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Abstract: - Classical pseudorandom numbers generators (PRN) based on Galois and Fibonacci schemes are 
constructed, as a rule, using n-bit linear shift registers or corresponding n-order matrices and allowing both 
hardware and software implementation. The main disadvantage of such generators is their low crypto stability, 
the reason for which is that if by any means it is possible to obtain 2n bits of the generated sequence taken from 
any discharge of the generator, then with the help of the Berlecamp-Messy algorithm, it is possible to recover a 
primitive polynomial of n-degree nf , generating the generator. To increase the cryptostability of the PRN 
matrix generators is proposed to replace the classical Galois and Fibonacci matrices, uniquely determined by 
the primitive polynomial nf , at a fixed forming element  , equal to 10, by the so-called generalized Galois or 
Fibonacci matrices. A distinctive feature of generalized matrices is that the polynomials nf  generating them 
need not be primitive. At the same time, the constituent elements   must be chosen from the subset of 
primitive elements of the deduction field generated by the polynomial nf . The generalized PRN generators are 
free from the Berlecamp-Messy attack. The latter property is obtained because the Berlecamp-Messy algorithm 
solves the problem of computing one single unknown - the primitive polynomial nf , generating the generator. 
For variants of generalized matrix generators of PRN, there is a need to determine two unknown parameters: 
both the irreducible polynomial nf and the forming element  , jointly generating the generalized matrix, 
which turns out to be an unsolvable problem for the Berlecamp-Messy algorithm. 
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1  Introduction 
In the theory and practice of noise-resistant coding, 
[1], [2], [3], [4], cryptographic information 
protection, [5], [6], [7], and in other areas of science 
and technology, pseudorandom sequence generators 
(PRNs) of maximum length with acceptable 
statistical characteristics are widely used. The most 
popular applications are two main methods for PRN 
generation. The first is based on using n-bit linear 
feedback shift registers (LFSR) according to Galois 
or Fibonacci schemes, [8], and the second one relies 
on n-order square matrices, which, by analogy with 
the names of register generators we will call Galois 
and Fibonacci matrices, [9], [10]. The matrix 
generators form the same PRNs as the 
corresponding register generators.   

Structural and logical schemes of binary LFSR 
generators PRN are uniquely determined by 
generating polynomials nf  of n-degree (coinciding 
with the number of register digits), employing 

which the feedbacks in the shift registers establish. 
It is known, [11], that for a linear shift register to be 
a maximum period register equal to 2 1n  , the 
corresponding feedback polynomial nf  must be 
primitive (PrP).  

Based on the construction of PRN register 
generator structural-logic circuits, we will use the 
natural ordering of register digits, in which the 
lowest digit is located on the right, as it is accepted 
when writing down numbers in positional number 
systems. The problem of developing structural-logic 
schemes of Galois generators of the PRN is most 
easily solved, the technology of construction of 
which we will illustrate in the example of the 
generator, the feedback circuit of which is defined 
by a PRP of the eighth degree 8 101100101f  . The 

solution of the set task implies fulfilling such two 
stages, [9], [10].    
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Step 1. Form an eight-bit circular shift register 
(Figure 1) in the nodes of its feedback line and 
equidistantly arrange the digits of the selected 
primitive polynomial. 

 

 
Fig. 1: To construct the circuit of the eight-digit 
Galois oscillator PRN 

 
Step 2. Connecting the unit nodes of the 

feedback line with the XOR operator, as shown in 
Figure 2, we complete the construction of the 
classical LFSR generator PRN. 

 

 
Fig. 2: Structural diagram of the Galois generator of 
PRN generated by PrP 8 101100101f    

 

Each LFSR generator of the PRNs by the Galois 
scheme answers by uniquely related matrices, which 
we will call classical Galois matrices (CGMs) and 
denote by the symbol ( )n

fG , where n is the order of 
the matrix, and nf  is the PrP of n-degree that 
generates the CGM. Based on the PRN generator 
circuit shown in Figure 1, we quickly arrive at the 
general form of the CGM matrix 
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(1) 
 
where  0,1i  , 1, 1i n  , are the internal 
coefficients of PrP nf , i.e., the coefficients located 
between the units enclosing the binary generating 
polynomial.  

