
Comparative Analysis of Deep Learning Models for Olive Detection on 

the Branch 

 
ERHAN KAHYA1, YASIN ASLAN2 

1Department of Electronic and Automation  
Tekirdağ Namık Kemal University  

Tekirdağ, 
TURKEY 

 
2Freelance Senior Software Developer 

Tekirdağ, 
TURKEY 

 
Abstract: - The future of deep learning integration in agriculture holds great potential for advancing sustainable 
agricultural practices, precision agriculture and improved decision-making. With the rapid development of 
image processing and artificial intelligence technologies in recent years, deep learning has begun to play a 
major role in identifying agricultural pests and optimizing agricultural product marketing. However, there are 
challenges related to data quality, model scalability, and geographical limitations for widespread adoption of 
deep learning in agriculture. This study on Olive was conducted to improve the quality of the data set and to 
ensure more reliable training of object detection models. According to the result of the training process of 
YOLOv7 used in the study, it was concluded that it was characterized by decreasing loss values and showed an 
increase in the model's ability to detect objects correctly. It was observed that the other model, YOLOv8l, had a 
more effective learning capacity and a tendency to learn faster. The performance of both models was evaluated 
with various metrics, and it was determined that YOLOv8l had higher Precision, Recall, and mAP values. It 
was emphasized that YOLOv8l showed high performance even in low epoch numbers and can be preferred 
especially in cases where time and computational resources were limited. It was determined that YOLOv7 
made detections in a wide confidence range, but had difficulty in detections with low confidence scores. It was 
observed that YOLOv8l made more stable and reliable detections with higher confidence scores. The metric 
data of the "YOLOv8l" model was found to be higher compared to other models. The F1 score of the YOLOv5l 
model was 92.337%, precision 96.568%, recall %88,462,mAP@0.5:0.65 value gave the highest score with 
94.608%. This research on deep learning-based object detection models indicated that YOLOv8l showed 
superior performance compared to YOLOv7 and was a more reliable option for agricultural applications. 
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1    Introduction 
Deep learning has had a major impact on the 
agricultural sector and has started to be used in 
many areas. In agricultural applications, deep 
learning is used in crop management, water 
management, soil management, livestock 
management, and classification. Deep learning is an 
artificial intelligence method that uses multi-layered 
artificial neural networks and can be used in areas 
such as soil analysis, disease, and pest detection in 
agriculture. Deep learning is used to increase 
agricultural productivity and improve production. In 
particular, the ability of deep learning to deal with 
large data sets shows that it is highly effective in 

agricultural applications, [1]. Deep learning is used 
in a wide variety of areas in agricultural 
applications. The successes achieved with deep 
learning methods in the agricultural image 
recognition competition have revealed the potential 
in this field, [2]. Deep learning is also used in 
processing agricultural sensor data and forecasting 
agricultural production, [3]. Deep learning plays an 
important role in issues such as sustainability, 
productivity, reduction of input costs, food safety, 
and environmental sustainability in agricultural 
applications, [4]. The use of these technologies in 
agricultural applications enables the development of 
smarter and sustainable agricultural practices, [5]. 
Deep learning is used in areas such as agricultural 
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data analytics, disease diagnosis, and production 
forecasting to increase the automation and 
efficiency of agricultural processes, [6]. Deep 
learning models are also used for decision support 
systems in agricultural production, [7]. In this 
context, it is seen that deep learning techniques are 
used in a wide range of agricultural applications and 
provide a significant transformation in the 
agricultural sector. The use of these techniques 
contributes to making agricultural processes more 
efficient, sustainable, and smart. 
 
 
2    Material and Method 
 

2.1  Material 
Olive is the fruit of the olive tree and is usually used 
for olive oil production or direct consumption. 
There are two main types. The first is table olives, 
which are used for direct consumption and are 
usually pickled in water or stored in oil. The other is 
small, bitter-pressed olives that are generally used 
for olive oil production. Olive trees generally grow 
in regions specific to the Mediterranean climate, and 
the harvest time of this fruit varies depending on the 
geographical location and olive type. Olives 
generally ripen in autumn and are harvested during 
this period. The olive harvesting process is a very 
important stage in olive oil production as it 
significantly affects the quality of the final product. 
Olive harvesting can be performed using manual or 
mechanical methods, and each approach has specific 
effects. Manual harvesting involves manually 
picking olives from trees or collecting olives that 
have fallen to the ground and is usually done by 
farm workers, [8]. On the other hand, mechanical 
harvesting uses technological methods such as 
shaking trees to dislodge olives. This method may 
be more efficient, but can also cause potential 
damage to the fruit, [9]. The labor aspect of olive 
harvesting is also an important issue. This is 
because hand picking of olives involves the 
participation of farm laborers, [10]. This emphasizes 
the social and occupational health dimensions 
associated with olive harvesting and emphasizes the 
need for fair labor practices and worker welfare in 
agricultural settings. 
 
