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Abstract: - A subset T ⊆ 𝑉  is a detourmonophonic set of G if each node (vertex) x in G contained in an p-q 
detourmonophonic path where p, q ∈ T.. The number of points in a minimum detourmonophonic set of G is 
called as the detourmonophonic number of G, dm(G). A subset T ⊆ 𝑉 of a connected graph G is said to be a 
split detourmonophonic set of G if the set T of vertices is either T = V or T is detoumonophonic set and V – T 
induces a subgraph in which is disconnected. The minimum split detourmonophonic set is split 
detourmonophonic set with minimum cardinality and it is called a split detourmonophonic number, denoted by 
dms(G). For certain standard graphs, defined new parameter was identified. Some of the realization results on 
defined new parameters were established. 
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1   Introduction 
In the whole paper, we assume finite, undirected and 
connected graphs represented by G = (V,E), where 
V denotes the set of vertices (nodes or points) and E 
the set of edges (lines) (without loops or multiple 
edges), with |V| = n and |E| = m respectively. For 
basic concepts, we refer to [1]. The distance, [2], 
d(p,q) in G is defined as the length of the shortest 
path between p and q in G. A p-q path of length 
d(p,q) is referred to as a p-q geodesic. A vertex x is 
extreme if  the neighbors of x induce a complete 
graph. A set S ⊆ V (G) is termed a geodetic set of G 
if every vertex of G lies on a x-y geodesic, where x 
and y are in S. The cardinality of a minimum 
geodetic set is known as the geodetic number of G, 
denoted by g(G). The concept of geodetic numbers 
was introduced and studied in [3], [4], [5]. 

In a path x1, x2, . . . , xn, an edge xixj with j ≥ i + 
2 is termed a chord. For nodes p and q in  G, a p-q 

path is considered a monophonic path if this p-q 
path is the chordless path. A monophonic set T of G 
contains every vertex of G in the monophonic path 
of some pair of points in T. The number of points in 

the minimum monophonic set is called the 
monophonic number and is denoted by m(G). This 
concept was discussed in detail in [6], [7]. 

A split monophonic set T of the graph is T is 
either equal to V or T is a monophonic set and the 
subgraph [V – T] is disconnected. This concept was 
studied in [8]. A p – q chordless path with 
maximum length is known as a p – q 
detourmonophonic path. A set T ⊆ V is a 
detourmonophonic set of graphs if every nodes x of 
G contained in a p – q detourmonophonic path for 
any nodes p and q in T. The detourmonophonic 
number of the graph notated by dm(G), the number 
of vertices in a minimum detourmonophonic set. 
This concept was discussed in [9], [10]. 

A detour monophonic set T is connected if the 
subgraph induced by T is connected. The number of 
vertices in the minimum connected 
detourmonophonic set is the connected 
detourmonophonic number, denoted by dmc(G). 
This concept was discussed in detail in [11]. The 
concept of outer connected in detour was discussed 
in detail in [12]. 
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Result 1.1. [9], Every detourmonophonic set 
contains all its extreme nodes of graph.  
 
 
2 Split Detourmonophonic Number of 

a Graph 
Definition 2.1. A set T of vertices in a connected 
graph G is a split detour monophonic set if either T 
is a detour monophonic set and the subgraph 
induced by V –T is disconnected or T = V . A split 
detourmonophonic set with minimum cardinality is 
a minimum splitdetour monophonic set and this 
number is the split detourmonophonic number 
dms(G).   

 
G 

Fig. 1: A graph with dxs(G) = 4 
 

Example 2.2. In a given G, Figure 1, S = {v1, v5, 
v6} is a minimum detourmonophonic set and dm(G) 
= 3. It was noticed  that V − S is not disconnected. 
Let S1 = {v2, v8, v5, v6}.  S1 is minimum split 
detourmonophonic set and dms(G) = 4.  
 
From Example 2.2, it is observed that detour 
monophonic number differs from the split detour 
monophonic number. 
 
Result 2.3. Split detour monophonic set of any 
graph G may or may not contain the cutvertex of the 
given graph. 
Proof. We prove this result by inspecting Example 
2.2, it is observed that the sets S1 = {v2, v5, v6, v8}, 
and S2 = {v1, v3, v5, v6} are the split detour 
monophonic sets. Also, v3 is cutvertex of G and v3 ∈ 
S2 but v3 ∉ S1. Hence, the cutvertex need not be a 
member of the split detour monophonic set.  
 
