
Abstract: We consider polynomial time approximation for the minimum cost cycle cover problem of an
edge-weighted digraph, where feasible covers are restricted to have at most k disjoint cycles. In the
literature this problem is referred to as Min-k-SCCP. The problem is closely related to classic Traveling
Salesman Problem (TSP) and Vehicle Routing Problem (VRP) and has many important applications in
algorithms design and operations research. Unlike its unconstrained variant, the Min-k-SCCP is strongly
NP-hard even on undirected graphs and remains intractable in very specific settings. For any metric, the
problem can be approximated in polynomial time within ratio 2, while in fixed-dimensional Euclidean
spaces it admits Polynomial Time Approximation Schemes (PTAS). In the same time, approximation
of the more general asymmetric Min-k-SCCP still remains weakly studied. In this paper, we propose
the first fixed-ratio approximation algorithm for this problem, which extends the recent breakthrough
Svensson-Tarnawski-Végh and Traub-Vygen results for the Asymmetric Traveling Salesman Problem.
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1 Introduction
The Cycle Cover Problem (CCP) is a well-known
combinatorial optimization problem having im-
portant applications in operations research and
algorithms design for other combinatorial prob-
lems, e.g. the Traveling Salesman Problem (TSP)
[2, 5], Vehicle Routing Problem (VRP) [11], sev-
eral versions of the Stacker Crane Problem (SCP)
[4, 8], etc.

Most of the studied CCP settings can be con-
sidered as extensions of the classic Linear Sum
Assignment Problem (LSAP) formulated on sub-
sets of the symmetric group Sn. For each such
a setting, the objective is a permutation cost co-
inciding with total weight of the corresponding
routes in a given graph, while a set of feasible per-
mutations is constrained in terms of the proper-
ties of their cycle decomposition including length
or amount of the cycles. For instance, the authors
of [3] proposed approximation algorithms for min-
imum cost graph covering problems by cycles of
length at least k. Later (see, e.g. [17] ) these
results were extended to the cheapest covers by

cycles whose lengths belong to a given set L ⊂ N.
In this paper, we are focused on polynomial

time approximation of the Minimum-weight k-
Size Cycle Cover Problem (Min-k-SCCP), where
it is required to construct a minimum cost cover
of a given (di)graph by at most k disjoint cy-
cles [7, 13]. Interest to this topic is confirmed by
an intermediate complexity status of this prob-
lem between the strongly NP-hard TSP (which is
Min-k-SCCP for k = 1) and LSAP (for k = n)
that can be solved to optimality in polynomial
time.

1.1 Related work
As shown in [14, 15], for any fixed k > 1, the
symmetric version of the Min-k-SCCP formu-
lated on undirected graphs inherits complexity
and main approximation properties of the clas-
sic TSP. Thus, the problem is strongly NP-hard
in general case and remains intractable even on
the Euclidean plane. The metric Min-k-SCCP is
APX-complete, while its Euclidean settings for-
mulated in Rd admit a Polynomial Time Approx-
imation Schemes (PTAS) for an arbitrary fixed
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dimension d. In addition, we should note asymp-
totically exact algorithms designed in [7] for the
Min-k-SCCP settings on random graphs and for
the Euclidean Max-k-SCCP.

On the other hand, polynomial time approx-
imation of the asymmetric Min-k-SCCP (as for
many other related combinatorial problems) re-
main weakly studied for a long time. For in-
stance, while constant-ratio approximation al-
gorithms for the metric TSP, metric Capaci-
tated Vehicle Routing Problem (CVRP) and their
numerous modifications have been known since
the late 1970s, thanks to the seminal results of
N. Christofides [6], A. Serdyukov [20], L. Wolsey
[23], and M. Haimovich and A. Rinnooy Kan [10],
until 2018 the Asymmetric Traveling Salesman
Problem (ATSP) could only be approximated
within the factor O(log n/ log log n) [1].

