.5 0.2 1.8 1.2

 -0.6 0.2 -0.3 1.3 -0.2 3.4 2.9

 0.6 -3.9 3.2 1.9 0.6 -0.1 1.4

YEAR:=INCREASE_GDR pos +1987

join2

sel YEAR>1990

POLAND,GDR := 100.,100. next preds +%

 (INCREASE_POLAND,INCREASE_GDR)

 at YEAR

gib YEAR,POLAND,GDR l

YEAR::= YEAR text

Result (diagram (bar)):

gdp_gdr_frg_china.otto: Compare the GDP of

East Germany, West Germany, and China from

1988 until 2014

<TAB!

YEAR, GDRINC,FRGINC,CHINAINC l

1988 0. 0. 0.

1989 1.85 3.9 4.2

1991 -47.8 11.09 13.56

1992 6.2 1.7 14.3

1993 8.7 -2.6 13.9

1994 8.1 1.4 13.1

1995 3.5 1.4 11.

1996 1.6 0.6 9.9

1997 0.5 1.5 9.2

1998 0.2 2.3 7.8

1999 1.8 2.1 7.6

2000 1.2 3.1 8.4

2001 -0.6 1.1 8.3

2002 0.2 0.1 9.1

2003 -0.3 -0.1 10.

2004 1.3 1.6 10.1

2005 -0.2 0.8 11.3

2006 3.4 3.8 12.7

2007 2.9 3.3 14.2

2008 0.6 1. 9.6

2009 -3.9 -6.1 9.2

2010 3.2 4.3 10.6

2011 1.9 3.8 9.5

2012 0.6 0.4 7.7

2013 -0.1 0.1 7.7

2014 1.4 1.6 7.4

!TAB>

#sel YEAR>1991 # # line comment

GDR,FRG,CHINA := 100.,100.,100.

 next preds +%

 (GDRINC,FRGINC,CHINAINC)

 at CHINAINC

TITEL:="GDR:red FRG:black

 China:yellow"

gib TITEL,(YEAR,GDR,FRG,CHINA l)

YEAR::= (YEAR text subtext 3!2)

rnd 1

RGB:=red leftat GDR

RGB:=black leftat FRG

RGB:=yellow leftat CHINA
Result (diagram (bar)):

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 275 Volume 23, 2024

6 The Bill of Material (BOM)

 Problem
BOM-problems occur often in industry. Surely, not

only very large data sets have to be handled. Below,

it can be seen that the whole BOM is stored in one

structured table. Both collections of the input-table

are sets. That means we have direct access to each

tuple and sub-tuple, if the part or part number is

given. In the first step, otto-numbers are generated.

We shall see that these numbers are also important

for structured texts like books or Wikipedia. The

operation nextonr is similar to next, but it ends

already if an ottonr of the same or smaller length

follows. The rest is realized by gib.

bom.otto: Print the BOM of the car Wartburg.
<TAB!
PART, PROPERTY, (SUBPART, COUNT m) m
Bushing cylindrical
Engine heavy Piston 6
 Screw 8
Piston light Bushing 1
 PistonRing 2
Rim smooth
Trabant modern Body 1
 Engine 1
 Wheel 4
Wartburg fast Body 1
 Climate 1
 Engine 1
 Wheel 4
Wheel round Rim 1
 Screw 5
 Tire 1
!TAB>
onrs Wartburg
COUNTOTTO:= COUNT nextonr
 COUNTOTTO pred *COUNT at COUNT
gib SUBPART,TOTAL m TOTAL:= COUNTOTTO!++
Result (tab)
SUBPART, TOTAL m
Body 1
Bushing 6
Climate 1
Engine 1
Piston 6
PistonRing 12
Rim 4
Screw 28
Tire 4
Wheel 4
Intermediate result without last line (tab)
PART, PROPERTY, (OTTONR, SUBPART, COUNT,
 COUNTOTTO