In the following, we will omit the numbering of 
rows and columns of matrices for simplicity. 

By bolding the top row and the right column in 
(1), we represent the matrix ( )n

fG  in a compact form  

( )n

f

f 
  
 0

G
E

, 

where E and 0 are the unit matrix, the zero-vector 
column of (n-1)-orders and the arrow indicates the 
position of the high internal coefficient 1n   of the 
generating polynomial nf . 

Let us pay attention to such features of the 
matrix (1). First, the lower row of the matrix 
contains the forming element (FE)  , equal to 10. 
Secondly, each subsequent row of the matrix, except 
for the top row, is obtained by shifting the previous 
row to the left by one digit. Third, the top row of the 
matrix (1) represents the PrP nf , where the highest 
(left) unit is discarded. The above brief explanation 
makes it possible to formulate 

Algorithm of CGM synthesis: In the right 
corner of the bottom line of the synthesized n-order 
CGM ( )n

fG , the element forming it 10  , which is 

the minimal primitive element of the field (2 )nGF , 
is generated by the binary PrP of n-degree nf . 
Discharges in a string to the left of   are filled with 
zeros. Subsequent rows of the matrix ( )n

fG  (from 
bottom to top) are obtained by shifting the previous 
row one digit to the left. If, when moving a row, its 
highest unit digit goes outside the matrix (which is 
the upper row of the matrix ( ) )n

fG , then the (n+1)-
bit vector 100…0 corresponding to this row is 
reduced to the remainder modulo PrP nf  and, thus, 
the row becomes n-digit.  

The matrices ( )n

fG  are primitive in that the 
sequence of degrees of the matrices over the field 

(2)GF  forms a sequence of maximal length              
(m-sequence). 

By involutional right-side transposition (rotation 
of a square matrix to the auxiliary diagonal) CGMs 
(1) transform into classical Fibonacci matrices 
(CFMs) 
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a compact form of which is 
 

( )n

f

f 
  

 
F

E


, 
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where   is the zero-vector string of (n-1)-order. 
 
Through classical Galois and Fibonacci matrices, 

it is possible to generate binary m-sequences of 
pseudorandom numbers (PRNs) similar to the 
sequences formed by classical LFSR generators in 
Galois or Fibonacci configurations. It’s known that 
LFSRs are suitable generators of PRNs, but they 
have undesirable properties that reduce the 
efficiency of their use. For registers of length n, 

their internal state is a function of the n previous 
output bits of the generator. Even if the feedback 
scheme is kept secret, it can be determined from 2n  
generator output bits using the Berlecamp-Messy 
(BM) algorithm, [12], which reduces the crypto-
resistance of the PRN generator. 
 The main goal of this study is to develop PRN 
generators based on generalized Galois and 
Fibonacci matrices free from the Berlecamp-Messy 
attack. 
 

 

2  Simple Galois Matrices 
In the previous section, it noted that the classical 
Galois (1) and Fibonacci (2) matrices are 
interconnected by a right-side transpose, to denote 
which we use the symbol  , [13], i.e. 
 

( ) ( )n n

f f

f f


   
     

   0
G F

E E


.       (3)    

 
The peculiarity of the involutive transformation 

(3) is manifested in the fact that, first, the PRN 
generators based on the classical Galois and 
Fibonacci matrices form sequences of maximal 
length and, second, the sequences of pseudorandom 
numbers taken from any discharge of the PRN 
matrix generator satisfy all three postulates of, [14]. 
The second involutional transformation that 
preserves the properties of the matrices the same as 
those delivered by right-side transposition is the 
classical (left-side) transposition operation since 
there is no objective reason why this should not be 
the case. The matrices 

G  and 
F  are formed by 

the left-side transposition of the matrices G  and F . 
We will call them conjugate matrices.  

 
( ) ( )Т  G F G F . 