Recently, O. Svensson, J. Tarnawski, and
L. Végh [21] and V. Traub and J. Vygen [22] in-
troduced a breakthrough approach to polynomial
time approximation of the ATSP with triangle
inequality, which led to the first fixed-ratio algo-
rithms for that problem. For the sake of conve-
nience, in the sequel we refer to this approach and
the state-of-the-art (22 + ε)-approximation algo-
rithm proposed in [22] as S(TV)2-framework and
algorithm, respectively.

Relying on this algorithm as a building block,
the first proofs of polynomial time approxima-
tion within fixed factors for several related asym-
metric problems including Steiner Cycle Problem
(SCP), Rural Postman Problem (RPP), CVRP
with unsplittable demands [16] and Prize Collect-
ing ATSP [18] were obtained.

At the same time, for some routing problems,
e.g. for Min-k-SCCP, fixed-ratio approximation
algorithms still cannot be designed in a similar
way, just on the basis of cost-preserving reduction
to single or multiple auxiliary ATSP instances.
To this end, one can assume that some of these
problems can be approximated within fixed ratios
by more deep extension of S(TV)2-framework.

1.2 Contribution
In this paper

(i) we extend the S(TV)2-framework to the class
of routing problems including Min-k-SCCP
for k > 1;

(ii) for an arbitrary ε > 0, we propose the first
polynomial time (24 + ε)-approximation for
the Min-k-SCCP.

The rest of the paper is structured as follows.
In Section 2, we recall a mathematical formula-
tion of Min-k-SCCP. In the following sections, we

show that the initial task of construction of a
fixed-ratio approximation algorithm for the Min-
k-SCCP can be successively reduced to the sim-
ilar tasks for more structured instance of this
problem, i.e. Min-k-SCCPS (in Section 3), and
strongly laminar instances (in Section 4). We
present our main results: (24 + ε)-approximation
algorithm for the Min-k-SCCPS and the proof of
its performance guarantee in Section 5. Finally,
in Section 6 we summarize our paper.

2 Problem statement
Suppose, we are given by a strongly connected di-
graph G = (V,E) and weighting function c : E →
R+ that specifies transportation cost ce = c(e) =
c(v, w) for a transition along each arc e = (v, w) ∈
E of the graph G. Hereinafter, we assume that
the triangle inequality

c(v, w) 6 c(v, u) + c(u,w) (1)

holds for any arcs (v, u), (u,w), and (v, w). To
any multi-set of arcs F , we assign the incidence
vector x = χF , x : E → Z+ and cost c(F ) =∑

e∈E cexe.

Definition 1. An instance of the Min-k-SCCP is
defined as follows. For an ordered pair (G, c), it
is required to compute a spanning Eulerian sub-
multigraph GF = (V, F ) of the digraph G, such
that

(i) GF has no isolated nodes

(ii) GF has at most k connected components

(iii) F has the minimum cost c(F ).

Although the given statement slightly gener-
alizes the known formulation of the Min-k-SCCP
studied in previous papers [7, 15], these formula-
tions coincide to each other for complete graphs.
Furthermore, the classic ATSP is Min-k-SCCP
for k = 1.

3 Restricted Min-k-SCCP
In this section, we reduce approximation of the
Min-k-SCCP to the same task for the restricted
version of this problem, which we call Min-k-
SCCPS .

Definition 2. An instance of the Min-k-SCCPS
is given by a triple (G, c, S), where S ⊂ V ,
|S| = k. It is required to find a spanning Eu-
lerian submultigraph GF , which along with con-
ditions (i)–(iii) satisfies an additional constraint:
V (D)∩S 6= ∅ for any connected component D of
GF .
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We use standard notation δ+(U) =
{(v, w) : v ∈ U,w ∈ V \ U}, δ−(U) = δ+(V \ U),
and δ(U) = δ−(U) ∪ δ+(U) for the cuts specified
by an arbitrary non-empty subset of nodes
U ⊂ V . In addition, we use the abbreviations
δ(v) = δ({v}) and x(E′) =

∑
e∈E′ xe for any

v ∈ V and subset of arcs E′ ⊂ E. By OPT and
OPTS we denote the costs of optimum solutions
of the initial Min-k-SCCP instance (G, c) and the
corresponding auxiliary Min-k-SCCPS instances
(G, c, S), respectively.