Let us consider another example to express that dm, 
dms, dmc are different 
 
 

 
G 

Fig. 2: A graph with dm(G) ≠  dms(G) ≠ dmc(G) 
 
Example 2.4 In above graph Figure 2, T = {v1, v5, 
v6, v7} - minimum detourmonophonic set and dm(G) 
= 4. Also, the set T1 = {v1, v3, v5, v6, v7} is a 
minimum split detourmonophonic set, dms(G) = 5. 
Clearly, T1 = {v1, v2, v3, v4, v5, v6, v7} is the 
minimum connected detourmonophonic set, dmc(G) 
= 7. Hence, the dm(G) ≠  dms(G) ≠ dmc(G). 
 
We know that the detourmonophonic set is 
contained in split detourmonophonic set and this 
implies dm(G) ≤ dms(G). Also, a split 
detourmonophonic set is contained in a connected 
detourmonophonic set. Hence, dms(G) ≤ dmc(G). 
Combining the above result, we can state the 
theorem as 
Result 2.5 For graph with order n, 2 ≤ dm(G) ≤ 
dms(G) ≤ dmc(G) ≤ n, dms(G) ≠n − 1. 
Result 2.6 Every extreme node of the graph in split 
detourmonophonic set. 
Proof. By Result 1.1, Every extreme vertex 
contained in the detourmonophonic set and also, 
every detourmonophonic set is a subset of the split 
detourmonophonic set. Hence every extreme vertex 
belongs to a split detourmonophonic set. 
Corollary 2.7 In complete graph Kn(n ≥ 2), dms(Kn) 
= n. 
Remark 2.8 Converse of the above fact need not be 
true. For the graphs P3 and P4, it is clear that dms(P3) 
= 3 and dms(P4) = 4. 
 

Result 2.9   For any cycle G = Cn(n ≥ 4), dms(G) = 

{
2 𝑖𝑓 𝑛  𝑒𝑣𝑒𝑛
3 𝑖𝑓 𝑛 𝑜𝑑𝑑

 

Proof. Let the cycle G = Cn(n ≥ 4) be Cn : v1, v2, . . , 
vn, v1 of order n.  For n even.                                   
the set S = {v1, vn/2+1} is a minimum split 
detourmonophonic set. In general, we can generate 𝑛

2
  

minimum split detourmonophonic sets which can be 
represented as  Si = {vi, vn/2+i} where i = 1, 2, . . . , 
n/2 and dms(G) = 2. 
For n odd. On verifying the set S = {v1, 𝑣𝑛+1

2

,𝑣𝑛+3

2

}is 

a smallest split detourmonophonic set. In general, 
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we can generate n minimum split detourmonophonic 
which can be represented as Si = {vi, vj , vj+1} such 
that dm(vi, vj) = 𝑛−1

2
 where 1 ≤ i ≤ n and 1 ≤ j ≤ n. 

Hence dms(G) = 3. 
 
Result 2.10  For any path G = Pn(n ≥ 5), dms(G) = 
3. 
Proof. Consider the Path Pn = v1v2v3 . . . vn−1vn. On 
the view, the set S = {v1, vn} forms minimum 
detourmonophonic set,  dm(G) = 2. Notified that   Si 
= {v1, vi, vn} where d(v1, vi) ≥ 2 and d(vi, vn) ≥ 2 is a 
smallest split detourmonophonic set. Hence dms(G) 
= 3. 
 
Result 2.11 For  G = Kp,q(2 ≤ p ≤ q), dms(G) =p. 
Proof. Let X = {x1, x2, . . . , xp} and Y = {y1,y2, . . . 
,yq} be the partite sets of G. It is seen that the set S = 
X forms a split detourmonophonic set with smallest 
cardinality and so dms(G) = |U| = p. 
Result 2.12 For  Wn = K1+Cn−1(n ≥ 5), dms(Wn) 

={
3  𝑖𝑓 𝑛  𝑒𝑣𝑒𝑛
4   𝑖𝑓 𝑛 𝑜𝑑𝑑

 

Proof. Let Wn = K1 + Cn−1(n ≥ 5), K1 = {x}, Cn−1 : 
v1v2v3 ... ,vn−1vnv1 be the wheel of order n. For n 
even. It is noticed that the set S = {v1,vn/2 +1,x} is a 
minimum split detourmonophonic set. In general, 
we can generate 𝑛/2 minimum split 
detourmonophonic sets which can be represented as 
Si = {vi ,vn/2 +i, x} where i = 1, 2,... ,n/2 and dms(Wn) 
= 3. For n odd. Clearly the set S = {v1, v (n+1)/ 2 ,v 
(n+3)/2 , x} is a minimum split detourmonophonic set. 
In general, we can generate n minimum split 
detourmonophonic which can be represented as Si = 
{vi ,vj , vj+1, x} such that dm(vi ,vj ) = (n−1)/2 where 
1 ≤ i ≤ n and 1 ≤ j ≤ n. Hence dms(Wn) = 4. 
 
Open Problem 2.13 Can you find an interconnected 
undirected circuit G for which dms(G) = n. 
 