 
The compact forms of conjugate Galois and 

Fibonacci matrices have the form 

; .
ff

    
    

  

0 EE
G F


 

  
Finally, one more involutional transformation, 
preserving the properties of the original Galois and 
Fibonacci matrices, is the operation of matrices 
reversal 

( ) ( ) ( ) ( )( ) ( )n n n n

f f f fG F G F
 . 

 
The set of matrices  , , , 

G F G F , augmented 
by the corresponding inverse matrices, let us call the 
complete set of simple Galois-like matrices. The 
completeness of the group should be understood in 
the sense that except by using the left- and right-side 
transpose operations and the inversion operation, 
there are no other involutive transformations that 
would lead to the appearance of new matrices that 
are not included in the set of simple Galois-like 
matrices. 

Indeed, by numerical examples, it is easy to 
verify that such involutive transformations as 
turning by 180  the Galois matrices for their 
horizontal or vertical axes of symmetry are 
unacceptable since the transformed matrices lose the 
property of primitivity, i.e., their order becomes less 
than the maximum order. The involutional 
transformation of the type of rotation of Galois 
matrices clockwise (counterclockwise) by an angle 
equal to   is also unacceptable since it turns out to 
be redundant since 

  
( ) ( )  G F F G . 

 
The graph of the complete set of simple Galois-

like matrices is shown in Figure 3. 
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Fig. 3: Complete set involutive connected simple 
Galois-like matrices 

 
For example, Table 1 gives the complete set of 

simple Galois-like matrices of order four generated 
by PrP 4 10011f  . 

 
 

Table 1. Complete set of simple Galois-like matrices 
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 
 
 
 
 
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0 0 0 1
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 
 
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G  

1 1 0 0
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0 0 0 1
1 0 0 0

 
 
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 
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 
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0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0


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

 
 
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 
 
 

F  

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1



 
 
 
 
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 

G  

1 0 0 1
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0 0 1 0



 
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 
 
 
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As well as classical matrices ( )n

fG , all Galois-
like matrices are primitive matrices (generators) 
using which the maximum length PRNs form, and 
the sequences of PRNs selected from any discharge 
of the generator support all three postulates of the 
Golomb. 

Let us turn to the matrix G  (Table 1), the inverse 
of the simple matrix G . The compact form of 
matrices G  can represent in the following form 

f

 
 
 




0 E
G , 

where the bottom line, i.e., the combination f  , is 
nothing but the FE   of the matrix  G , the inverse 
of the forming element    of the simple matrix 
G . Based on the matrix G  from Table 1, we arrive 
at a relatively simple way to determine the FE   of 
the matrix G , generated by the PrP nf  of arbitrary 
degree n. Namely 

0 1 2 1\ 1n n nf        .              (4) 

In fact, by multiplying the right part of the 
expression (4) by FE   , and, reducing the 
product to the remainder modulo nf , we obtain  

 mod 1nf   , 
which confirms the correctness of the calculation of 
the FE   of the matrix G . 

The general form of the matrix ( )n

fG , the inverse 
of CGM (1), is as follows  

( )

1 2 3 2 1

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1

n

f

n n 

 
 
 
 
 

  
 
 
 
 
 

0

0

0

0

0

1

G

    

.  (5) 

 By right-side transpose of the matrix (5), we 
arrive at the inverse CFM 

1

2

3
( )

2

1

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1

n

f

n

n


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 
 
 
 
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 
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the compact form of which is 

( )n

f
f

 
  
 

E
F


. 

By left-side transpose of matrices (1), (2) and 
(5), (6), we obtain the corresponding simple 
conjugate Galois-like matrices. 

Let ( )S k  be the state of the matrix Galois-like 
PRN generator at the k-step. The state of the 
generator at the (k+1)-step is defined by the 
recurrence relation 

( )

bit

( 1) ( ) , 0,1, ,

, (0) 00 01

n

f

n

S k S k k

S

   



M

,        (7) 

where ( )n

fM  is one of the primitive Galois-like 
matrices of n-order generated by the PrP nf .  

Considering that simple Galois-like matrices 
contain unit matrices of (n-1)-order, we can 
significantly reduce the computer time required to 
estimate the oscillator's state at the following      
(k+1)-th computation step. 