2.2  Method 
While preparing the data set of the olive fruit, which 
was targeted for object detection and analysis within 
the scope of the study, 140 images taken from the 
producer olive field in Tekirdağ Naip Village and 
various internet sources were used. The parts 

containing each olive image within the images were 
marked with a bounding box area. Sample images 
taken from the producer's field are shown in Figure 
1 (a-b). 
 

 
(a) 

 
(b) 

Fig. 1: a-b: Examples of educational images 
 
2.2.1  Labeling 

For an object detection model to be able to train on 
a dataset, the objects to be detected must be 
labeled/signed in the dataset to be trained. For this 
reason, the parts containing the olive image in each 
of the 140 images should be marked with the 
bounding box area and assigned to the "olive" class, 
which is the object class it belongs to. There are 
many programs, websites, and tools available in the 
open-source communities for image labeling. 
RoboFlow is a versatile platform that offers a range 
of functions for robotics and artificial intelligence 
applications. It enables the development and 
training of machine learning models by providing 
users with access to public datasets and the ability to 
send private data, [1]. The platform also supports 
pre-processing of images and their labels, as well as 
the creation of bounding boxes for tasks such as 
object detection and classification, [10], [11]. 
RoboFlow enables end users to control robots by 
developing flowchart-like programs consisting of 
visual markers and making them accessible to 
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people without extensive programming expertise, 
[12]. Roboflow offers a flow-based visual 
programming language specifically designed for 
engineering robot motion and manipulation tasks by 
meeting the needs of both inexperienced and 
experienced programmers, [13]. This marking and 
labeling process is easily done through the graphical 
user interface of the site. The Label screen is shown 
in Figure 2. a-b. 
 

 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

Fig. 2: a-b: Label display 
 

2.2.2  Training Model Selection 

In the study we carried out, the YOLOv7 and 
YOLOv8 families, developed as an open source of 
the YOLO model family developed by the CNN 
method, were preferred. The YOLOv7 architecture, 
an extension of YOLOv4, has been developed with 
several architectural reforms, including the 
Extended Efficient Layer Aggregation Network (E-
ELAN) and free trainable tools, [14]. YOLOv7 is 
the newest variant of the YOLO object detector 
family, known for its high accuracy and fast 
implementation, [15]. The YOLOv7-Pose model, 
based on YOLO-Pose and YOLOv7, uses E-LAN 
and E-ELAN architecture for high accuracy and 
fast, [16]. The YOLOv7 architecture includes a 

computation block called E-ELAN, which allows 
better learning within the framework, [17]. 

YOLOv8, the latest version of the YOLO series, 
has attracted attention with its advances in real-time 
object detection. It is designed to provide high 
accuracy while maintaining real-time performance 
by combining the strengths of various real-time 
object detectors, [18]. The YOLOv8 architecture 
offers five different size options that meet various 
application needs, from nano-size to extra-large 
size, [19]. Building on the strengths of its previous 
versions, YOLOv8 has emerged as a faster and 
more capable option and positions itself as a 
superior alternative to existing models, [20]. The 
inclusion of object detection skills in the YOLOv8 
framework increases its potential for robotic 
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cognitive architectures by contributing to perceptual 
fixation capabilities, [21]. YOLOv7 and YOLOv8 
versions used in the study contain models within 
themselves. YOLOv7, YOLOv8n/s/m, and l (nano-
small-medium and large) models were preferred for 
deep learning training. 