The concept of a split detourmonophonic set can be 
applied in one of the computational intelligence 
methods namely neural network as witnessed in [13] 
and also our new design could be facilitated in 
graph neural network which is studied in [14].  The 
application of our new design can be evolved in 
[15], [16]. 
 
The concept of a split detourmonophonic set may be 
applied in artificial intelligence and further can be 
studied in [17], [18]. [19]. 
 
 
 
 

3   Some Existence Results 
Result 3.1 There exists interconnected undirected 
circuit G of order n, as arbitrary dms(G) = k and 
dmc(G) = k + 1 where n, k integers with 2 < k < n, 
 

Proof. Let P3 : u1u2u3 be the path of order 3. Now 
join the vertices v1,v2,... ,vn−k to u1 as well as with u3. 
Further, add k − 3 vertices such as w1,w2,w3,... ,wk−3 
to the vertex vn−k. Hence, the desirable graph G of 
order n as given in Figure 3 is obtained. 
 It is noticed that S = {w1,w2,... ,wk−2} does not 
form a split detourmonophonic set which is set  of 
all extreme vertices. Let S1 = S ∪ {u1,u2}. Notified 
that S1 is the smallest split detourmonophonic set 
and so dms(G) = k. 

 
G 

Fig. 3: A graph G of order n, as arbitrary dms(G) = k 
and dmc(G) = k + 1 

 
But S1 is a disconnected detourmonophonic set. 

Let S2 = S ∪ {vn−k}. Now, the S2 becomes 
connected. Hence dmc(G) = k + 1. 
 
Result 3.2 There exits an interconnected undirected 
circuit G of order n as an arbitrary dm(G) = a, 
dms(G) = a + 1 and dmc(G) = a + 2 where a, n 
integers with   5 ≤ a < n. 
 
Proof. Let Kn−a−1,3 be a complete bipartite graph. Let 
U = {u1,u2,u3,... ,un−a−1} and W = {w1,w2,w3} be the 
partite sets of Kn−a−1,3. Now, joining a vertex x to 
each vertex of U. Also, add a − 3 vertices say 
v1,v2,... ,va−3 with the vertex x. As a result, we 
obtained the desired graph as given in Figure 4 of 
order n. 
 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2024.23.5 M. Mahendran, R. Kavitha

E-ISSN: 2224-2872 53 Volume 23, 2024



 
G 

Fig. 4: A graph G of order n as an arbitrary dm(G) = 
a, dms(G) = a + 1 and dmc(G) = a + 2 

 
The set W = {v1,v2,v3,w1,w2,... ,wa−3} forms a 

smallest detourmonophonic set, dm(G) = a. But the 
subgraph [V – W] is not  disconnected. Let W1 = W 
∪ {x}. Now, the set W1 becomes a minimum split 
detourmonophonic set. Hence dms(G) = a + 1. 
Moreover, the subgraph induced by W2 = W1 ∪ {u1} 
is connected. Therefore, W2 becomes smallest 
connected detourmonophonic set, dmc(G) = a + 2. 
 
Result 3.3 There is an interconnected undirected 
circuit G of order n with dms(G) = a and dmc(G) = b 
where n, a, b are integers with 3 ≤ a ≤ b ≤ n, 
 

Proof. Let Pb−a+3: v1v2 ... vb−a+3 be the path of order 
b−a+3. Let w1,w2,w3,... ,wn−b be a set of n − b 
vertices. Now, join each vertex wi(1 ≤ i ≤ n − b) 
with u1 and u3 and add the set of new vertices 
y1,y2,... ,ya−3 with w1. Therefore, the desirable circuit 
G with n vertices as shown in Figure 5. 

 
G 

Fig. 5: A graph G of order n with dms(G) = a and 
dmc(G) = b 

The extreme vertices set S = {y1,y2,... 
,ya−3,vb−a+3} is not detourmonophonic set. Let S1 = S 
∪ {v1, v3}. It observed that S1 is the unique smallest 
split detourmonophonic set and dms(G) = a. Also, 
the set S1 is not connected.  Now, let S2 = S1 ∪ {w1, 
v4, v5, ... , vb−a+2}. Observed S2 is the smallest 
connected detourmonophonic set,  dmc(G) = b. 
 

 

4   Conclusion 
The work contains a new parameter ‘split 
detourmonophonic number’. It helps in a circuit or 
network to find removal nodes in the longest 
connecting path between two nodes so that it split 
the circuit or network. Also, we studied the 
relationship and realization between connected and 
split of the longest path between nodes. This design 
of the circuit may facilitate thedevelopment 
algorithms in Locating Capacitors, [20], to split the 
network and to one of step detection, [21], of fault 
in the longest monophonic path by splitting the 
network 
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