Lemma 1. For arbitrary k > 1 and α > 0, ex-
istence of an α-approximation polynomial algo-
rithm for the Min-k-SCCPS implies polynomial
time approximation for the Min-k-SCCP within
the same ratio.

Proof. Let (G, c) be a Min-k-SCCP instance to be
solved and AS be the α-approximation algorithm
for the Min-k-SCCPS . Since G is strongly con-
nected, the instance (G, c) and all the auxiliary
instances (G, c, S) for S ⊂ V , |S| = k are feasi-
ble and can be solved to optimality. By applying
algorithm AS to any instance (G, c, S) we assign
the spanning Eulerian subgraph GS = (V, FS),
such that, for each connected component D of the
graph GS , V (D) ∩ S 6= ∅ and OPTS 6 c(FS) 6
αOPTS .

Further, let H∗ = (V, F ∗) be an optimal solu-
tion of the initial instance (G, c) and S∗ ⊂ V be
an arbitrary k-element subset, which has a non-
empty intersection with any connected compo-
nent of the graph H∗. Then, for the subgraph
(V, F ) = arg min{c(FS) : S ⊂ V, |S| = k}, we
have

OPT 6 c(F ) 6 c(FS∗) 6 α ·OPTS∗

6 α · c(F ∗) = α ·OPT .

Thus, the Min-k-SCCP has an α-approximation
polynomial time algorithm, since

∣∣{S ⊂ V : |S| =
k}
∣∣ = O(nk). Lemma is proved.

4 Strongly laminar instances
We proceed with approximation algorithms for
the Min-k-SCCPS by assignment to this problem
the following MILP-model

min
∑
e∈E

cexe (2)

s.t. x(δ−(v))− x(δ+(v)) = 0 (v ∈ V ),(3)

x(δ(U)) > 2 (U ∈ V),(4)

xe ∈ Z+ (e ∈ E),(5)

where V = {U : ∅ 6= U ⊂ V \ S} ∪ {{u} : u ∈ S}.
Here, equations (3) ensure that any feasible sub-
multigraph will be Eulerian while (4) provide an
absence of the isolated nodes and upper bound for
the number of its connected components. In the
sequel, we consider LP-relaxation P of problem
(2)–(5) and its dual D:

max
∑
U∈V

2yU

s.t.

aw − av +
∑

U∈V : e∈δ(U)

yU 6 c(e) (e = (v, w) ∈ E)

yU > 0 (U ∈ V).

Under our assumptions, both problems are solv-
able and have the same optimal value P∗ = D∗.

In this section, we show that approximation
of the Min-k-SCCPS can be reduced to the case
of structured instances of this problem called
strongly laminar. Recall that a family of sub-
sets L of the set V is called laminar, if for any
L1, L2 ∈ L, L1 ∩ L2 6= ∅ implies either L1 ⊆ L2

or L2 ⊆ L1.

Definition 3. A tuple I = (G,L, k, S, x, y) is a
strongly laminar Min-k-SCCPS instance, if

- G = (V,E) is a strongly connected digraph
and |V | > k;

- S is a subset of V of size k;

- L is a laminar family of subsets of V \ S,
such that for any L ∈ L, the induced subgraph
G[L] is strongly connected;

- x : E → R+ is a feasible solution for (3)–(4),
s.t. x(δ(L)) = 2 for an arbitrary L ∈ L;

- y : L → R+.