 
2.2.3  Initiation of Training 

To start the training of the model that will perform 
olive detection, the location of the YOLOv7/v8 
model on the computer was visited. In the next step, 
a Python editor was used to control and run the 
train.py program located in the main directory that 
manages the YOLOv7/v8 training. This Python 
program can be customized with various parameters 
and made suitable for specific training for Olive 
detection. 
Within the project, the parameters and regulations in 
the code written below were preferred for olive 
fruit. 
YOLOv7 

!python train.py --device 0 --batch 20 --epochs 

100 --data {dataset.location}/data.yaml                   

--weights 'yolov7_training.pt'  

--device: This parameter indicates the device on 
which the training will be performed. The value "0" 
is generally used for the first graph processing unit 
(GPU). 
--batch: The number of data point packets to be 
used by the display card at a time while training the 
model. 
--epochs: The number of times all training data is 
shown to the trained network and the weights are 
updated while training the model 
--data: It is a configuration file that defines the 
training data of the model. This file contains the 
data path, class labels, and other data characteristics. 
--weights: Indicates the initial weights to be used 
during training of the model. This is important in 
transfer learning situations. The file 
'yolov7_training.pt' contains the pre-trained weights. 
If this parameter is not indicated, the model usually 
starts training with random weights. 
YOLOV8 

!yolo task=detect mode=train model=yolov8n.pt 

data={dataset.location}/data.yaml epochs=50 

imgsz=640 plots=True 

!yolo task=detect mode=train model=yolov8s.pt 

data={dataset.location}/data.yaml epochs=50 

imgsz=640 plots=True 

!yolo task=detect mode=train model=yolov8m.pt 

data={dataset.location}/data.yaml epochs=50 

imgsz=640 plots=True 

!yolo task=detect mode=train model=yolov8l.pt 

data={dataset.location}/data.yaml epochs=50 

imgsz=640 plots=True 

--task: Determines which task the training will 
perform. “detect” refers to the object detection task. 
--mode: Indicates that the model will be run in 
training mode. YOLO can be run in different modes, 
for example, “train” can be used for training, and 
“test” can be used for testing or validation. 
--model: Indicates the path and name of the model 
to be used during training. 
--imgsz: The pixel size at which the images to be 
trained will be reduced by the YOLOv8 model. 
--plots: Refers to graph drawings created during 
training. These graphs are used to monitor the 
performance of the model. 
As a result of running these code lines correctly, the 
training process of the model started. The program 
first checks the YOLOv7/v8 files and checks for any 
update status. Then, the training process is carried 
out during the determined number of cycles (epoch). 
 

Examination of the results of YOLOv7 and 
YOLOv8l algorithms according to error matrix 
metrics is shown in Figure 3, Figure 4, Figure 5, 
Figure 6, Figure 7, Figure 8 respectively. 

 

 
(Image 1, Size: 640x640, Batch: 20 Epoch: 100, 

Algorithm: YOLOv7) 

 
(Image 2, Size: 640x640, Epoch: 50, Algorithm: 

YOLOv8l) 
Fig. 3: F1 Score display 
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According to the analysis of the graphs in 
Figure 3, the F1 Score result analysis is as 
follows.The F1-Confidence curve of the YOLOv7 
algorithm at 640x640 resolution and after 100 
epochs of training are shown in Image 1. From the 
graph, it was seen that the model achieved a high F1 
score for the 'olive' class. The maximum F1 score 
(about 0.93) was obtained at a confidence threshold 
of 0.498. The curve rises at lower confidence 
thresholds. After reaching the optimum point, it 
decreased with increasing confidence threshold. 
This indicated that the model provided a good 
balance between the accuracy and scope of the 
detections within a given confidence interval. 
However, it was understood that after the 
confidence threshold of 0.6, the F1 score decreased 
rapidly. It was understood that high threshold values 
can increase false negatives and the sensitivity of 
the model decreased. 

The F1-Confidence curve of the YOLOv8l 
algorithm obtained at 640x640 resolution and after 
50 epochs of training is shown in Image 2. The 
model achieved an almost constant high F1 score 
(approximately 0.92) for the 'olive' class and this 
score reached to maximum at a confidence threshold 
of 0.466. The curve is almost a straight line over a 
wide confidence interval. This indicated that the 
model provided high accuracy and sensitivity even 
over a wide confidence interval. The confidence 
threshold of the curve decreased sharply at around 
0.8, and from this point onwards, it was understood 
that the model significantly increased the false-
negative rate and the sensitivity decreased. 

In both graphs, the F1 scores of all classes were 
also indicated to evaluate the overall performance of 
the model. For YOLOv7, the F1 score of all classes 
was 0.93, while it was shown as 0.92 for YOLOv8l. 
These values indicated that both models showed 
high performance and gave good results over a wide 
threshold of confidence. For both models, it was 
understood that the best performance was achieved 
at medium confidence thresholds. It was observed 
that higher or lower threshold values negatively 
affected performance. 

