
indicated that this model should be preferred in real-
world applications as well as object detection tasks.
In our study, a comprehensive methodology and
analysis approach was made in the development and
evaluation of deep learning-based object detection
models. According to the research results, it is
understood that the advantages provided by the
YOLOv8l model will provide a basis for further
optimization and extension of the models in future
research and applications.
References:
[1] Kamaruzaman, A. S. F., Ani, A. I. C., Farid,
M., Bakar, S. J. A., Maruzuki, M. I. F.,
Setumin, S., & Hadi, M. S. (2023). Systematic
literature review: application of deep learning
processing technique for fig fruit detection
and counting. Bulletin of Electrical
Engineering and Informatics, 12(2), 1078-
1091.
[2] Yang, J., Guo, X., Li, Y., Marinello, F.,
Ercisli, S., & Zhang, Z. (2022). A survey of
few-shot learning in smart agriculture:
developments, applications, and challenges.
Plant Methods, 18(1)
[3] Wang, D., Cao, W., Zhang, F., Li, Z., Xu, S.,
& Wang, X. (2022). A review of deep
learning in multiscale agricultural sensing.
Remote Sensing, 14(3), 559.
[4] Ryo, M., Schiller, J., Stiller, S., Palacio, J. C.
R., Mengsuwan, K., Safonova, A., & Wei, Y.
(2022). Deep learning for sustainable
agriculture needs ecology and human
involvement. Journal of Sustainable
Agriculture and Environment, 2(1), 40-44.
[5] Jin, X., Zhu, X., Ji, J., Ma, Y., Xie, X., &
Zhao, B. (2023). Design and research an
online diagnosis platform for tomato seedling
facilities production diseases, Research
Square, p.1-23,
https://doi.org/10.21203/rs.3.rs-3121099/v1.
[6] Derisma, D., Rokhman, N., & Usuman, I.
(2022). Systematic review of the early
detection and classification of plant diseases
using deep learning. IOP Conference Series:
Earth and Environmental Science, 1097(1),
012042. IOP Publishing.
[7] Khairi, D. u., Ahsan, K., Badshah, G., Ali, S.
Z., Raza, S. A., Alqahtani, O., & Shiraz, M.
(2023). Comparison analysis of machine
learning classification on apple fruit quality,
Research Square, p.1-24.
https://doi.org/10.21203/rs.3.rs-3025343/v1.
[8] Habib, R. R. and Fathallah, F. A. (2012).
Migrant women farm workers in the
occupational health literature. Work, 41, 4356-
4362. IOS Press.
[9] Berg, H., Maneas, G., & Engstrom, A. (2018).
A comparison between organic and
conventional olive farming in Messenia,
Greece. Horticulturae, 4(3), 15.
[10] Tariq, S., Hakim, A., Siddiqi, A. A., & Owais,
M. (2022). An image dataset of fruitfly
species (bactrocera zonata and bactrocera
dorsalis) and automated species classification
through object detection. Data in Brief, 43,
108366.
[11] Aman Jain, Jatin Gupta, Somya Khandelwal,
Surinder Kaur. (2021). Vehicle License Plate
Recognition. Fusion: Practice and
Applications, Fusion:Practice and
Applications (FPA),4 (1), 15-21.
[12] Akiki, P. A., Akiki, P. A., Bandara, A. K., &
Yu, Y. (2020). Eud-mars: end-user
development of model-driven adaptive
robotics software systems. Science of
Computer Programming, 200, 102534.
https://doi.org 10.1016/j.scico.2020.102534
[13] Dave, K. (2018). Comparison of flow-based
versus block-based programming for naive
programmers. Toronto Metropolitan
University,Canada,Thesis.
https://doi.org/10.32920/ryerson.14652246.v2
[14] Delgado, G., Cortés, A., García, S., Loyo, E.,
Berasategi, M., & Aranjuelo, N. (2023).
Methodology for generating synthetic labeled
datasets for visual container inspection.
Transportation Research Part E: Logistics
and Transportation Review, 175, 103174.
[15] Holla, B. A., Pai, M. M. M., Verma, U., &
Pai, R. M. (2023). Enhanced vehicle re-
identification for smart city applications using
zone specific surveillance. IEEE Access, 11,
29234-29249.
[16] Dao, N. D., Le, T. V., Tran, H. T. M.,
Nguyen, Y. T. H., & Duy, T. D. (2022). The
combination of face identification and action
recognition for fall detection. Journal of
Science and Technology Issue on Information
and Communications Technology, 37-44.
[17] Ghourabi, M., Mourad-Chehade, F., &
Chkeir, A. (2023). Eye recognition by yolo for
inner canthus temperature detection in the
elderly using a transfer learning approach.
Sensors, 23(4), 1851.
[18] Lou, H., Duan, X., Guo, J., Liu, H., Bi, L., &
Chen, H. (2023). Dc-yolov8: small size object
detection algorithm based on camera sensor.
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.39