Indeed, let us represent the state of ( )S k  
generators of PRN in the form of 
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 1 2 1 0( ) , , , ,k n nS k S s s s s   , 
where is  is the i-bit of the generator. Thus, equality 
(7) can be rewritten in the following form 

  ( )
1 1 2 1 0, , , , n

k n n fS s s s s   M .          (8) 
For the Galois generator PRN in (8) instead of 
( )n

fM , we should substitute the matrix ( )n

fG , given 
by expression (1). We have 

   

 

( )
1 1 1 2 1 2 3

1 1 0 1

, , ,

, ,

G

k n n n n n n

n n

S s s s s

s s s

      

 

    

 
 

where the upper index G means that the binary 
vector 1kS   is produced by the Galois generator. 

For the Fibonacci generator, replacing in (8) 
( )n

fM  by the matrix (2), we obtain  



     

( )
1 2 3 1 0 1

2 1 3 2 0 1

, , , , ,F

k n n n

n n n

S s s s s s

s s s

   

  

 

      
. 

Similarly, we arrive at expressions for the binary 
vectors formed by the generators generated by the 
remaining simple Galois-like matrices, namely 

   

 

( )
1 0 1 1 0 2 2 0

1 1 0

, , , ,

, ;

G

k n n n nS s s s s s

s s

        

 
 

   

  
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F
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n n n

S s s

s s s s s

  

  

    
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1
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1 1 2 10
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n
G

k i i n n
i

S s s s s



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
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F

k n n
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


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 
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

    

  

    

 
 

 The computational complexity of the algorithms 
for generating PRNs based on the vectors ( )

1
M

kS   is 
proportional to the order n of the ( )n

fM  matrices. In 
contrast, the computational complexity of PRN 
generation by formula (7) is quadratically dependent 
on the order of these matrices. 
 
 
3  Generalized Galois Matrices 
Let us notice such features of the matrices ( )n

fG  

inverse classical CGMs ( )n

fG . First, the FE   of the 

matrix ( )n

fG  must exceed the value   of the forming 
element of the matrix, remaining a primitive 

element of the field generated by the PrP nf . 
Secondly, the algorithm for forming the matrix ( )n

fG  
remains similar to the algorithm for constructing the 
matrix ( )n

fG . Third, the solution nf , produced by the 
BM algorithm based on the set of bits generated by 
the matrix ( )n

fG  generator, is inverse to the 

polynomial nf . The matrices ( )n

fG  contain features 
that we will transfer to the generalized Galois 

matrix (GGM) notion, giving the term as follows 
Definition. We will refer to generalized Galois 

matrices (GGM) ( )
,
n

f G  as square matrices of order n 
generated by irreducible over 2F  polynomials nf  
and forming elements   belonging to the field 

(2 )nGF , and both nf  and   need not be primitive. 
GGM synthesis algorithm. The selected 

element   of the field (2 )nGF , generated by the 
irreducible polynomial (IP) nf , is placed in the 
lower right corner of the formed matrix ( )

,
n

f G . 
Element   acts as a forming element of the matrix 

( )
,
n

f G . All row bits to the left   fill with zeros. Each 
subsequent matrix row in the bottom-up direction 
forms by shifting one position to the left of the 
previous row. Zero writes to the cell that freed after 
the line shift. If the row's highest nonzero digit 
exceeds the matrix's left border at a particular shift 
step, this row is reduced to the remainder modulo 

nf , returning it to the limits of the formed matrix. 
Then the process continues according to the 
described scheme until all n  rows of the 
synthesized matrix fill.    

Following the above algorithm, let's compose a 
GGM, choosing, for example, the parameters of the 
synthesized matrix ( )

,
n

f G  as follows: 8;n   

8 100011011f  ; 01011011 . We obtain 
 

(8)
,

0 0 0 0 01 1 1
0 0 0 0 01 1 1

0 0 0 01 1 1 1
0 0 01 1 1 1 1

0 01 1 1 1 1 1
0 01 1 1 1 1 1

0 0 01 1 1 1 1
0 0 01 1 1 1 1

f 

 
 
 
 
 
 
 
 
 
 
 
 
 

G . 