Each I induces the structured instance
(G, c̄, S) of the Min-k-SCCPS with special
weighting function

c̄e = c̄(e) =
∑

L∈L : e∈δ(L)

yL (e ∈ E) (6)

Define y′ : V → R+ as follows:

y′U =

{
yU , if U ∈ L,
0, otherwise.

By construction, x and (0, y′) are optimal solu-
tions of the corresponding linear programs P and
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D, for c ≡ c̄. In the sequel, we call these problems
Pind and Dind) and use the following notation

LP(I) = P∗ind =
∑
e∈E

c̄exe =
∑
L∈L

2yL = D∗ind. (7)

The concept of strongly laminar Min-k-
SCCPS instance is a natural extension of the
known concept of strongly laminar ATSP in-
stance. In [22], those instances were considered
for k = 1. In our case, we use a more simple no-
tation I = (G,L, x, y). Furthermore, as in [21],
in the case where L consists only singletons {v},
we refer to I as singleton instance of the Min-k-
SCCPS .

Lemma 2. Suppose, for some α > 1, there ex-
ists a polynomial time algorithm that that, for any
strongly laminar instance I = (G,L, l, S, x, y),
l 6 k, computes a feasible solution of cost at
most α · LP(I). Then, there exists a polynomial
time algorithm that, for an arbitrary instance of
Min-k-SCCPS, finds a feasible solution of cost
c(FS) 6 α · P∗.
Proof. Consider an arbitrary Min-k-SCCPS in-
stance (G, c, S). Let x∗ be an optimal solution of
the LP-relaxation P. Although P has an expo-
nential number of constraints (4), x∗ can be found
in polynomial time, e.g. by the ellipsoid method
augmented with polynomial time separation ora-
cle [9]. In addition, without loss of generality, we
can assume that∣∣∣{U ∈ V : x∗(δ(U)) = 2

}∣∣∣ = poly(n). (8)

By construction, the graph G′ = (V,E′), where
E′ = {e ∈ E : x∗ > 0} has at most k strongly
connected components W1, . . . ,Wp for p 6 k. Be-
sides that, there exists a partition S1 ∪ . . .∪Sp of
the set S, such that Si ⊂Wi for each i = 1, p. By
x′[i] we denote the restriction of x∗ on E′(Wi).

Let us verify that x′[i] is an optimal solution
of the LP-relaxation Pi of the model (2)–(5) for
the instance (Wi, ki, Si), where ki = |Si|. Indeed,
the equations

x′[i](δ−(v))− x′[i](δ+(v)) = 0 (v ∈ V (Wi))

x′[i](δ(U)) > 2 (U ∈ Vi),

for Vi =
{
U : ∅ 6= U ⊂ V (Wi) \ Si

}
∪
{
{u} : c ∈

Si
}

, follows straightforwardly from the choice of
x′[i]. Next, optimality of x′[i] in problem Pi fol-
lows from the evident decomposition

P∗ =
∑
e∈E

cex
∗
e =

p∑
i=1

∑
e∈E(Wi)

ce(x
′[i])e (9)

and the optimality of x∗ in problem P.
For each i = 1, p find an optimal solution

(a∗[i], y∗[i]) of the dual Di. Due to (8), these
computations can also be carried out in polyno-
mial time. Applying Karzanov’s algorithm [12]
and following the argument of [22, Lemma 3], to
any solution (a∗[i], y∗[i]) we assign an optimal so-
lution (a′[i], y′[i]) of Di, such that supp(y′[i]) =
Li = {U ∈ Vi : (y′[i])U > 0} is a laminar fam-
ily and, for any L ∈ Li, the subgraph Wi[L] is
strongly connected.

