
Monotonic and Linear Relations between Growth of Quality vs Growth in

Quantity in Open-Source Software Projects

EKBAL RASHID, NIKOS MASTORAKIS

Technical University of Sofia,
Sofia,

BULGARIA

Abstract: - Mathematical models have been developed to study the relation between the growth of quantity and the
growth of quality of open-source collaborative software repositories of GitHub. GitHub events triggering the
growth of quantity and quality have been identified. Linear regression analysis, Pearson’s, Spearman’s, and
Kendall’s correlation coefficients have been used. Hypothesis testing has led to the conclusion that there may be a
linear relation between quality and quantity within a certain range of values. Positive monotonic relations and
dependency between quantity and quality have been strongly established. Scripts for automated testing have been
developed.

Key-Words : - Software quality, linear regression models, Pearson’s Spearman’s Kendall’s correlation coefficients,

GitHub events, Software Growth, Software repositories.

Received: August 17, 2023. Revised: December 15, 2023. Accepted: February 19, 2024. Published: April 8, 2024.

1 Introduction
The noted statistician George Box had said, “All
models are wrong, but some are useful.” And so,
when we go on to try to model the quality vs quantity
factor for open-source software repositories, we are
facing a myriad of issues to be tackled. The foremost
being how to look at quality and quantity, how to
represent them, and how to cope with the ever-
changing nature of these software projects. There have
been so many attempts, but hardly anyone seems to be
happy. The development in the open-source world has
been largely stochastic in nature, with so much
randomness, that it would be very difficult to make
them mathematically tractable. Over and above, the
open-source world with its collaborative nature is also
full of people who are learning and at the same time
contributing. There are communities of developers,
writers, artists, and designers, working in tandem,
with many of them also involved in other day jobs,
contributing to making big projects work. The projects
evolve beautifully unfolding amidst their seemingly
chaotic but homogeneous path of development, giving
rise to extremely useful engineering products. In this
paper, the authors have attempted to try and identify
the events which bring about changes in these
projects. GitHub is one place hosting millions of
repositories. Hence, GitHub has been the point of

attraction for engineers and data scientists. For each
event in GitHub, a record is kept and the data of such
records are available. If it is possible to identify those
events that lead to quantitative changes and those that
lead to qualitative changes, then data related to those
events can be mined and analyzed. This is exactly
what the authors have attempted to do in the present
study. Parameters have been identified, normalized
and bundled into two variables – quality and quantity.
Two models have been suggested here. Many more
can be designed likewise. One of the models suggests
a strong positive linear relationship between quality
and quantity. Both suggest a strong positive
monotonic relationship between quality and quantity.

2 Survey of Literature
The field of mining software repositories is still an
evolving area of research and hence needs to be
further probed and studied. The present research is
motivated by the following works. [1], has discussed
about the differences between two versions of
software and has shown the effect of changes in
source code. This will assist the developers in
understanding as to what changes in source code
would cause the software to function differently. A
tool called IMPEX has been discussed here. So, this is

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 41 Volume 23, 2024

an attempt to understand the quality of the software in
terms of some quantitative change, namely the
changes in source code. Again, [2], have discussed the
effect of names of identifiers on the quality of the
software. According to them, if the quality of names
of the identifiers is of low quality, it leads to a
lowering of the quality of the software as a whole. A
tool has been used here to get identifier names from
the source code of Java projects. They have also
discussed which type of names of identifiers lead to
which type of problems. Again, here the changes in
the code are affecting the software quality. [3], as
explained the effect of code refactoring on the quality
of the software. They have developed techniques to
improve the quality of the software by refactoring
code. The authors have tried to formalize the method
of refactoring code in this paper. [4], have in a similar
manner analyzedanalyzed structural changes in
software versions and the chief motive was to measure
changes related to the structure of source code in the
software. Although there is no attempt to relate the
changes in code structure with the quality of the
software, it is quite evident that there may be a
relation between the two and this may constitute an
interesting study. However, these works are looking
into the software projects only from a static point of
view. It is necessary to look at these projects from a
dynamic perspective, from the viewpoint of their ever-
changing nature, from the viewpoint of their coming
into being and going out of being. This has been the
primary focus of the present paper.