According to the analysis of the graphs in 
Figure 4, the Precision result analysis is as 
follows.The accuracy-confidence curve of the 
YOLOv7 algorithm for the 'olive' class is shown in 
Image 1. The curve observed in the image started 
with low accuracy at low confidence thresholds and 
increased as the confidence threshold increased. 
This indicated that the model showed improvement 
in the accuracy of detections within a certain 
confidence interval. The accuracy reached a 
maximum (1.00) at a confidence threshold value of 

0.641, indicating that all of the model's detections at 
this threshold were correct. However, accuracy 
decreased rapidly as the confidence threshold 
increased further. This suggests that at very high 
confidence thresholds the model increased false 
negatives and therefore made fewer true positive 
detections. 
 

 
(Image 1, Size: 640x640, Batch: 20 Epoch: 

100,Algorithm: YOLOv7) 

 
(Image 2, Size: 640x640, Epoch: 50, Algorithm: 

YOLOv8l) 
Fig. 4:Precision display 
 

The truth-confidence curve for the 'olive' class 
of the YOLOv8l algorithm is shown in Image 2. The 
curve rose rapidly at low confidence thresholds and 
reached maximum accuracy (1.00) at a confidence 
threshold of 0.511. It was observed that the curve 
almost flattened towards the high confidence 
thresholds and remained at this level. This showed 
that the YOLOv8l algorithm achieved high 
accuracy, especially at intermediate confidence 
thresholds, and that the model made true positive 
detections even above this threshold, keeping the 
number of false positives minimum. 

The maximum accuracy values for all classes 
for both models are indicated in the graph and are 
shown as 1.00 in both cases. This showed that the 
model reached the maximum accuracy value when 
tested on all classes. 
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(Image 1, Size: 640x640, Batch: 20 Epoch: 100, 

Algorithm: YOLOv7) 

 
(Image 2, Size: 640x640, Epoch: 50, Algorithm: 

YOLOv8l) 
Fig. 5:Recall display 

 
According to the analysis of the graphs in 

Figure 5, the Recall result analysis is as follows. 
The sensitivity-confidence curve of the YOLOv7 
algorithm for the 'olive' class is shown in Image 1. 
The sensitivity started at 1.00 (perfect sensitivity) at 
low confidence thresholds and decreased as the 
confidence threshold increased. This indicated that 
the model was able to detect almost all true 
positives at low confidence thresholds. However, it 
was seen that as the confidence threshold increased, 
the model missed some true positive detections and 
the sensitivity decreased. In the graph, the 
confidence threshold decreased sharply to around 
0.8. It was understood that higher threshold values 
significantly reduced the sensitivity by increasing 
the false negative rate.  

The sensitivity-confidence curve of the 
YOLOv8l algorithm for the 'olive' class is shown in 
Image 2. Similarly, the model showed high 
sensitivity at low confidence thresholds. The 
sensitivity started to decrease rapidly at a relatively 
low confidence threshold (around 0.2) and 
continued to decrease as the confidence threshold 
increased. In this model, sensitivity decreased 
significantly at high confidence thresholds. This 

indicated that the model had a high false negative 
rate at high confidence thresholds. 

In both graphs, the sensitivity scores of all 
classes were indicated to evaluate the overall 
performance of the model, and in both cases, 
excellent sensitivity (1.00) was achieved at the 
lowest confidence threshold. This indicated that 
both models were able to detect all true positives at 
low confidence thresholds. 

 

 
(Image 1, Size: 640x640, Batch: 20 Epoch: 100, 

Algorithm: YOLOv7) 

 
(Image 2, Size: 640x640, Epoch: 50, Algorithm: 

YOLOv8l) 
Fig. 6:Precision-Recall display 
 

According to the analysis of the graphs in 
Figure 6, the Precision-Recall result analysis is as 
follows.In the Precision-Recall curve showing the 
performance of the YOLOv7 algorithm in Image 1, 
it was seen that a very high precision value was 
achieved for the 'olive' class. The graph shows that 
the model achieved high accuracy over a wide range 
of precision (recall). The mAP@0.5 value of the 
model for the 'olive' class was found as 0.947, 
indicating that the model detected objects with high 
precision. 