By y′′[i] denote the restriction of y′[i] onto
Li and introduce the strongly laminar instance
Ii = (Wi,Li, ki, Si, x′[i], y′′[i]). By construction,
the problems Pi and (Pi)ind have the same set
of feasible solutions. Furthermore, for the corre-
sponding weighting functions ce and c̄e, we have
ce = c̄e+(a′[i])w− (a′[i])v, which follows from (6)
and the complementarity conditions. As a con-
sequence, for an arbitrary feasible solution χ of
both problems, we have∑
e∈E′(Wi)

ceχe =
∑

e=(v,w)∈E′(Wi)

(c̄e+(a′w[i])−(a′v[i]))χe

=
∑

e∈E′(Wi)

c̄eχe+
∑

u∈V (Wi)

(χ(δ−(u))−χ(δ+(u)))(a′[i])u

=
∑

e∈E′(Wi)

c̄eχe. (10)

Finally, by the hypothesis of Lemma 2, for
each instance Ii in polynomial time we can find
a solution (Wi, Fi), such that c̄(Fi) 6 αLP(()Ii),
which implies c(Fi) 6 αP∗i due to (10). There-
fore, the subgraph (V, F ), where F1 ∪ . . . ∪ Fp,
is a desired approximate solution for the initial
Min-k-SCCPS instance (G, c, S) of cost

c(F ) =

p∑
i=1

c(Fi) 6 α

p∑
i=1

P∗i = α · P∗,

where the last equality follows from (9). Lemma
is proved.

5 Approximation of a strongly
laminar instance

In this section, we propose an approximation al-
gorithm for strongly laminar instances of the Min-
k-SCCPS . Consider an arbitrary strongly lami-
nar instance I = (G,L, k, S, x, y) with induced
weighting function c.

5.1 Preliminaries
We start with some necessary additional nota-
tion and preliminary technical results. Let W ∈
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L ∪ {V } be the minimal subset that contains
nodes u and v. The u-v-path Pu,v in the strongly
connected subgraph G[W ] (of the graph G) and
visiting each L ∈ L at most once is called a nice
path. As shown in [22], for arbitrary u and v the
nice path Pu,v can be found in polynomial time
and its cost is defined by the formula

c(E(Pu,v)) =
∑

L∈LW : L∩V (Pu,v)6=∅

2yL

−
∑

L∈LW : u∈L
yL −

∑
L∈LW : v∈L

yL, (11)

where LW = {L ∈ L : L ⊂ W}. It is useful to
assign to each subset W the value

DW = max{DW (u, v) : u, v ∈W}, (12)

where

DW (u, v) = c(E(Pu,v)) +
∑

L∈LW : u∈L
yL

+
∑

L∈LW : v∈L
yL. (13)

We slightly extend the concept of a backbone in-
troduced in [21].

Definition 4. A Eulerian submultigraph with-
out isolated nodes B of the graph G is called S-
backbone, if

- V (B) ∩ L 6= ∅ for any L ∈ L>2 = {L ∈
L : |L| > 2}

- S ⊂ V (B)

- V (D) ∩ S 6= ∅ holds for an arbitrary con-
nected component D of B.

Definition 5. An ordered pair (I, B), where I
is a strongly laminar Min-k-SCCPS instance and
B is an S-backbone, is called a vertebrate pair.

The fixed-ratio approximation algorithm pro-
posed in [22] for the ATSP relies on an efficient
building block called (κ, η)-algorithm for verte-
brate pairs. For given parameters κ, η > 0 and
arbitrary vertebrate pair (I, B), this algorithm
computes in polynomial time a set of arcs F ′,
such that (V,E(B) ∪ F ′) is a spanning Eulerian
connected submultigraph of G and

c(F ′) 6 κLP(I) + η ·
∑

v∈V \V (B):{v}∈L

2y{v}. (14)

As follows from [22], for any ε > 0 and (I, B),
where I as a strongly laminar ATSP instance and

B is an arbitrary connected backbone, there ex-
ists (2, 14 + ε)-algorithm for vertebrate pairs.

We extended (κ, η)-algorithm to the case of
vertebrate pairs, where I is a strongly laminar
Min-k-SCCPS instance and B is an S-backbone.