m)l
Wartburg fast 1 Body 1 1
 2 Climate 1 1
 3 Engine 1 1
 3.1 Piston 6 6

 3.1.1 Bushing 1 6
 3.1.2 PistonRing 2 12
 3.2 Screw 8 8
 4 Wheel 4 4
 4.1 Rim 1 4
 4.2 Screw 5 20
 4.3 Tire 1 4

7 Queries to German Wikipedia

The Wikipedia is now stored with the Relational

DBMS MariaDB. Each entry is a CLOB (Character

Long OBject). Therefore, Wikipedia is from the

point of view of the Relational DBMS simply of

type

TITLE,CONTENT m
CONTENT has no structure, such that only very few

queries can be formulated with SQL. In our

approach, the text-data have the structure

TITLE,(ANR,ATITLE,CONTENT l)m
Here ANR is the section number (an otto number)

and ATITLE the corresponding title. Therefore, it is

possible, for example, to use conditions of the

following types

ANR=3.5.4

TITLE in [Bern Sofia]

Bern in ATITLE

[Bern Sofia] in CONTENT

…

To a Wikipedia. X in Y means each word out of

X is also a word in Y. The FACT-data of Wikipedia

do not have a simple scheme. It exists an INFOBOX

for each object-type like river or town. In the below

query wiki_river_town.otto it becomes evident that

the Wikipedia was not designed for queries of the

below kinds. The “Repeating groups” for towns on a

river are divided in GROSSTAEDTE (big towns)

und MITTELSTAEDTE (middle towns) as comma-

separated lists. If we introduce for example a

repeating group STADTl instead of

GROSSSTAEDTE and MITTELSTAEDTE, then

the corresponding query can be simplified

considerably.
The first queries below, give a first impression

of the size of a mini-Wikipedia of Germany used

here.

wiki_cnt.otto: How many entries are in RAM?
wiki
++1
Result (tab)
ZAHL

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 276 Volume 23, 2024

60

wiki_titles.otto: Sort all titles.
wiki
gib TITELm
Result (tabh)
TITELm
Abraham_Lincoln Acre Al-Biruni
Alan_Turing Albigenser
Alexander_der_Gro├ƒe Alicia_Silverstone
Alphabet Altweibersommer Amazonas
American_Standard_Code_for_Information_I
nterchange Ampere Angela_Merkel
Angelina_Jolie Anglizismus Ankara
Anna_Seghers Anthony_Hope Anthropologie
Antike Apostilb Ar_(Einheit)
Arbeit_(Sozialwissenschaften) Archimedes
Arch├ñologie Ariel_Sharon Aristoteles
Arthur_Harris
Arthur_Wellesley,_1._Duke_of_Wellington
Arzt Astronom Astronomie Atheismus Atom
Atomare_Masseneinheit
Au├ƒenbandruptur_des_oberen_Sprunggelenk
es Bautzen Bydgoszcz Cottbus Donau Havel
Heidelberg Isar Krakau Mekong Neckar Nil
Nur-Sultan Oranienburg Prag Rathenow
Reutlingen Rhein Rom Sokrates Spree
Stuttgart Warschau Weichsel
├àngstr├Âm_(Einheit)

wiki_archimedes_Turing_summary.otto: Give

the first 300 letters of the summaries of

Archimedes and Turing.
wiki
sel TITEL in [Archimedes Alan_Turing]
sel ANR=0
gib TITEL,INHALT m
INHALT::=INHALT subtext 1!300
Result (xml)
<?xml version="1.0" encoding="ISO-8859-
1" ?>
<!DOCTYPE TABM [
<!ELEMENT TABM (TITEL,INHALT)*>
<!ELEMENT TITEL (#PCDATA)>
<!ELEMENT INHALT (#PCDATA)>]>
<TABM>
 <TITEL>Alan_Turing</TITEL>
 <INHALT>'''Alan
Mathison Turing'''
OBE[[Ref]], [[Ref]]FRS [] (* 23.
Juni 1912 in London; † 7. Juni 1954 in
Wilmslow, Cheshire) war ein britischer
Logiker, Mathematiker, Kryptoanalytiker
und Informatiker. Er gilt heute als
einer der einflussreichsten Theoretiker
der frühen Computerentwicklung und
Inform</INHALT>
 <TITEL>Archimedes</TITEL>