In the Image 2 graph, it was seen that in the 
Precision-Recall curve of the YOLOv8l algorithm, 
almost perfect accuracy was obtained for the 'olive' 
class. The curve in the graph showed that the model 
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detected true positives with very high accuracy and 
the value of mAP@0.5 was 0.981. It was understood 
that the classification performance of the model was 
outstanding and that it detected very few false 
positives. 

In both graphs, it was seen that there was a 
sharp decrease in accuracy after a certain sensitivity 
value. This meant that the model detected all 
positive examples, but this caused some false 
positives. The graphs showed the overall 
performance of all classes while maintaining high 
accuracy and sensitivity values for the 'olive' class. 
The high mAP@0.5 values of both models indicated 
that they performed excellently in object detection. 
The graphs showed the overall performance of the 
model, as well as how balanced its performance was 
for different classes. While both algorithms offered 
high accuracy and sensitivity, it was remarkable that 
YOLOv8l achieved a very high value of mAP@0.5 
even at a lower epoch number. This indicated that 
YOLOv8l may be more effective than YOLOv7 in 
certain situations. 
 

 
(Image 1,   Size: 640x640, Batch: 20 Epoch: 100, 

Algorithm: YOLOv7) 

 
 

(Image 2, Size: 640x640, Epoch: 50, Algorithm: 
YOLOv8l) 

Fig. 7: Confusion Matrix display 
 

According to the analysis of the graphs in 
Figure 7, the Confusion Matrix result analysis is as 
follows.Image 1 showed that the YOLOv7 model 
performed almost perfectly for the "olive" class. The 
matrix showed a high TP ratio (1.0) for the "olive" 
class and a high TN ratio for the "background" 
class. This meant that the model detected the "olive" 
class almost without error and made almost no false 
positive predictions. 

In Image 2, the confusion matrix of the 
YOLOv8l model again showed a high TP rate for 
the "olive" class (0.89), but there was an FP ratio 
(0.08) indicating that this model also misclassified 
some of the "background" class as "olive". This 
meant that although the YOLOv8l model run with a 
slightly lower accuracy rate, it still exhibited a quite 
high accuracy. 

Both matrices showed the high sensitivity of the 
models in detecting the "olive" class and the overall 
low false positive rate. However, while the 
YOLOv7 model almost completely avoided false 
positives in the "background" class, the YOLOv8l 
model was somewhat weak in this regard. This 
indicated that YOLOv7 was able to discriminate 
better than YOLOv8l in this particular case. 
 

 
(Image 1, Size: 640x640, Batch: 20, Epoch: 100, 

Algorithm: YOLOv7) 

 
(Image 2, Size: 640x640, Epoch: 50, Algorithm: 

YOLOv8l) 
Fig. 8: Loss Function display 
 

According to the analysis of the graphs in 
Figure 8, the Loss Function result analysis is as 
follows.The graphs showed how various loss 
functions and performance metrics changed during 
the training process of the YOLOv7 and YOLOv8l 
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algorithms. Such graphs are used to understand the 
learning process and performance of the model on 
training and validation sets. 
Image 1 Analysis (YOLOv7) 
This series of graphs shows the training process of 
the YOLOv7 model trained at 640x640 resolution, 
with 20 batch sizes and 100 epochs. 

 Box Loss: It measures the availability of the 
bounding boxes predicted by the model to 
the real boxes. A downward trend indicates 
that the model starts to predict bounding 
boxes more accurately over time. 

 Objectness Loss: It measures how 
accurately the model predicts the presence 
of an object. A decrease indicates that the 
model better discriminates object presence 
over time. 

 Classification Loss: It measures the 
classification accuracy of the model. A 
decrease indicates that the model classifies 
classes more accurately over time. 

 Precision ve Recall: It shows the accuracy 
(how accurate positives are detected) and 
sensitivity (how many of all positives are 
detected) values of the model. An increase 
in both values indicates an improvement in 
the model’s performance.  

 mAP@0.5 ve mAP@0.5:0.95: It measures 
the average accuracy rates of the model. In 
general, an increasing trend indicates that 
the model can generalize well over all 
classes. 

Image 2 Analysis (YOLOv8l) 
The second series of graphs shows the training 
process of the YOLOv8l model trained at 640x640 
resolution and 50 epochs. 

 Train Box/Class/DFL Loss: Bounding 
box, classification, and directional focus 
loss on the training set of the model. 
Downward trends indicate that the model 
shows improvement during the training 
process. 