Lemma 3. For any k > 1, ε > 0, there ex-
ists a polynomial time algorithm, which extends
the S-backbone B of an arbitrary vertebrate pair
(I, B) to a feasible solution of the Min-k-SCCPS
instance I by appending a multiset of arcs F ′,
such that (14) is valid for κ = 2 and η = 14 + ε.

The proof of Lemma 3 can be obtained in a
similar way to the argument of [22, Theorem 35],
where existence of (κ, η)-algorithm for η = 4α +
β+1+ε was proved as a consequence of existence
of the polynomial time (α, κ, β)-algorithm for an
auxiliary Subtour Cover Problem (SCP). In turn,
(α, κ, β)-algorithm for the SCP was developed (in
[22, Theorem 16]) on top of the well-known flow
rerouting and rounding technique (see, e.g. [19])
applicable if

x(δ(U)) > 2 (∅ 6= U ⊂ V \ V (B)). (15)

In the ATSP, inequality (15) follows straightfor-
wardly from the problem formulation. In our
case, we ensure it by introducing S-backbones.
For the sake of brevity, we postpone the full
rather technical proof to the forthcoming paper.

5.2 Algorithm: scheme and discussion
The proposed algorithm (Algorithm A) computes
a feasible solution GF = (V, F ) of a given strongly
laminar Min-k-SCCP instance I, where GF is
a spanning submultigraph of the graph G, each
whose connected component D intersects the set
S, i.e. V (D) ∩ S 6= ∅. As outer parameters,
Algorithm A takes the (κ, η)-algorithm Aκ,η for
vertebrate pairs (see Def. 4 and Lemma 3) and
(3κ+ η+ 2)-approximation algorithm A∗ATSP for
the ATSP [22].

At step 1, we construct the family LS̄ con-
sisting of high-level non-singleton elements of the
laminar family L. By construction, all of them do
not intersect the set S. Therefore, the instance
I ′ obtained at step 2 is a singleton instance. Fur-
ther, at step 3, the S-backbone B can be com-
puted from the cycle cover provided by (2, 0)-light
algorithm [21, Th. 4.1] or by a sampling. At step
4, we extend B to a solution for the contracted
graph, which is augmented with ATSP tours for
each L ∈ LS̄ at steps 5–8. Finally, at step 9, we
combine all the parts of the resulting solution.

Lemma 4. For any k > 1 and κ, η > 0, ex-
istence of a polynomial time (κ, η)-algorithm for
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Algorithm A
Input: strongly laminar Min-k-SCCPS

instance I = (G,L, k, S, x, y)
Parameters: (κ, η)-algorithm Aκ,η for vertebrate

pairs; algorithm A∗ATSP ;
Output: a feasible solution GF = (V, F ) of the

instance I.

1: set up a sub-family

LS̄ =
{
L ∈ L>2 : (V (S) ∩ L = ∅)

∧ (∀U ∈ L : L ⊂ U)(V (S) ∩ U 6= ∅)
}

2: construct a singleton Min-k-SCCPS instance I′ =
(G′,L′, k, S, x′, y′), where
a: multigraph G′ = (V ′, E′) is obtained by contract-
ing each L ∈ LS̄ into the corresponding node vL,
b: laminar family

L′ = L \
{
L ∈ L : (∃U ∈ LS̄) (L ⊆ U)

} ⋃
L∈LS̄

{vL}

c: vector x′ is a restriction of x on E′ and y′ : L′ → R+

is defined by:

y′U =

{
yU , if U ∈ L ∩ L′

yL +DL/2, otherwise
(16)

3: construct an S-backbone B
4: apply algorithmAκ,η to the vertebrate pair (I′, B) and

compute the Eulerian multiset of arcs F ′ (in the graph
G′)

5: for each L ∈ LS̄ do
6: obtain a traveling salesman tour FL in L by apply-

ing A∗ATSP to (I, L)
7: extend Fl by a nice path PL in G[L] to ensure that

the resulting solution remains a Eulerian graph
8: end for
9: set F =

(⋃
L∈LS̄

(FL ∪ PL)
)
∪̇E(B)∪̇F ′

10: return (V, F ).

vertebrate pairs (Def. 5) implies the existence of
an algorithm which, for an arbitrary strongly lam-
inar Min-k-SCCPS instance I, computes in poly-
nomial time a feasible solution (V, F ) of cost

cost(F ) 6 (3κ+ η + 4) LP(I). (17)

Proof. Since Aκ,η and A∗ATSP are polynomial
time algorithms, all the steps of Algorithm A can
be carried out in polynomial time as well.