 
We come to generalized Fibonacci matrices 

( )
,
n

f F  due to the right-side transposition of matrices 
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( )
,
n

f G . Note that the matrices ( )
,
n

f G  and ( )
,
n

f F  do not 
allow their compact representation in the form used 
for the classical matrices ( )n

fG  and ( )n

fF .  
From the theory of polynomials of one variable 

x, we know that multiplying an arbitrary polynomial 
( )k x  of k-degree is equivalent to shifting it one 

digit to the left. Or in other words, 

1( ) ( )k kx x x    .                   (9) 
Using relation (9) and taking into account the 

way of GGM formation, we write a chain of 
transformations 

 
1 1

2 2

( )
,

1

0

mod mod

1

n n

n n

n

f n n

x x

x x

f f

x x

x













G

 

 

   
   

   
     
   

   
      

.  (10) 

The elements of the right vector-column 
inequality (10) are monomials which, being 
represented in binary form, turn the column into a 
unit matrix E  of n-order, i.e. 

 
1

2
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 11

n

n

x

x

x

E







   
   
   
    
   
   
    

,      (11)     

which allows us to postulate such provisions.  
Statement 1. The generalized Galois matrix 

( )
,
n

f G , generated by IP nf , is isomorphic to its 
forming element  , which is a field element 

(2 )nGF , i.e. 
( )
,
n

f   G ,                        (12) 
 
where   is the sign of isomorphism. 

Thus, according to expressions (9)-(11), there is 
a one-to-one correspondence between the GGM 

( )
,
n

f G  and its FE  , which is represented by relation 
(12), leads to the results below in the form of 
consequences:    

Consequence 1. A generalized Galois matrix 
( )
,
n

f G  is primitive if its forming element   is a 

primitive element of the field (2 )nGF , generated by 
an irreducible (not necessarily primitive) 
polynomial .nf  

Consequence 2. To raise the generalized 
Galois matrix to degree k is sufficient to calculate 

(mod )k
nk f  , which is just the generating 

element of the k-degree of the matrix ( )
,
n

f G . 
Statement 2. A PRN generator based on a 

Galois matrix ( )
,
n

f G  such that nf  is not primitive 
and   is a primitive element of the field 

(2 )nGF  generated by the polynomial of nf  found to 
be free from the BM attack. 

Let us prove Statement 2 with simple numerical 
examples. Let the nonprimitive IP of the eighth-
degree 8 100011011f   and the FE  , a 
primitive element of the field generated by the 
polynomial 8f , be chosen. Let us define the first 16 
eight-bit elements of the multiplicative group caused 
by k-degrees of FE   modulo 8f , which we place in 
Table 2. The sequence of the multiplicative group 
elements repeats the PRN of binary vectors 
calculated by the formula (9) if the parameters f  
and   of the matrix (8)

,f G  coincide with the 
corresponding parameters of the example under 
consideration.  

A set of bits of any column in Table 2, fed to the 
input of the BM algorithm, leads to the output of the 
PrP ' 100011101f  . If, for example, while keeping 
the generating polynomial 8f , we choose   
as a primitive FE, then the solution of the BM 
algorithm is PrP 100101011''f  . Both 'f  and ''f  
are different from 8f .  Thus, we have confirmed 
that the generalized matrix generators of PRNs are 
free from the Berlecamp-Messy attack. 