Several studies are there that have tried to
understand features of open-source projects and
parameters such as the number of active contributors,
the use of different kinds of programming languages,
the particular structure of the project, and on many
other important parameters that the author considers
to be quantitative parameters. Many such works are
found in [5] and [6]. Again, these are looking largely
at popularity. There has to be a judgement of quality
too using suitable metrics based on events of open-
source projects.

There are other works such as [7] and [8] that
analyze the data in datasets related to the GitHub
repositories. In such studies, mainly the stars, forks,
and issues are considered. Many have also included
code and outline of how the data has been retrieved,
that is they have elaborated in detail the mining
methods involved. The study also did a random word
selection from a certain word list which was given to a
GitHub API and then the API gave back a list of repos.

Out of the list, some are selected at random and
mining is done to extract the data of those reports.

 It has used the metric of popularity as popularity

= stars + forks + pulls2. The authors in this study
have tried to correlate the documentation of the
project to this defined value of popularity. The
method though is not discussed in great detail], but it
does motivate the present study to think in similar
terms.

In [9], authors have adequately described that a
large number of GitHub repositories are personal and
not active. This may have a large effect on the
conclusions that one may draw from a dataset of
GitHub repositories. For this, the authors analysed
parts of GHTorrent datasets and sent surveys to users
of GitHub. They also highlighted the fact that there
was a substantial number of projects that had very few
commits so it might not be proper to jump to
conclusions from the commit data of GitHub.

In [10], authors have shown that frequency of
commits and the evolution of versions of files in eight
large projects of GitHub have a certain degree of
correlation. The projects discussed here are very
successful. It presented a picture of the number of
commits and the number of lines of code being
changed in each file and a comparison between the
number of commits and file changes in different
versions etc. All these works are pointing towards the
attempt to design a software quality vs quantity model
for understanding the relation between them.

3 Methodology
Detailed mining has been done from a public dataset
available on Google Big Query. The total data
processed in Big Query went to about 43.2 TB. More
than 170 queries were performed on the dataset to
extract the data. Since the process is cost-consuming,
it could be performed for only a single time. This
extracted data was cross-checked from Click House
[11] and all the data was tabulated. It needs to be
mentioned here that GH Archive has made available
the data from GitHub for the last eleven years, that is,
from 2011 to 2021. This has a detailed collection of several
events. The events and their identifiers are as below:
1. CommitCommentEvent: triggered when there is

a comment in a commit
2. CreateEvent: when there is the creation of a

branch or a tag
3. DeleteEvent: When a branch or a tag is deleted

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 42 Volume 23, 2024

4. ForkEvent: This is triggered when a user forks
any repository

5. GollumEvent: When a wiki page is created or
updated

6. IssueCommentEvent: When there is a comment
on any issue opened

7. IssuesEvent: This event is related to an issue.
There are many actions involved with it such as
opened, closed, reopened, assigned, etc.

8. MemberEvent: This is an event related to the
activity of any member of the repository

9. PublicEvent: When a repository is made a public
repository

10. PullRequestEvent: This event is triggered when a
pull request is made and this also includes many
actions like opened, closed, reopened, assigned,
etc.