 Val Box/Class/DFL Loss: The losses of the 
model on the validation set. Decreases 
indicate that the model also shows 
improvement in the validation set and does 
not make overfitting. 

 Precision/Recall: Accuracy and precision 
of the model on the training set. Stable and 
high values indicate the reliability of the 
model. 

 Metrics/mAP50/B: Average accuracy rates 
of the model. High mAP values indicate that 

the model makes consistent detections over 
a wide range. 

In both images, it was seen that the performance 
and loss functions of the model in the training 
process tended to decrease. It was understood that 
YOLOv7 had a more stable training process with a 
longer training time (100 epochs), while YOLOv8l 
showed a high performance in a shorter time (50 
epochs). It was observed that both models had high 
mAP values and generally showed high accuracy 
and sensitivity. 
 
 
3   Research Results 
The training process of YOLOv7 was characterized 
by generally decreasing loss values. The decrease in 
Box, Objectness, and Classification Loss values 
indicated an increase in the model's ability to 
correctly detect objects within bounding boxes, and 
correctly identify and classify object presence. The 
increase in the Precision and Recall metrics 
indicated that the accuracy and sensitivity of the 
model's detections increased. The metrics mAP@0.5 
and mAP@0.5:0.95 indicated the reliability and 
interclass consistency of the model with high values. 
The loss graphs for YOLOv8l showed a similar 
trend of improvement, but higher mAP values were 
obtained at a shorter number of epochs. This 
indicated that the learning capacity and speed of 
YOLOv8l was more efficient than YOLOv7. 
Precision and Recall values showed that the model 
was highly capable of accurately detecting and 
classifying objects. 

The confusion matrices showed that YOLOv7 
showed almost a perfect performance in 
classification, while YOLOv8l ran with a certain 
margin of error. The Precision-Recall curves 
showed that both models had high Precision and 
Recall values, but the YOLOv8l performed nearly 
perfectly even at a low epoch count. 

Both models exhibited high performance, but it 
was remarkable that YOLOv8l had a tendency to 
learn faster and achieved high mAP values with 
fewer epochs. This indicated that YOLOv8l may be 
preferable, especially when time and computational 
resources are limited. Despite the longer training 
time, YOLOv7 showed a more stable performance 
during the learning process. Both models provided 
high accuracy and precision, but YOLOv8l provided 
a slight advantage in classification. 

Extensive analysis of training processes and 
performance metrics showed that both models were 
suitable for object detection. However, the 
performance of YOLOv8l showed that it was more 
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efficient, especially in terms of training time and 
computational resources. 

Figure 9 shows the test result screen, Figure 10 
shows the "Validation Batch" prediction markings 
resulting from the training of YOLOv7 and Figure 
11 shows the YOLOv8l models. 
 

 
(Image 1, Size: 640x640, Batch: 20, Epoch: 100, 

Algorithm: YOLOv7) 

 
(Image 2,  

Size: 640x640, Epoch: 50, Algorithm: YOLOv8l) 
Fig. 9: Test result screen 

 

 
Fig. 10: Size: 640x640, Batch: 20, Epoch: 100, 
Algorithm: "Validation Batch" prediction markings 
resulting from the training of the YOLOv7 model 
 

 
Fig. 11:Size: 640x640, Epoch: 50, Algorithm: 
"Validation Batch" prediction markings resulting 
from the training of the YOLOv8l model 
 

The training of YOLOv7 and YOLOv8l models 
with different epoch numbers affects the learning 
dynamics. YOLOv7 was trained for 100 epochs and 
YOLOv8l was trained for 50 epochs. During the 
training process, it was observed that the loss values 
in the YOLOv7 model showed a slower decrease, 
whereas the YOLOv8l model showed a faster and 
more stable decrease trend. This indicates that the 
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learning capacity and speed of YOLOv8l is more 
effective than YOLOv7. Furthermore, when the 
performances of both models on the validation data 
are analyzed, it is concluded that YOLOv8l shows 
high accuracy and sensitivity despite the lower 
number of epochs, while YOLOv7 is not as 
effective despite the longer training time. 

