Enhancing Security in Database Grid Infrastructure for Storage Clusters

N. W. CHANAKA LASANTHA¹, RUVAN ABYEYSEKARA¹, M. W. P. MADURANGA²

¹Faculty of Graduate Studies, IIC University of Technology, Phnom Penh 121206, CAMBODIA
²Department of Computer Engineering, General Sir John Kotelawala Defence University, SRI LANKA

Abstract: - This research project primarily focused on improving security by addressing vulnerabilities and creating a cost-scalable storage cluster solution, for applications. The Oracle Grid Infrastructure for Storage Clusters (OGISC) represents cutting-edge advancements in this field. The research extensively explores the philosophy of OGISC. Explains its core methodology. Recognizing the weaknesses of existing security mechanisms, we propose a solution to enhance security measures. A key aspect of our investigation involves integrating Glusterfs, a system known for its ability to scale linearly. We delve into the architecture of the solution demystifying the storage scale-out processes to its operation. Our study goes beyond integration by developing an approach and metadata model specifically tailored for Glusterfs ensuring optimal performance and robustness. One noteworthy aspect of our research is the application of Glusterfs compression with OpenVPN. This exploration highlights the benefits derived from this integration emphasizing how OpenVPN enhances Glusterfs capabilities. Rigorous analysis stages serve as the foundation for our findings resulting in a forward-thinking solution. Finally, we conclude this research with an examination of avenues for future exploration in this dynamic field.

Key-Words: - Security Enhancement, Cost-Scalable Storage Cluster, Oracle Grid Infrastructure for Storage Clusters (OGISC), Glusterfs Integration, Storage Scale-Out Processes, OpenVPN and Glusterfs Compression.

Received: July 12, 2022. Revised: August 27, 2023. Accepted: October 8, 2023. Published: November 30, 2023.

1 Introduction
This project has been extended and generated important benefits for the various stakeholders by enhancing the security availability of the cluster system in secured Oracle grid infrastructure storage cluster (OGISC) delivery as well as evaluation. OGISC was heavily focused on security weaknesses and cryptographic backdoors over the distributed storage structure with high availability at a lower cost than expensive alternatives. The OGISC strongly addressed the specific major problems by facilitating adaptive software and hardware resources, that make it very efficient and, also provide usage capacity on demand over the securing mechanism, [1]. In addition, it is very low-cost effective compared to the traditional system, which effectively balances the load, sessions, and security weakness over the OGISC concept. The proposed architectural solution operates over different geographically clustered databases including the secure sheared concept, [2].

2 The Philosophy of OGISC

2.1 Hypothesis
1. The SSL/TLS ETE encryption at which storage cluster can perform secured tunnel security and accessibility among server nodes against compromising situations over the shearing storage area by using encryption algorithms such as RSA, AES were incorporated while the HMAC function
makes use of a hashing algorithm were built in OpenVPN.

2. The Initial key exchange (IKE) mechanism of the SSL/TLS process can be tightly coupled with the HMAC handshake method over the DH and STC key exchange algorithms. Also, a static key among both peer nodes before the certain tunnel was started of OpenVPN architecture to mitigate risk by adhering to The X.509 global standard according to the formation of the public key certificate with periodic key origin renegotiation process.

3. The digital signature and certificate make the concept of fingerprinting security mechanism which can digitally sign by genuine message sender by the trusted originator of the content. Also, the one-way hash function can check the integrity of the message. The multifactor authentications of OpenVPN have strongly mitigated the account hijack situation. It can have a powerful firewall with a manageable routing framework.

4. The intelligent self-driven metadata algorithm of the GlusterFS has mainly focused on the brick server to relocate files which can provide flexibility to add and delete VMs by continuing operations instead of traditional systems. It provides large scale-out architecture and minimum overhead on the cluster including the ability of data performance.

5. OpenVPN can engage highly compressed data packets to improve performance without adding extra overhead to OpenVPN protocol that is inherited from cryptographic functionality using AES-256-GCM. It contains a pushed routing feature among TCP or UDP traffic with fail-safe functionality.