11. PullRequestReviewEvent: Whenever there is a
review about a pull request.

12. PullRequestReviewCommentEvent: If anyone
comments on a pull request review

13. PushEvent: Whenever one or more commits are
pushed to a repository branch

14. ReleaseEvent: Whenever a new version is
release, this event is triggered

15. SponsorshipEvent: Event associated with the
listing of sponsorship

16. WatchEvent: When anyone stars a repository
 For this study, some GitHub projects have been

randomly selected based on popularity. Three
types of popularity measures have been
considered as follows (Table 1):

i) Highly rated projects: Projects with stars greater
or equal to 50,000

ii) Moderately rated projects: Projects with stars
between 5,000 and 10,000

iii) Slightly rated projects: Projects with stars less or
equal to 1,000

The above repositories have been arbitrarily
selected by running queries as per GitHub docs, [12],
and then listing them out. Only one criterion has been
considered while selecting the repositories, that is, the
repositories should hold coded projects. There are
collections of images, or books, or other resources as
GitHub repositories, but they have not been
considered for this study.

The raw data was then processed to properly
ascertain the quantitative, qualitative, and popularity
parameters. Although there may be many ways in
which growth in quantity, growth of quality, and
popularity can be defined for open-source

collaborative projects like GitHub, this research has
identified the following at present:
Parameters measuring growth in quantity:
a) Pull Request Activity: It is the ratio between the

number of pull requests opened and the number of
pull requests closed. However, here the ratio itself
is not taken as the quantitative measure. Rather, it
is normalized. The reason for this is that different
types of repositories are taken up for data
collection. A less active repository may have the
same value of closed pull requests to opened pull
requests ratio with a far lesser number of pull
requests. Hence, this ratio has been normalized by
multiplying it by a factor proportional to the closed
number of pull requests. The final normalized pull
request activity is as follows:

pull request activity
= 𝑛𝑜.𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑢𝑙𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑛𝑜.𝑜𝑓 𝑜𝑝𝑒𝑛 𝑝𝑢𝑙𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 x 𝑛𝑜.𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑢𝑙𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

100

where (closed pull requests/100) is the normalizing
factor. There would be not much difference in the
final results had we simply multiplied the original
ratio with the number of closed requests without
dividing it by 100, but it has been done to keep the
values small. This normalized pull request activity has
been calculated for all the listed projects for a period
of seven years (2015-2021).
b) Issue Activity: It is the ratio between the number

of closed issues to the number of issues opened.
Similar to the above parameter, there is again a
need for normalizing the data and for that the
following method has been adopted:

issue activity = 𝑛𝑜.𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑠𝑠𝑢𝑒𝑠

𝑛𝑜.𝑜𝑓 𝑜𝑝𝑒𝑛 𝑖𝑠𝑠𝑢𝑒𝑠
 x 𝑛𝑜.𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑠𝑠𝑢𝑒𝑠

100

As stated above, the value 100 in the denominator

of the normalizing factor does not matter much so far
as the final results are concerned. The normalized
issue activity has been calculated for all the listed
projects for a period of seven years (2015-2021).

After calculating the pull request activity and the
issue activity, the growth of quantity has been
determined as:

growth in quantity = normalized pull request

activity + normalized issue activity

1. Parameters measuring growth of quality:
Open-source projects follow a different quality

assurance model and quality control processes. The
pivotal point in these methods is peer-review of code
and local testing before updating the repositories.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 43 Volume 23, 2024

Hence, any update in the form of pushes or the
release of new versions signals extensive
implementation of quality standards. For this reason,
the author has taken these two events as quality
parameters.
a) Number of pushes: A push will update the remote

repository branch with a commit. When a code has
been written to serve as a patch or for some other
feature, it is reviewed and tested locally. Only after
adequate alpha testing activities, it is pushed to the
remote branch. Hence, a push will improve the
quality of the project as it is reviewed and tested
code. However, a single push may not affect the
quality to a great extent. Hence to use it as a
parameter, each push has been treated to raise the
quality of the project by a factor of 0.1. The
number of pushes for the projects listed above has
been extracted for seven years (2015 to 2021) and
tabulated.