 <INHALT>'''Archimedes
von Syrakus'''
(griechisch Ἀρχιμήδης ὁ Συρακούσιος
''Archimḗdēs ho
Syrakoúsios''; * um 287 v.
Chr. vermutlich in Syrakus; † 212 v.
Chr. ebenda) war ein griechischer
Mathematiker, Physiker und Ingenieur. Er
gilt als einer der bedeutendsten
Mathematiker der Antike. Seine Werke
waren auch</INHALT>
</TABM>

The performance of the query can be

significantly improved if the first selection is

replaced by

keys [Archimedes Alan_Turing]
The keys-operation keys operation uses the

binary tree access to sets, but it is an additional

operation, which should be realized in the future

invisible in the background.

wiki_archimedes_contents.otto: Print the

contents of the Archimedes entry.
wiki
sel TITEL=Archimedes
gib ANR,ATITEL l
Result (tab)
ANR, ATITEL l
0 Einleitung
1 Leben
2 Schriften
3 Werk
3.1 Physik
3.1.1 Hebelgesetz
3.1.2 Archimedisches Prinzip
3.2 Mathematik
3.2.1 Flächenberechnungen
3.2.2 Stellenwertbasiertes Zahlensystem
3.2.3 Archimedisches Axiom
3.2.4 Archimedische Körper
3.3 Technik
3.3.1 Archimedische Schraube
3.3.2 Kriegsmaschinen bei der Belagerung
von Syrakus
3.3.3 Brennspiegel
3.3.4 Weitere Erfindungen
4 Überlieferung
5 Sonstiges
6 Textausgaben
7 Übersetzungen
8 Literatur
8.1 list_element
8.2 list_element
...
8.22 list_element
9 Einzelnachweise

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 277 Volume 23, 2024

wiki_river_town.otto: Generate a structured

diagram for given rivers with corresponding

towns with sea level heights. Sort the rivers with

average height by river and the towns of each

river by height downwards. Choose yourself

suitable colors.
wiki
keys [Neckar Havel Spree Weichsel]
TOWNl:=GROSSSTAEDTE split "," trim
 at GROSSSTAEDTE
TOWNl:=MITTELSTAEDTE split "," trim
 at MITTELSTAEDTE
rename TITEL! RIVER
gib RIVER,TOWNm m
=: $RIVER_TOWN
aus $RIVER_TOWN
gib TOWNm
=: $TOWNM
aus wiki
keys $TOWNM
gib TITEL,HOEHE m
rename TITEL!TOWN
HEIGHT:=HOEHE nthzahl 1
=: $TOWN_HEIGHT
aus $RIVER_TOWN
join $TOWN_HEIGHT
gib RIVER,AVG,(HEIGHT,TOWN m-) m
 AVG:=HEIGHT!++:
rnd 0
RGBAVG :=cyan leftat AVG
RGBHEIGHT:=brown if HEIGHT>300 !
 darkgreen if HEIGHT>220 !
 green leftat HEIGHT
Result (diagram bar)

RIVER ,AVG ,(HEIGHT ,TOWN m-) m
Havel 32. 34 Oranienburg
 29 Rathenow
Neckar 248. 382 Reutlingen
 247 Stuttgart
 114 Heidelberg
Spree 140. 204 Bautzen
 75 Cottbus
Weichsel 120. 188 Krakau
 113 Warschau
 60 Bydgoszcz

tt

=: $XX

Assigns tt to the tabment variable $XX. As a result

of aus an otto-program starts again.