6. The mechanism of the SPARC-M8 processor has hardware-assisted encryption data which can tightly couple with Linux kernel while Oracle ZFS storage appliances encrypt only at the file system level. Also, it does not provide compressions, replication, reduplication direct NFS support while direct NFS client optimizes NFS operations.

2.2 Methodology

Figure 1 shows that it is necessary to follow a certain methodology or scientific approach to conduct research. During the literature review, a research gap was found in the case of the security impact of secured OGISC in ABC LTD. and it was identified as the research problem to be addressed in this study.

2.3 Concept of Proposed Architectural Solution

Secured OGISC service facilitation has been achieved in more remote locations as well as in urban backend areas to access the Oracle database at any time without zero downtime under heavy encryption algorithms support with ultimate data compression mechanism to provide maximum performance between peers’ nodes.

Figure 2 shows that encrypted connectivity tightly binds with the GlusterFS nodes before the
mounting process to provide secure connectivity for
the strong reaction against cybercrime mitigation
situations successfully instead of open connectivity
among the storage cluster.

2.4 Existing Security Weaknesses of
Mechanism

![Common CPU vs Oracle S7 CPU](image1)

Figure 3 shows that the Operation of Oracle
SPARC Processor has an advanced encryption
capability for threat mitigation while the database
instances faced a huge prime number de-
factorization attack force by cryptanalyst. The
SPARC servers used their dedicated contribution of
hardware-assisted encryption security devices, [3].

Oracle has developed a powerful and identical
high-performance processor that was the target of
security against known threats by hackers, in
addition, Oracle created the powerful CPU called
SPARC M7. It was made up of traditional 32 CPU
cores to extend 512 CPU cores successfully.

![SQL in Silicon](image2)

According to Figure 4, The 4.1GHz 32 cores and
256 threads CPU is touted to focus on the highly
demanding workload flow with the specific
enhanced high-performance architecture, the
SPARC M7 processor has incorporated advanced
software techniques and not only focused on
increasing the performance of the CPU with major
improvements to mitigate against programming
errors were caused to happened serious security
breaches, [4].

![Silicon Secured Memory](image3)

Based on Figure 5, The Silicon Secured Memory
structure of the SPARC M8 processor has its
powerful encryption engine associated with it, and
stronger encryptions and hashing algorithms are
included such as RSA, 3DES, SHA 256, SHA 512,
DH, MD5, and ECC. Therefore, to protect physical
files from security threats and CPU
core’s scalability
in the dynamic way of predictable optimization to
overcome the slowness of the encryption process
under heavy load, [5].

![Transparent Data Encryption](image4)

Based on Figure 6, the execution of certain
machine code was very straightforward, and it
became very complex. At the same time, poorly
programmed code examples have been caused by
pointers attempting to get access to an allocated
loaded memory location. This behavior was a
maliciously exploited situation called the buffer
overflow (over-read attack). The attacker took
advantage of the security weakness of the code
section in such a buffer overflow attack. Also, this
badly allowed the attacker to modify (write) to an
adjacent physical memory location in the flow of
buffer overflow attack.

The above condition of the attack obtained data
segments of the memory due to the case of a random
overread attack. The side effect of the possibility of
altering the ability of a program and executing
attackable malicious code returned as informative
details and access to exploited by an attacker, else it
breaches system security, [6].

The CVE-2018-3639 vulnerability was the side
channel disclosure attack to expose confidential
information. All of them were identified in the same
category of attacks. but it was different from the
formation of remote code execution was exploited.
In addition, these are the attacks that never allow for
an unauthorized party to obtain access to a machine.
However, it would have allowed a certain external
party to access confidential unauthorized data, [7].

The Solaris-10 SPARC allowed a third-party
unauthenticated cyber-attacker with the ICMP-
enabled platform to compromise the SPARC system.
After the successful attempts of attacks of this
identified vulnerability was enabled backdoor access
as the unauthorized ability to crash the system with
DOS attacks over the SPARC systems successfully.
Furthermore, the above exploitable vulnerability
allowed deliberative outside privileges attackers to
log in to the operation infrastructure with remote
shell execution privileges, [8].