b) Number of releases: The release of a version
cannot be a qualitative leap in the development of
collaborative open-source projects. The pushes to
the rawhide branch are effectively quality
changers, but they are in the larger perspective
small quantitative changes in quality that are more
or less imperceptible to the common user.
However, the release of a new version brings about
a sudden leap, a visible qualitative change in the
software which is revolutionary in character and
which has a break from the earlier version of the
project. This change in quality is much more
pronounced than the qualitative change brought
about by the push event. Hence the normalized
value of this parameter is obtained by multiplying
the number of releases by unity, signifying that the
quality has grown ten times compared to a push
event. Of course, this may be a matter of
discussion whether it would be proper to consider
the growth of quality in this fashion, or what
should be the value multiplied to get a suitable
normalized quality growth parameter.
The data for seven years (2015-2021) have been

calculated for all the projects listed above. After this
has been done the value showing the growth of quality
is calculated for each year and each project using the
following formula:
growth in quality = (no. of pushes)/10 + (no. of

releases)

Where the term (no. of pushes)/10 is the
normalized number of pushes.
‘Growth in quantity’ has been taken as the
independent variable (x) while the ‘growth of quality’
has been taken as the dependent variable (y).

Pearson’s correlation coefficients, [13],
Spearman’s correlation coefficients, and Kendall’s
correlation coefficients have been evaluated for
understanding the relation between them. The detailed
methods to find out these coefficients have been
explained in several noted works, [13], [14], [15],
[16], which have been consulted meticulously. The
details have been skipped with the assumption that the
reader can easily access these works or any other
related literature.

Several models have been framed with different
upper and lower limits of parameters. The most
suitable model has been suggested for drawing
inferences. 80% of the data has been used for training
the models and 20% data has been used for testing the
models. Hypothesis testing has been done by
calculating probability values with a significance level
of 95%. Finally, a regression analysis has been done
to estimate the mathematical relation between the
growth in quantity and the growth of quality. For this
entire activity, an entire Python script has been
developed for automated testing. The script has been
executed using Jupyter. It takes values from the Excel
sheets of different models and generates graphs and
necessary analytical material for drawing inferences.

We know from the principles of Hypothesis
testing as elucidated in many noted works such as
[17], [18], [19], [20] that the null hypothesis is
rejected if the P-value is less than 0.05 and this is the
method used here to test the hypothesis. The
hypothesis is as follows:
H0: The correlation coefficient is not significantly

different from zero. There does not exist a linear

relation between growth in quantity and growth of

quality in the population.

Ha: The population correlation coefficient is

significantly different from zero. There is a

significant linear relationship between growth in

quantity and growth of quality in the population.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 44 Volume 23, 2024

Table 1. Three types of popularity measures

4 Mathematical Models
Model 0: In this model, the entire data set has been
considered without any edits. This contains data in
two columns - namely quality and quantity for the
selected thirty repositories over a period of seven
years. For some of the repositories, the data for some
particular years was not available. In those cases, the
value zero has been used. So, a zero in this model
stands for the non-availability of data. The Python
scripts generate the following figures and regression
data for this model and it can be seen in Figure 1,
Figure 2, Figure 3, Figure 4, Figure 5, Figure 6,
Figure 7, Figure 8, Figure 9, Figure 10, Figure 11,
Figure 12, Figure 13, Figure 14, Figure 15 and in
Table 2 and Table 3.

Table 2. Regression summary (model0) without
constant - OLS Regression Results

Table 3. Regression summary (model0) with constant
- OLS Regression Results

Fig. 1: Quantity vs Quality

Fig. 2: Predicted mean and predicted points interval

highly rated projects moderately rated projects slightly rated projects

greater or equal to 50,000 stars between 5,000 and 10,000 starts less or equal to 1,000 stars