8 A BMI-Example - A Problem for

EXCEL
bmi.otto: Visualize all the average BMIs of all

persons “older than” 20.
<TAB!
NAME, LENGTH, (AGE, WEIGHT m)m
Klaus 1.68 18 61
 30 65
 61 80
Rolf 1.78 40 72
Kathi 1.70 18 55
 40 70
Walleri 1.00 3 16
Viktoria 1.61 13 51
Bert 1.72 18 66
 30 70
Peter 1.70 18 70
 60 100
!TAB>
sel NAME! AGE>20
BMI:=WEIGHT:LENGTH:LENGTH
gib AGE,(BMI,NAME m)m
AGE::= AGE text
totalhierar ++:
rnd 2
Result (diagram bar)

Result (tab)
BMIAVG ,(AGE ,BMIAVG2 ,(BMI ,NAME m)m)
24.38 18 21.79 19.03 Kathi
 21.61 Klaus
 22.31 Bert
 24.22 Peter
 30 23.35 23.03 Klaus
 23.66 Bert
 40 23.47 22.72 Rolf
 24.22 Kathi
 60 34.60 34.60 Peter
 61 28.34 28.34 Klaus

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 278 Volume 23, 2024

With EXCEL it is not possible to sort the given

structured table immediately. You have to generate a

table of type
NAME,LENGTH,AGE,WEIGHT m

Then a selection “Give me all names for which

an age greater than 20 exists” is not a property of

one flat tuple. Further, you have to group by AGE to

get the second BMI and then you have to merge the

intermediate results and you have to hide the

duplicates of the (AGE,BMIAVG2)- pairs and the

BMIAVG.

9 Structured Pivot Tables

Now, a climate radiation table with towns of 3

countries are given. The radiation values are given

for each of the 12 months. The ID contains in front

of each town 8 additional letters. These 8 letters are

omitted by the second program-line. An ID is a text

consisting of letters, such that ID ++1 gives the

number of characters of the ID. The last but one

program line is added only to get a smaller output-

table to fit into the column of this page.

radiation.otto: Generate a structured pivot table

for all months and all countries for 3 aggregation

types simultaneously.
climate_radiation.tab
ID::=ID subtext 9 ! (ID ++1 - 8)
gib LAND,(ID,JAN,..,DEC l)m
cross min,++:,max
proj- FEB,..,NOV
rnd 1
Result (tab)
LAND ,(ID ,JAN ,DEC ,MIN? ,AVG? ,MAX?
 l) l
Bulgaria Varna 63.0 59.0 59.0 80.2 100.0
 Shumen 59.0 57.0 57.0 80.1 98.0
 Ruse 72.0 57.0 57.0 88.1 106.0
 Burgas 64.0 55.0 55.0 79.9 99.0
 Plovdiv 88.0 71.0 67.0 83.9 98.0
 Sofia 52.0 40.0 40.0 71.6 89.0
 Haskovo 78.0 65.0 65.0 83.7 96.0
 min 52.0 40.0 40.0
 avg 68.0 57.7 81.1
 max 88.0 71.0 106.0
Germany Potsdam 30.5 22.3 22.3 66.4 94.5
 Schwerin 30.5 22.3 22.3 66.4 94.5
 Teterow 30.5 22.3 22.3 66.4 94.5
 Dresden 34.2 22.3 22.3 66.4 93.0
 Essen 31.2 19.3 19.3 60.9 82.6
 Köln 31.2 19.3 19.3 60.9 82.6
 Münster 31.2 19.3 19.3 60.9 82.6
 Kassel 30.5 23.1 23.1 65.1 90.0
 Trier 30.5 23.1 23.1 65.1 90.0
 Chemnitz 51.3 36.5 36.5 73.3 96.0
 Leipzig 51.3 36.5 36.5 73.3 96.0
 Cham 53.6 35.7 35.7 70.5 86.3
 Hof 53.6 35.7 35.7 70.5 86.3