 
Table 2. Fragment of the multiplicative group 

k 
# of binary vector discharges 

8 7 6 5 4 3 2 1 
1 0 0 0 0 0 0 1 1 
2 0 0 0 0 0 1 0 1 
3 0 0 0 0 1 1 1 1 
4 0 0 0 1 0 0 0 1 
5 0 0 1 1 0 0 1 1 
6 0 1 0 1 0 1 0 1 
7 1 1 1 1 1 1 1 1 
8 0 0 0 1 1 0 1 0 
9 0 0 1 0 1 1 1 0 
10 0 1 1 1 0 0 1 0 
11 1 0 0 1 0 1 1 0 
12 1 0 1 0 0 0 0 1 
13 1 1 1 1 1 0 0 0 
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14 0 0 0 1 0 0 1 1 
15 0 0 1 1 0 1 0 1 
16 0 1 0 1 1 1 1 1 

The noted feature of the generalized matrix 
generators of PRN appears for the following 
reasons. The BM algorithm successfully copes with 
defining only one unknown parameter — PrP nf , 
generating matrix generators. In generalized PRN 
generators, in addition to the primitive FE  , the 
unknown is also the irreducible polynomial nf , 
which, together with  , generates the matrix ( )

,
n

f G . 
However, the BM algorithm is not designed to 
calculate the two unknown parameters and, 
therefore, becomes invalid when organizing an 
attack on the generalized PRN generators. That is 
first. Secondly, in any case (whether the conditions 
of applicability of the BM algorithm are satisfied or 
not), the processor implementing the BM algorithm 
always gives as a solution that or the value of PrP of 
n-degree. At the same time, it can build the 
generalized matrix generators of PRN based on IPs, 
not necessarily primitive. 

Can easily extend the results obtained to the 
space of objects (IPs and GGMs) over a simple 
Galois field of arbitrary odd characteristics p. For 
illustration, let us give the generalized matrix ( )

,
n

f G  
of the fourth order over the field 5F , generated by 
the IP 4 13201f   and the primitive FE   . 

 

(4)
,

0 3 0 1
4 2 2 0
0 4 2 2
3 4 0 2

f 

 
 
 
 
 
 

G . 

 
The matrix (4)

,f G  is primitive, and the period of 
the multiplicative group that compiles from it is 
624. 

 
 

4   Key Scientific Findings and Future 
The study results hold significant importance from 
both scientific and practical standpoints due to the 
development of algorithms for constructing crypto-
resistant matrix generators of pseudorandom 
numbers. These generators are based on generalized 
Galois matrices and offer reliable protection against 
Berlekamp-Massey attacks. What factors contribute 
to the enhanced cryptographic strength of the 
proposed pseudorandom number generators when 
compared to PRN generators using classical Galois 
matrices? Two key factors should be noted. 

Firstly, highly sparse matrices, which CGMs fall 
under, may exhibit specific structural patterns that 
compromise the randomness of the PRNG sequence, 
rendering it more susceptible to predictive attacks. 
Secondly, the pronounced sparsity of CGMs 
simplifies the application of Berlekamp-Massey 
attacks, which aim to recover the linear feedback 
structure within the generator. 

Now, let's highlight the distinctive features of 
generalized Galois matrices and the PRN generators 
based on them. Firstly, GGMs contain a higher 
density of random elements than CGMs, resulting in 
the increased cryptographic resilience of the PRN 
generators. Secondly, effective algorithms for 
breaking GGM-based PRN generators, which 
maintain polynomial complexity in calculations, 
have not yet been developed. Any attempt to launch 
a frontal attack on the generator is practically 
unfeasible due to the challenge posed by the 
"nightmare of large numbers," significantly when 
the order of GGM exceeds 30. 
  
 
5  Conclusion 
The main results of this work are: 

1. The variants of construction of binary 
generators of PRN based on the so-called 
generalized Galois and Fibonacci matrices, by 
which the identical binary sequences as the 
sequences formed by the corresponding register 
generators can generate programmatically, have 
been developed. The transition from classical to 
generalized Galois and Fibonacci matrices, 
accompanied by the expansion of the manifold of 
matrix generators of PRN, is provided in two ways. 
Firstly, the expansion of the manifold is achieved by 
increasing the number of primitive elements 
forming generalized matrices since the classical 
PRN generators use only the element equal to 10 in 
the matrices. Secondly, if the matrices of classical 
PRN matrix generators are constructed based on 
primitive polynomials, the IPs, which are not 
necessarily primitive, can be used in the matrices of 
generalized generators.   