1 vuejs/vue 11 knockout/knockout 21 marcelstoer/nodemcu-pyflasher

2 facebook/react 12 cyclejs/cyclejs 22 sebleier/django-redis-cache

3 twbs/bootstrap 13 jquery/jquery-mobile 23 microsoft/coyote

4 flutter/flutter 14 code4craft/webmagic 24 liberodark/Odrive

5 microsoft/vscode 15 nasa/openmct 25 data-forge/data-forge-ts

6 tensorflow/tensorflow 16 ansible/awx 26 Olivine-Labs/busted

7 facebook/react-native 17 brianc/node-postgres 27 MetalPetal/MetalPetal

8 electron/electron 18 openresty/openresty 28 cbeuw/Cloak

9 nodejs/node 19 appwrite/appwrite 29 arnesson/cordova-plugin-firebase

10 angular/angular 20 teamcapybara/capybara 30 hahnlee/hwp.js

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 45 Volume 23, 2024

Fig. 3: Quantity vs residuals

Fig. 4: studentized residuals

Fig. 5: Spearman correlation

Fig. 6: Pearson correlation

Fig. 7: Kendall correlation

Fig. 8: qqplot residuals

The correlation coefficient without constant is
fairly high. The correlation coefficient with the
coefficient is also sufficiently high. In both cases, the
P-values are way below the 0.05 value. That may lure
the statistician to reject the null hypothesis. However,
the residuals of the OLS fit do not satisfy the
condition of being normally distributed. Besides the
studentized residuals also do not fall within the range
from +2 to -2. We therefore cannot accept the
regression model. We may not conclude anything
about the linear relationship between quality and
quantity based on this model. This is probably
because of the outliers existing in the model. We can
see from the graph of predicted mean and predicted
point intervals that many points are lying outside the
interval. The mean squared error is also quite high.
Hence, so far as the question of linear regression is
considered, we have to reject this model. However,
Spearman’s coefficient is quite valid and it suggests a
strong positive monotonic relationship between
quality and quantity. Kendall’s coefficient also does
not rely on any assumption and it has a high value
suggesting that there is a strong dependence of quality
on quantity. Therefore, although this model does not
succeed in terms of establishing a linear relationship,
it does suggest strong dependence and strong positive
monotonic relationship between quantity and quality.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 46 Volume 23, 2024

Model 1: In this model, an attempt has been made to
remove outliers. For this quality values which are less
than 13 have been removed. The selection of this
value 13 is arbitrary and it has been done only to
supervise the reduction of outliers. It has been
assumed that values below 13 may not fit the model.
Similarly, quality values above 600 have been deleted,
assuming that pure collaborative work may result in
some upper limit of quality. Projects achieving higher
quality values may be artificially achieved by using
the non-random involvement of developers. Hence
there are no zero values for this model. The Python
script generates the following regression analysis See
Table 4 and Table 5:

Table 4. Regression summary (model1) without
constant - OLS Regression Results

Table 5. Regression summary (model1) with constant
- OLS Regression Results

Fig. 9: Quantity vs Quality for model 1

Fig. 10: predicted mean and predicted points interval
for model 1

Fig. 11: Quality vs residuals for model 1

Fig. 12: studentized residuals for model 1

Fig. 13: qqplot residualsof OLS fit for model 1

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 47 Volume 23, 2024

Fig. 14: Spearman correlation for model 1

Fig. 15: Pearson correlation for model 1

Fig. 16: Kendall correlation for model 1

The correlation coefficient without constant is
fairly high. The correlation coefficient with the
coefficient is also sufficiently high. In both cases, the
P-values are way below the 0.05 value. Almost all the
residuals fall within the range from +2 to -2. Almost
all the residuals are along the 45-degree line and thus,
normally distributed. Hence, the assumptions for the
linear regression model are satisfied. We can accept
this model. Since the P-values are far below 0.05 and
the correlation coefficient is sufficiently high, we can
reject the null hypothesis based on this model. We can
say that a linear correlation exists between quantity
and quality for this model. The relation between
quality and quantity can be expressed using the
equation:

y = 5.3543 x + 60.5005

Suggesting that for every unit quantitative
increase, the quality increases by a factor of 5.3543.