 Nürnberg 35.0 26.8 26.8 68.8 90.0
 Stuttgart 35.0 26.8 26.8 68.8 90.0
 Würzburg 35.0 26.8 26.8 68.8 90.0
 Freiburg 40.9 38.7 38.7 72.0 96.0
 Konstanz 40.9 38.7 38.7 72.0 96.0
 München 43.2 34.2 34.2 72.7 92.3
 Passau 43.2 34.2 34.2 72.7 92.3
 min 30.5 19.3 19.3
 avg 38.2 28.2 68.1
 max 53.6 38.7 96.0
Kazakhstan Almaty 89.0 66.0 65.0 87.0 102.0
 min 89.0 66.0 65.0
 avg 89.0 66.0 87.0
 max 89.0 66.0 102.0
min min 30.5 19.3 19.3
avg avg 47.4 36.9 72.0
max max 89.0 71.0 106.0

The below given table seems to represent grades

of a gradebook in a compact way. If all subjects and

names already exist in this table, no new subject and

no new name need to be inserted when inserting a

grade, even if the corresponding grade list was still

empty. A hierarchical table of the type

SUBJECT,(NAME,MARKl m) m contains each

subject only once, but the names must be inserted

several times. If this amount of data is stored in a

flat table SUBJECT,NAME,MARK l, even more

redundancy is created and even more memory space

is wasted. In a flat set (relation of the relational data

model), a time or position column would also have

to be introduced, which makes the whole thing even

more unwieldy and inefficient.
The columns and rows in the table above could

also be swapped.

classbook.otto: Compute a pivot table for the

averages of each pupil and each subject.
<TABH!
SUBJECT,ERNSTl,CLARAl,SOPHIAl,ULRIKEl l
Math 2 3 2 1 1 2 1 3 2 1 2 3 3
Phy 2 3 4 2 1 2 i 2 5
 1 3
German 1 1 3 5 4 4 1
!TABH>
cross ++:
rnd 1
Result (tab)
SUBJECT ,ERNSTl ,CLARAl ,SOPHIAl ,ULRIKEl ,AVG? l
Math 2.3 1.3 2.0 2.3 2.0
Phy 2.5 3.0 1.8 3.5 2.5
German 1.0 4.0 3.0 2.7
avg 2.0 2.0 2.3 2.8 2.3

We remark that the operation ++: can be

applied also to the list [1 2 i 1 3] of physics of

Sophia, although it contains a non-numerical value

i, which abbreviates ill.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 279 Volume 23, 2024

10 Queries to Many Similar Files

The following query demonstrates an application for

e-bills. Here, it is assumed that the user – for

example the owner of a small company - stores each

bill in a separate file. From o++o point of view it

does not matter, whether all the bills are stored as

XML-files or tab, or hsq-files, .. . In the below

example we consider only four bill-files, all of the

same type and the master data for products and

clients:

bill1,..,bill4: CLIENT,BILLNR,DATE,

 PAID,(PRODUCT,QUANTITY l)

products: PRODUCT,VAT,PRICE1 m

clients: CLIENT,NAME,STREET,TOWN m

bill2.tab in hsq-format
CLIENT,BILLNR,DATE,PAID,(PRODUCT,
 QUANTITY l)
CLIENT BILLNR DATE PAID
 PRODUCT QUANTITY
Senioren 36-21 11.12.2021 no
 Baguette 3
 Roll 200
 "Hemp bread" 6
+coll2 is again an abbreviation for +coll+coll. That

means it is a unary union operation. It can also be

replaced by transpose.

bills.otto: Compute all total prices of all bills.
bill1.tab,..,bill4.tab +coll2
 join products.tab join clients.tab
PRICE:=QUANTITY*PRICE1 +% VAT
gib BILLNR,NAME,TOWN,(PRODUCT,PRICE m)m
total ++
rnd 2
Result (hsq)
BILLNR,NAME,TOWN,(PRODUCT,PRICE m) l
BILLNR NAME TOWN
 PRODUCT PRICE
33-21 "Seniorendomi MD" "39175 Gerwisch"
 Baguette 11.77
 Roll 618.46
 sum 630.23
36-21 "Seniorendomi MD" "39175 Gerwisch"
 Baguette 7.06
 "Hemp bread" 22.47
 Roll 72.76
 sum 102.29
44-21 Backschwein-Tanne "14822 Brück"
 Baguette 7.06
 Roll 72.76
 sum 79.82
45-21 Backschwein-Tanne "14822 Brück"
 Baguette 7.06
 "Hemp bread" 22.47

 Roll 327.42
 "Rye loaf bread" 22.26
 sum 379.21
sum sum sum
 sum 1191.55

11 Conclusions and Future Work
It remains a lot of work. o++o has to be tested in

schools and applications, documentations have to be

extended and improved, o++o has to be put on top

of Relational and NoSQL database systems. Here,

some optimization techniques are needed. ...