2. It is shown that the generalized PRN matrix 
generators are free from the Berlecamp-Messy 
attack. The noted property is a consequence of this 
peculiarity of the Berlecamp-Messy algorithm. 
When classical PRN matrix generators cracked 
using the Berlecamp-Messy algorithm, the problem 
of computing the only unknown, the primitive 
polynomial generating the generating matrix is 
solved. In generalized PRN matrix generators, there 
is a need to determine two unknown parameters: 
both the irreducible polynomial and the generating 
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element that jointly generate the generalized 
matrices, i.e., a problem arises that is intractable for 
the Berlecamp-Messy algorithm by definition. 

3. One of the most promising directions of 
applying generalized Galois and Fibonacci matrices 
is cryptographic applications, particularly the 
construction of crypto-stable systems of stream 
information encryption. 

 
 

References: 

[1]  Blahut R. E. Theory and Practice of Error 

Control Codes. - Addison-Wesley Publishing 
Company Reading, (1984). pp.500, ISBN: 
0201101025 

[2]  Berlekamp E. R. Algebraic Coding Theory, 
New York: McGraw-Hill, 1968. Revised ed., 
Aegean Park Press, (1984). ISBN: 0-89412-
063-8 

[3]  Peterson, W.W., Weldon, E.J. Error 

Correcting Codes, MIT Press, Cambridge, 
MA (1972). pp.560, ISBN: 10: 0262527316 
ISBN: 13: 9780262527316 

[4]  Shu Lin, Daniel Costello Jr. Error Control 

Coding. Fundamentals and Applications. 
Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey (1983). pp.604, ISBN: 0-13-283796-X  

[5]  Schneier, B. Applied Cryptography, Second 

Edition: Protocols, Algorithms, and Source 

Code in C. John Wiley & Sons, New York 
(1996). pp.1027, ISBN: 13: 978-0471117094 

[6]  Smart N. Cryptography: An Introduction, 3rd 
ed. McGraw-Hill College, (2013). pp.436, 
ISBN: 13: 978-0077099879 

[7]  Simon Edwards. Modern Cryptography. 
(1996). pp.170, ISBN: 13: 979-8622477546  

[8]  Stream Ciphers. The results of the open 

foreign cryptology. - (1997). 
http//www/ssl/stu/neva/ 
ru/psw/crypto/potok/str_ciph.htm (Accessed 
Date: 4/8/2023) 

[9]  Beletsky A. Generalized Galois-Fibonacci 

Matrix Generators Pseudorandom Sequences. 
I. J. Computer Network and Information 
Security, 2021, 6, pp.57-69.  
DOI: 10.5815/ijcnis.2021.06.05 

[10]  Beletsky A. Generalized Galois and 

Fibonacci Matrices in Cryptographic 

Applications.  WSEAS Transactions on 
Circuits and Systems, Vol. 21, 2022, Art. #1, 
pp.1-19. DOI: 10.37394/23201.2022.21.1 

[11]  Lidl R., Niederreiter H. Finite Fields. 
Cambridge University Press, (1996). pp.755, 
ISBN: 9780511525926  

[12]  Erin Casey. Berlekamp-Massey Algorithm. 
University of Minnesota, (2000). pp.10. 

[13]  Mullajonov R.V. Generalized Transposition 

of Matrices and Structures of Linear Large-

Scale Systems. Reports of the National 
Academy of Sciences of Ukraine, (2009), No. 
10. pp.27-35.  

[14]  Golomb S.W. Shift Register Sequences, 
Holden-Day, San Francisco CA, (1967).  

 
 
Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The author contributed to the present research at all 
stages, from the problem formulation to the final 
findings and solution. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflict of interest to declare.  
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.22 Anatoly Beletsky

E-ISSN: 2224-2872 197 Volume 22, 2023

https://wseas.com/journals/cas/index.php
https://wseas.com/journals/cas/index.php
https://wseas.com/journals/cas/2022.php
https://wseas.com/journals/articles.php?id=3438
https://wseas.com/journals/cas/2022/a025101-001%282022%29.pdf
https://doi.org/10.37394/23201.2022.21.1
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