2.5 Linear Scaling and Introducing
GlusterFS
The GlusterFS Striped volume successfully except
for strips that can distribute over a very large
number of bricks, additionally, the numbers of
bricks must be of the multiplication of the numbers
of bricks, were led to increased volume size. The
method of linear scaling was the much cuticle phase
within the traditional cluster storage field.

Also, when an organization needs to increase
performance by twice, that there is clustered storage
system must deliver twice the performance and
throughput within the same average response of time
gap per external clustered file system. Equally, if
they wanted to increase either capacity without
decreasing performance or having a non-linear
return in capacity. Unfortunately, most storage
clustering systems do not perform linear scaling.
Simply, when an organization needs to double the
disk size of the available storage pool, then it must
be required to provide enough peak CPU processing
power, [9].

The latency takes place as the result of responses
across the storage cluster network connected over
the distributed cluster server nodes in those
traditional types of storage system architectures and
recently always impacted the overall performance.
The overhead was the major risk while each node in
an unacceptable situation led to risk.

Also, this was one of the main reasons for linear
scalability caused by the reduced performance of
traditional storage distributed architectures. Most of
the traditional storage systems demonstrated
logarithmic scalability when capacity grows very
slowly as it gets larger. This was due to the rapidly
increased average overhead required to maintain
data flexibility, [10].

2.6 The Ultimate GlusterFS Architecture
When a traditional storage system adds more and
more files and more server nodes with more disk
arrays, then the centralized metadata server becomes

The GlusterFS had the mechanism to find a file
algorithmically. Therefore, all GlusterFS storage
server nodes within the cluster have a specially
developed intelligent algorithm to locate any piece
of physical data without depending on the metadata
in a separate server instead of a traditional system.
The Hashing Algorithm was used when scaling out a
storage system, data, and workload. when the
storage nodes have been physically located in many
different locations as independent storage and cluster
nodes to resolve difficulties while retrieving files
and locations, [12].

2.7 Storage Scale-Out Process of the
GlusterFS
The GlusterFS was designed to successfully provide
extended scalable architecture on both capacity and
performance with minimized overhead problems.
This illustrated that the storage cluster system must
be able to scale down or scale up among multiple
dimensions. Also, by aggregating the CPU, HDD
arrays, and I/O buses of very large numbers of a
low-cost system without expending lots of money on
expensive resources. In general, an enterprise
organization must be able to implement a very
scalable and performant cluster storage pool.

Figure 7 shows that Logarithmic vs. linear
Improvement over the GlusterFS has a unique and
advanced architecture designed to deliver huge benefits for expanding scalability. Also, it can be defined as, more units for more capacity, more CPUs as well as more I/O capability which was archived over the storage cluster based on GlusterFS while avoiding the system overhead and, the critical risk associated when it has very large numbers of server nodes in the synchronization process.

Practically, both performance and the capacity of the storage cluster must need scaling out in the manner linearly in the GlusterFS architecture. The Illustration of GlusterFS cluster storage scalability, Figure 8, below shows how the enhancements of both performance and capacity have been archived over the baseline system. As an example, if they expected to obtain both four times capacity and performance, they must be distributed among 8 servers, [13].

![Fig. 8: Linear Scaling of GlusterFS.](image)

Figure 8 shows the illustration of theoretical numbers only for the example purpose of demonstrating and actual storage performance has been tested to prove the credibility of the linear scaling. The resultant of the storage cluster linearity has been demonstrated in Figure 9 below that shows the data write process of throughput scaling linearly started from 100MB/s to 800MS/s among the eight servers using the 1 Gigabit Interface environment.

![Fig. 9: Cryptographic Operations with OpenSSL.](image)

Therefore, the GlusterFS storage cluster has been successfully deployed in the massive scale-out concept in practice. As a result, it can successfully deploy in the petabyte size clustering solution, [14].