The analysis of the hyperparameters (e.g. 
learning rate, momentum, weight reduction) 
specified in the model's configuration files 
significantly affects the performance of each model. 
The different sets of hyperparameters used in the 
YOLOv7 and YOLOv8l models directly affected 
the training processes and results of the models. For 
example, the higher learning rate applied in the 
YOLOv8l model enabled the model to learn faster 
and generalize more effectively. In contrast, the 
lower learning rate in the YOLOv7 model caused 
the model to learn more slowly but more carefully. 
These differences were reflected in the object 
detection performances as well as the training 
processes of the models. 

Analyzing the performance of both models 
under different lighting conditions and background 
scenarios is an important factor in evaluating the 
applicability of the models in real-world 
applications. In the tests, the YOLOv8l model gave 
better results in low-light conditions and images 
with complex backgrounds. The YOLOv7 model, 
on the other hand, performed better under standard 
lighting and less complex backgrounds. This shows 
that YOLOv8l is capable of better generalization in 
challenging conditions. 

The data augmentation techniques used affected 
the performance of both models. Traditional data 
augmentation techniques (e.g. rotation, translation) 
applied in the YOLOv7 model increased the 
generalization capability of the model. In the 
YOLOv8l model, more advanced data augmentation 
techniques (e.g. color space transformations, 
geometric transformations) were used, which made 
the model more robust to more diverse and 
challenging data sets. 

The comparison between the different sizes of 
the YOLOv8 series (nano, small, medium, large) 
shows that each model size offers different 
advantages in terms of performance and 
computational costs. In particular, the YOLOv8l 
model, while offering high accuracy and mAP 
values, requires more computational resources. On 
the other hand, smaller models such as YOLOv8n 
provide adequate performance with fewer 
computational resources. This emphasizes the 
importance of choosing the model size according to 
different application requirements. 

When the performance of both models is 
evaluated in real-time applications, it is observed 
that YOLOv8l is superior in terms of processing 
speed and detection accuracy. In particular, the 
YOLOv8l model offers faster detection times and 
high accuracy rates, while the YOLOv7 model can 
make stable detections despite its slower processing 
time. These results show that model selection in 
real-time applications depends not only on accuracy 
rates but also on processing speed. YOLOv8l stands 
out as a suitable option for applications requiring 
high speed and accuracy, while YOLOv7 can be 
preferred in less urgent situations and in scenarios 
where stability is more important. The YOLOv7 
model detected olives after 640x640 resolution, 20 
batch sizes, and 100 epochs of training. The images 
included situations with different densities of olives 
in various environments. The model detected olives 
at a wide confidence interval. In some cases, correct 
detections were made with very high confidence 
scores (0.9 and above), while lower confidence 
scores (e.g. 0.3) were used in some detections. 
Detections with low confidence scores can often 
indicate false positives or detections made under 
challenging conditions. This is important in 
evaluating the model's balance of precision and 
sensitivity, as well as its ability to generalize 
different image conditions. 

The YOLOv8l model was tested on similar 
images at 640x640 resolution and after 50 epochs of 
training. High confidence scores (0.9 and above) 
were seen in most of the detections which indicated 
that the model was able to make fairly accurate and 
precise detections. However, the small number of 
detected objects may mean that the model misses 
true positives in some cases. This tests the 
sensitivity of the model, especially in compelling 
scenarios such as difficult lighting conditions or 
overlapping objects. 

When the outputs of both models were 
compared, it was seen that YOLOv8l tended to 
make detections with higher confidence scores. This 
indicated that the model followed a more stable and 
reliable learning path during training and showed a 
better generalization performance. YOLOv7, on the 
other hand, made detections at a wider confidence 
interval, indicating that the model may make more 
false positive detections in certain scenarios. 

 
 