Moreover, Spearman’s coefficient is quite valid
and it suggests a strong positive monotonic
relationship between quality and quantity. Kendall’s
coefficient also does not rely on any assumption and it
has a high value suggesting that there is a strong
dependence between quality and quantity. Based on
this model, we may say that within the given range of
quality values selected, there exists a strong positive
monotonic and linear relationship between growth in
quantity and growth of quality of collaborative
software projects.

The predicted mean interval shown in the graph of
this model is also very encouraging. It suggests that
the mean quality may be maintained in this interval if
the quantitative changes are monitored accordingly.

5 Conclusions
The relation between the growth of quality vs growth
in quantity can be modeled in the manner
demonstrated above. For both the models shown
above, we may safely conclude based on Kendall’s
coefficient that there exists a dependence between
quantity and quality where the terms quantity and
quality are as defined in this paper. Similarly, we may
also conclude that there exists a strong positive
monotonic relationship between growth of quantity
and growth of quality on the basis of Spearman’s
coefficient values as seen in both models. Both
Spearman’s and Kendall’s coefficients do not rely on
any assumptions and can be used for drawing these
conclusions. However, for the first model, the
regression analysis does not meet the test assumptions
and hence cannot be used for determining linear
relationships. The second model has passed the test
assumptions of a linear regression model. Hence, we
can use it. The correlation coefficient in this model is
significantly high. The P-values are much lower than
0.05. This is true for both cases – the OLS regression
without a constant and with a constant. Due to this, we
can reject the null hypothesis and accept the alternate
hypothesis. We therefore conclude based on the
second model that there exists a strong positive linear
relationship between growth in quantity and growth of
quality of collaborative software projects within a
suitable range of values as presented by the model.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 48 Volume 23, 2024

6 Significance
The mathematical models suggested in this paper may
serve as the basis for future research to study the
relationship between quality and quantity in further
detail. A relationship between quality and quantity
may suggest that the quality of the software project
may be estimated or even predicted by measuring the
growth in quantity. This may lead to the development
of newer software development models so far as the
open-source collaborative software world is
concerned. There may be situations where the
direction of development may be controlled based on
such quality vs quantity mathematical models.
Supervised learning of such types also may give us an
insight into the nature of the changing world of
software projects. A study about how stochastic
development takes place in the realm of software
projects of such types may also be initiated.

7 Future Scope
Quantity and quality have been defined based on four
GitHub events, namely – pullRequest, issue, push, and
release. However, there are many other events in the
lifecycle of open-source collaborative projects.
Interpretation of such other events may lead to more
interesting results. This paper has discussed two
important models. The objective has been to
demonstrate the technique of mathematical modeling
in this field. Further situations may be modeled and
used to arrive at conclusions. A particular range of
data has been used to model a situation. Other ranges
of data may be considered and more models can be
developed. The y-intercept and slopes may be
interpreted in other ways too.

References:

[1] D. Nemer. IMPEX: An Approach to Analyse
Source Code Changes on Software Run
Behaviour. Journal of Software Engineering

and Applications, 2013, vol. 6, no 4.
[2] S. Butler, M. Wermelinger, Y. Yu and H. Sharp.

Exploring the Influence of Identifier Names on
Code Quality: An Empirical Study. 14th

European Conference on Software maintenance

and Reengineering, Madrid, Spain, 2010.
[3] B. D. Bois, T. Mens. Describing the impact of

refractoring on internal program quality. ELISA

workshop, Amstredam, Netherlands, 2003.

[4] C. Gerlec, M. Hericko. Analysing Structural
Software Changes: A Case Study. BCI-LOCAL

2012, Novi Sad, Serbia, 2012.
[5] Aggarwal K., Hindle A., Stroulia E. Co-

evolution of project documentation and
popularity within GitHub in Proceedings of

MSR 2014, ACM, pp.361-362. ISBN: 978-1-
4503-2863-0.