2.8 The Algorithmic Approach and Metadata Model of GlusterFS

The metadata separate location was the main single point of failure, performance overhead as well and reliability concerns of most distributed cluster-based storages. There was no separate metadata server for the information data because the location can determine independently when the other nodes are up or down.

Therefore, GlusterFS called the above algorithmic file location mechanism called Elastic Hashing Algorithm, and it benefited had unique advantages of the GlusterFS architecture, [15].

![Fig. 10: Node adds and deletes effect mitigation.](image)

Figure 10 shows that the GlusterFS elastic hashing algorithm is based on a special mechanism called the Davies-Meyer hashing algorithm. The GlusterFS way of algorithmic approach was unique in any clustered directory tree and ran through the GlusterFS elastic hashing algorithm. In the real infrastructure environment, if the array of disks fails, the capacity of the cluster is used up, and files need to be redistributed over the cluster to get back into the smooth working state without interrupting saved data, [16].

2.9 GlusterFS Compression over OpenVPN

The dedicated compression translator mechanism was embedded into the GlusterFS architecture to archive high data compression and decompression processes while transferring between clients and bricks over Cluster nodes. The bricks of the server nodes compress the data before transferring it to the client side. The overall throughput measurement has been calculated using the open-source tool called
iperf after turning off all pre-configured authentication and encryption operational processes as the cipher none state, and then only triggering the iperf connectivity test.

As a result, the way of compression comparison was illustrated actually over the existing GlusterFS storage cluster. The process of decompression and compression operations was done by using the developed ZLIB library bundle. In addition, the enhanced speed of the compressed data, [17].

3 A. The SSL/TLS Connectivity over the GlusterFS

Figure 11 shows, that there was a set of OpenSSL speed test commands to show that the decryption and encryption absolute performance over different networks depends on identical hardware units upon the encryption key already used. By default, the OpenVPN packets were configured at 1500 bytes. Also, The BlowFish cipher has been divided by CPU clock speed and its performance is hardly bound purely by CPU clock rate. But Older types of CPUs operating at a higher clock plus speed, cause them to outperform compared with newer CPUs.

![Fig. 11: Speed test of AES-256-GCM.](image)

In general, an OpenVPN server must handle many numbers of VPN client connections, then because of that cryptographic cipher was a proper choice, [18].

B. Benefit and OpenVPN Mechanism over GlusterFS.

The OpenVPN was running over TCP by using port number 443, so the bunch of traffic was distinguishable from the general way of TLS traffic. The Deep Packet Inspection process can be used to filter out OpenVPN traffic.

In addition, the major difference between Browser-based TLS and OpenVPN TLS was the way packets were signed. OpenVPN has been offered to mitigate security attacks from DoS attacks by using special signing packets using the method over the control channel by using a static key generated randomly called TLS auth Key, [19].

A type of hardware token and smart cards were typically very small devices that could be embedded into a chip. Also, it was highly responsible for securely generating, storing, and managing SSL-based private keys. Additionally, that feature was validated certificates and private key pairs were securely stored in a portable single device, [20].

C. Sampling Calculation and Process

Table 1. Morgan Table

<table>
<thead>
<tr>
<th>Population Size</th>
<th>Degree of Accuracy/Margin of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.097 0.035 0.025 0.01</td>
</tr>
<tr>
<td>20</td>
<td>0 10 20 30</td>
</tr>
<tr>
<td>30</td>
<td>23 29 30 30</td>
</tr>
<tr>
<td>50</td>
<td>34 47 50 50</td>
</tr>
<tr>
<td>75</td>
<td>43 69 72 74</td>
</tr>
<tr>
<td>100</td>
<td>69 94 99 99</td>
</tr>
<tr>
<td>150</td>
<td>61 126 137 148</td>
</tr>
<tr>
<td>200</td>
<td>68 160 177 196</td>
</tr>
</tbody>
</table>

Table 1 shows that the questions have been asked to obtain information about the occupational pattern, potential members of the team, critical assets with priority under the area of concern, and identification, and security requirements on critical assets, [21].