Acknowledgment:

I thank Heinz Kaphengst and Horst Reichel for the

development of the algebraic specification language

for partial operations and Rüdiger Achilles for

valuable remarks to this paper. Further, thanks are

directed to the following computer experts for their

valuable contributions to the older implementations

of the o++o system: Wolfgang Reichstein, Dmitri

Schamschurko, Martin Schnabel, Andreas

Hauptmann. Stephan Schenkl and Eicke Redweik

worked for the project from 2019-2021 “Intelligent

Analysis and Visualization of German Wikipedia”,

which was funded by EFRE EU and IB Sachsen-

Anhalt.

References:

[1] E. F. Codd, „A Relational Model of Data for

Large Shared Data Banks“, Communications

of the ACM, Vol. 13, No. 6 June 1970, S. 377-

387.

[2] E. F. Codd, „Relational Completeness of

Database Sublanguages“, in R. Rustin (ed.),

Database Systems, Prentice- Hall, Englewood

Cliffs, N.J., 1972

[3] E. F. Codd, „Extending the Database

Relational Model to capture more Meaning“,

ACM Transactions on Database Systems, Vol.

4 , No 4, Dec. 1979, S. 379-434.

[4] M. M. Astrahan, D. D. Chamberlain,

"Implementation of a Structured English

Query Language", Communications of the

ACM 18 10, Oct. 1975 pp. 580-587.

[5] N. C. Shu, B. C. Housel, V. Y. Lum,

„CONVERT- A High Level Translation

Definition Language for Data Conversion“,

Communications of the ACM, Vol.18,

Nr.10,Oct., 1975, pp. 557-567

[6] H. Kaphengst, H. Reichel, Algebraic Theory

of Algorithms (Algebraische

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 280 Volume 23, 2024

Algorithmentheorie), VEB Robotron, Wiss.

Informationen und Berichte, Nr. 1/71 Reihe

A, Sommer 1971.

[7] H. Reichel "Initial Computability, Algebraic

Specifications, and Partial Algebras",

Claredon Press, Oxford, UK, 1987.

[8] K. Benecke. "AFUL- A query language for

databases". In Weiterbildungszentrum für

mathematische Kybernetik und

Rechentechnik/Informationsverarbeitung,

Studientexte Datenbanken TU Dresden Heft

59, pp. 100 - 107, 1982.

[9] D. Chamberlain et al. “XML Query Use

Cases”, [Online].

http://www.w3.org/TR/xmlquery-use-cases,

2007 (Accessed Date: December 10, 2024).

[10] W3C,“XQuery 3.1: An XML Query

Language”, W3C Recommendation 21 March

2017, Status Update (6 April 2021), [Online].

https://www.w3.org/TR/xquery-31/ (Accessed

Date: December 10, 2024).

[11] D. Maier, “The Theory of Relational

Databases”, Computer Science Press,

Financial Times Prentice Hall, ISBN-10:

0914894420, ISBN-13: 978-0914894421,

1983.

[12] Sorting Algorithm, [Online].

https://en.wikipedia.org/wiki/Sorting_algorith

m (Accessed Date: December 10, 2024).

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

There is only one author, therefore authors equally

contributed in the present research, at all stages from

the formulation of the problem to the final findings

and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The author has no conflicts of interest to declare.

Copyright Note

A commercial use of the paper and its ideas is not

allowed.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.27 Klaus Benecke

E-ISSN: 2224-2872 281 Volume 23, 2024

http://www.w3.org/TR/xmlquery-use-cases
https://www.w3.org/TR/xquery-31/
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