[6] T. F. Bisisyande. Got Issues? Who cares about
it? A large-scale investigation of issue trackers
from GitHub. IEEE 21st international

Symposium on Software Reliability Engineering

(ISSRE). Nov. 2013 pp. 189-196.
[7] Jarczyk O. and others in GitHub Projects.

Quality Analysis of Open-Source Software.
Social Informatics Springer, Cham, Nov. 2014
pp. 81-89.

[8] Peterson Kevin on Mining GitHub: Why
Commit Stops Exploring the Relationship
between Developer’s Commit Pattern and File
Version Evolution. 20th Asia Pacific Software

Engineering Conference, Vol. 2, Dec 2013, pp.
164-170.

[9] Kalliamvakou E. and others. The Promises and
Perils of Mining GitHub. Proceedings of the

11th Working Conference on Mining Software

Repositories MSR 2014 ACM, pp. 92-101.
[10] Weicheng Y., Beijun S., Ben X. Mining

GitHub: Why Commit Stops Exploring the
Relationship between Developer’s Commit
Pattern and File Version Evolution. 20th Asia

Pacific Software Engineering Conference, Vol.
2 Dec. 2013.

[11] GitHub: Everything You Always Wanted to
Know about GitHub (But Were Afraid to Ask),
[Online]. https://gh.clickhouse.tech/explorer/
(Accessed Date: April 30, 2022).

[12] GitHub Docs, [Online].
https://docs.github.com/en/github (Accessed
Date: April 30, 2022).

[13] Pearson Karl Mathematical Contributions to the
Theory of Evolution. V. On the Reconstruction

of the Stature of Prehistoric Races. London:

Philosophical Transactions of the Royal Society

of London, 1898. First Edition.
[14] Chen P. Y., Popovich P.M., Correlation,

Parametric and Non-Parametric Measures. A
Sage University Publication, 2002. --14

[15] Bobko P., Correlation and Regression

Applications for Industrial Organizational

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 49 Volume 23, 2024

https://gh.clickhouse.tech/explorer/
https://docs.github.com/en/github

Psychology and Management, Sage Publication,
New Delhi, Second Edition, pp. 67-84.--15

[16] Gupta S.P., Gupta M.P. Business Statistics

Sultan Chand & Sons, 2001, Twelfth Edition,
pp. 237-247

[17] Hartshorn S., Hypothesis Testing: A Visual
Introduction to Statistical Significance, Kindle
Edition, Amazon, [Online].
https://www.amazon.in/Hypothesis-Testing-
Introduction-Statistical-Significance-
ebook/dp/B019N212NE (Accessed Date: April
30, 2022).

[18] Erich L. Lehmann, Joseph P. Romano, Testing

Statistical Hypotheses, Springer-Verlag New
York, ISBN: 978-0-387-27605-2, pp. 56-78.

[19] Arthur Taff. 2018. Hypothesis Testing: The

Ultimate Beginner's Guide to Statistical

Significance. CreateSpace Independent

Publishing Platform, North Charleston, SC,
USA. pp. 69-75.

[20] Frost Jim, Hypothesis Testing: An Intuitive

Guide for Making Data Driven Decisions,
Kindle Edition, March 2021, ISBN: 978-
1735431154.

Contribution of Individual Authors to the Creation

of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_
US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.4 Ekbal Rashid, Nikos Mastorakis

E-ISSN: 2224-2872 50 Volume 23, 2024

https://www.amazon.in/Hypothesis-Testing-Introduction-Statistical-Significance-ebook/dp/B019N212NE
https://www.amazon.in/Hypothesis-Testing-Introduction-Statistical-Significance-ebook/dp/B019N212NE
https://www.amazon.in/Hypothesis-Testing-Introduction-Statistical-Significance-ebook/dp/B019N212NE
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