D. Conceptual Framework

Fig. 12: The Conceptual Framework.

Figure 12 shows the theoretical framework that structures the sections of the study that need to be
covered and it can help to determine the problem area.

Research questions have been addressed and methodology to find the solution for this problem.

E. Analysis Stages.

![Fig. 13: Critical Value Identification.](image)

Figure 13 shows that the CSQ was used to effectively test hypotheses regarding the distribution of certain observations between different categories, [22].

![Fig. 14: The Illustration of Correlation Coefficient.](image)

Figure 14 shows that the Correlation Analysis method was developed to properly assess the direct and indirect relationship between variables. Also, the affected side of the Correlation analysis process has been mentioned as the strength of the correlation, [23].

F. NMAP Scan over GlusterFS Nodes

Illustrates the resultant of the NMAP scan using the techniques of TCP SYN scan. It was initiated using different scanning principles such as ARP Ping Scan, SYN Stealth Scan, Service Scan, and RPC Bind Scan against each node among Storage GlusterFS.

The Next step was to attack both Oracle RAC and GlusterFS Cluster using the Armitage Application has been powered by Metasploit Framework as an automated attack method that was already generated by Pen Test. It failed to exploit the required server nodes by using known and discovered mid-range level vulnerabilities due to a recent Linux OS update that was made over the cluster. As a result of the overall Pen Test, it failed to attack any single Node of the Server due to the patch management process with the latest OS Update and Upgrade of the rest of the Application behind the cluster node in the Oracle RAC.

4 Conclusion

![Fig. 15: Statistical, Octave, and Pen test integration.](image)

Figure 15 shows that the validation process was illustrated in the six hypothesis statements due to various affected sizes among the independent variable according to the dependent variable. The X2 > 0 conditions have proved the validation of the objects which was involved in the data collection and analysis phase.

The output has been directly inherited into the Octave Framework for the further technical level of vulnerability assessment with organizational risk factors in the particle way and a proven good level of security strength regarding the provided solution.

After the OS, Kernel, and application update process, it was reduced up to 98%. Also, the organizational vulnerabilities were reduced with the Security Policy of ABC LTD after the embedded with Octave stage with existing ABC LTD’s security policy as well.

The penetration test occurred to attack the IT assets after an anonymous way of the test method and got the sufficient level of the good security level of the provided solution with the above stages.
4.1 Proposed Solution and Future Research

Fig. 16: The Solution with Enhancements.

Figure 16 shows that must be very adaptive and important to propose a system for the monitoring purpose of storage volumes when ABC LTD plans to establish capacity planning or performance tuning scheduled activities over the GlusterFS OGISC. Also, that can monitor Gluster storage volumes using different customizable parameters and can reuse those outputs to identify and clear understanding of troubleshooting issues. The Zabbix monitoring system could enable information gathering such as CPU, physical memory, Raid disk, Network Interfaces, Swap memory, cluster, cluster volume, brick over nodes, LVM host, Glusterd quota, geo-replication, self-heal so on using https secured management web interface.

However, the proactive analysis mechanism can enable detection processes and events that are not specifically highlighted by an automated IDS system and it should cause to use to limit the broader range of impact as well as the cost of an incident.

The requirement of correlation of logs and events over a variety of devices was a very critical area of secured storage cluster over Oracle grid incident response activity such that assists an organization in the assessment process over the possibility of the impact of a network compromise. Also, that must be informed toward the Security team of ABC LTD to necessary for mitigation. The security hardware or software-based product should have identified when an intruder randomly performed an anonymous remote attack against ABC LTD’s OpenVPN and GlusterFS applications, but sometimes it does not have the alert rules to identify the attacker’s random penetration through the ABC LTD’s network from the initial stage of compromise. By correlating the original alert event with log files from the GlusterFS storage cluster, OpenVPN, Syslog, access log, Oracle database, and authentication servers, as well as events, were generated on the server nodes, greatened visibility of the extent of the compromise which must be established.

References:

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)
The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US