4   Discussion and Conclusion 
The integration of deep learning techniques into 
agriculture has attracted great attention in recent 
years. Deep learning has been successfully applied 
in various areas of agriculture, including smart 
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agriculture, precision agriculture, and agricultural 
data analysis, [22]. In their study on image 
description and deep learning in agriculture, [23] 
indicated that deep learning made significant 
progress in the detection of crop diseases. 
Furthermore, [24] highlighted the challenges and 
opportunities of applying machine and deep learning 
technologies in agriculture by providing insights 
regarding the specific challenges encountered in 
Nigerian agriculture. The future of deep learning in 
agriculture has great potential for advances in 
sustainable agricultural practices, precision 
agriculture, and improved decision-making. [25] 
reflected the rapid development of image processing 
and artificial intelligence technologies in recent 
years and emphasized the critical role of deep 
learning in identifying corn pests. Furthermore, the 
potential of deep learning to optimize e-commerce 
marketing of agricultural products was highlighted 
by [26], pointing out different applications of deep 
learning in various agricultural fields. [27], 
identified diseases and pests in tomatoes by 
applying deep learning methods to identify and 
manage crop diseases in agricultural harvesting. 
[28], used image segmentation of fruit 
characteristics for harvest in their study using deep 
learning methods in fruit recognition and evaluation 
for agricultural harvesting. [29], used the YOLOv4 
deep learning model to locate apples for robotic 
apple harvesting. They found that the robotic 
harvest detection success rate of the study was 
92.9%. [30], detected bunches of grapes on the vine 
using the YOLOv4 deep learning model. [31], 
performed detection and classification of bell pepper 
leaf diseases using artificial neural networks.  With 
the model they created, they found that the pepper 
plant leaf was healthy or bacterial with 99.99% 
predictive accuracy. [32], used deep learning 
methods for robotic tomato harvesting in their study. 
In addition, they determined the cut-off point for the 
robotic harvesting of tomatoes by image analysis 
method. 

[33], conducted a prediction study by planting 
seeds of 692 native genotypes in their study entitled 
Fruit Yield Prediction in Pepper Using an Artificial 
Neural Network.  The integration of deep learning 
into agriculture offers numerous opportunities for 
the development of agricultural practices, improving 
crop management, and advancing sustainable 
agriculture. However, addressing challenges related 
to data quality, model scalability, and geographic 
limitations is crucial for the widespread adoption of 
deep learning in agriculture. The information 
provided by the reviewed academic papers provides 
valuable perspectives on the current state and future 

potential of deep learning in agriculture. The results 
of our study are in parallel with similar research we 
have stated. YOLOv7 and YOLOv8 algorithms 
were used in the training of the network. A 
comparison of the test performance evaluation 
results of these algorithms is given in Table 1. 

In Table 1, the object detection performances of 
different variations of the YOLOv7 and YOLOv8l 
models were compared. While the performance of 
YOLOv7 after 99 epochs was notable for a 
significantly lower F1 score (28.842%), each 
version of the YOLOv8 series, especially YOLOv8l 
(92.337% F1 score), performed much higher. These 
performance measurements are critical in evaluating 
the efficiency and reliability of each model in the 
object detection task. The low F1 score of the 
YOLOv7 model indicated that the model was not 
optimal in terms of accuracy and scope of its 
detections. In particular, a low Recall rate (19.56%) 
indicated that the model missed a large proportion 
of the objects that were actually positive. On the 
other hand, YOLOv8l's high Precision (96.568%) 
and very high Recall (88.462%) rates indicated that 
the model showed superior performance in terms of 
both accuracy and scope. YOLOv8l's 
mAP@0.5:0.95 metric (94.608%) showed that the 
model successfully detected even objects with high 
levels of difficulty and correctly classified a wide 
range of objects.  

 
Table 1. Comparison of Model Performance 

Values 
Model Epoch F1 Score Precision Recall mAP@0.5:0.95 

Yolov7 99 28.842% 54.89% 19.56% 62.37% 

Yolov8n 49 95.293% 96.088% 94.512% 87.223% 

Yolov8s 49 94.469% 89.517% 100.000% 90.491% 

Yolov8m 49 91.772% 91.243% 92.308% 90.222% 

Yolov8l 49 92.337% 96.568% 88.462% 94.608% 

Note: The F1 Score Value in the table was calculated 

according to the formula 

[F1=2×(Precision.Recall/Precision+Recall]. 

 
As a result of this comparative analysis, it was 

concluded that YOLOv8l had a significant 
advantage in object detection performance than 
YOLOv7. The high F1 score and mAP@0.5:0.95 
values of YOLOv8l model showed that it was a 
superior option as an advanced algorithm for object 
detection, especially in various and challenging 
detection scenarios. The fact that YOLOv7 showed 
low performance despite a higher number of epochs, 
perhaps reflected the difficulties or configuration 
deficiencies that the model encountered during the 
training process. The performance of YOLOv8l 
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indicated that this model should be preferred in real-
world applications as well as object detection tasks. 
In our study, a comprehensive methodology and 
analysis approach was made in the development and 
evaluation of deep learning-based object detection 
models. According to the research results, it is 
understood that the advantages provided by the 
YOLOv8l model will provide a basis for further 
optimization and extension of the models in future 
research and applications. 
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