To prove (17), obtain upper bounds for the
costs C(F ′), c(E(B)) and c(FL) separately. By

(14) and (16), for c(F ′) we have

c(F ′) 6 κ · LP(I ′) + η ·
(∑
L∈LS̄

2y′{vL}

+
∑

v 6∈V (B) : {v}∈L∩L′
2y′{v}

)
= κ ·

( ∑
L∈L∩L′

2yL +
∑
L∈LS̄

(2yL +DL)
)

+ η ·
( ∑
v 6∈V (B) : {v}∈L∩L′

2y{v} +
∑
L∈LS̄

(2yL +DL)
)

= κ ·
∑

L∈L∩L′
2yL + (κ+ η) ·

∑
L∈LS̄

(2yL +DL)

+ η ·
∑

v 6∈V (B) : {v}∈L∩L′
2y{v}.

Next, for each FL due to [22, Lemma 12],

c(FL) + c(PL)

6 (2κ+ 2) LP(IL) + (κ+ η)(LP(IL)−DL)

= (3κ+ η + 2) LP(IL)− (κ+ η)DL,

where LP(IL) =
∑

U∈L : U⊂L
2yU .

Further, by [21, Th. 4.1],

c(E(B)) 6 2 LP(I ′)

= 2 ·
( ∑
L∈L∩L′

2yL +
∑
L∈LS̄

(2yL +DL)
)
.

Finally, taking into account that DL 6 LP(I)
and∑

L∈LS̄

2yL +
∑

v 6∈V (B) : {v}∈L∩L′
2y{v}

+
∑
L∈LS̄

LP(IL) 6 LP(I),

we obtain

c(E(B)) + c(F ′) +
∑
L∈LS̄

(
c(FL) + c(PL)

)
6 (κ+2)

∑
L∈L∩L′

2yL+(κ+η+2)
∑
L∈LS̄

(2yL+DL)

+η
∑

v 6∈V (B) : {v}∈L∩L′
2y{v}+

∑
L∈LS̄

(
(3κ+η+2) LP(IL)

− (κ+ η)DL

)
6 (3κ+ η + 2) LP(I) + 2

∑
L∈LS̄

DL

6 (3κ+ η + 4) LP(I).

Lemma is proved.
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Now, we are ready to formulate our main results,
which easily follow from the proved lemmas.

Theorem 1. For an arbitrary k > 1 and ε >
0, there exists a polynomial time algorithm that
assigns to an arbitrary instance (G, c, S) of the
Min-k-SCCPS an approximate solution (V, FS) of
cost c(FS) 6 (24 + ε) · P∗, where P is an LP-
relaxation of the MILP-model (2)–(5).

Theorem 2. For an arbitrary k > 1 and ε > 0,
the Min-k-SCCP can be approximated within a
ratio 24 + ε by a polynomial time algorithm.

6 Conclusion
In this paper, by extending the breakthrough
results of O. Svensson, J. Tarnawski, L. Végh,
V. Traub, and J. Vygen, we proposed the first
fixed-ratio approximation algorithm for the prob-
lem of computing a minimum cost cover of a di-
graph by at most k cycles (Min-k-SCCP). We
showed that, for any k > 1 and ε > 0, the Min-k-
SCCP can be approximated in polynomial time
within the ratio 24 + ε. The believe that the our
approach can be extended to more wide class of
asymmetric routing problems.
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