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Abstract: - The field of informatics is the domain that emerged by applying the mathematical logic on 

electronic devices called computers in order to simplify many tasks for humans. The application of informatics 

in all economic and scientific areas is the most important factor that made our civilization reach our current 

phase of development. Nowadays, the experts and even the beginners of informatics are eager to use quantum 

computers. However, there is still an unsolved problem of classical theoretical informatics in ordinary 

electronic computers. It is the famous philosophical problem of the “Millenium Prize” of the Clay Mathematics 

Institute concerning the complexity of problems that has been treated by many other researchers but without 

acceptable sufficient answers. A solution to this problem can make all the fields based on informatics make 

huge progress. And thus, thanks to my short studies about informatics, I present to you this mathematical proof 

that deals with the sets of P problems, NP-Complete problems and NP-Hard problems in the field of classical 

electronic computers in order to prove new formulas about the cardinals of each group of complexity problems 

and about the intersections of each one of these sets. The aim is to contribute to an acceptable solution for this 

Millenium Problem and the methodology is purely logical and mathematical. The readers won’t need any 

complicated notions from the background of previous informatics or mathematics research in order to 

understand the demonstrations of this article since the proof is based only on notions of sets by starting with 

easy logical considerations. Furthermore, you will find in this work a proof of an interesting theorem about the 

complexity of problems that allows us to identify NP-problems even if their algorithms have infinite time of 

execution. This paper ends by proving that the set of NP-Problems is definitely bigger than the set of P-

Problems. Hence, all the readers are invited to understand and develop this work by inspecting the applied 

logical considerations in order to succeed in finding a sufficient solution to the interesting Millenium Problem 

of complexity. 
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1 Introduction 

I've been motivated by my short studies about 

informatics in order to produce a scientific article 

that treats informatics with easy mathematical logic. 

I've also been motivated by my previous work about 

the Landau-Siegel Zeros [1] that may contribute to a 

solution of the Millenium Prize of Riemann 

Hypothesis. Hence, maybe this work can be 

accepted as a contribution for the solution of the 

important Millenium problem about the complexity 

of problems. 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 159 Volume 22, 2023



This work concerns the cardinality and the 

intersections of the P-problems, the  NP problems 

and the NP-Hard problems which are presented in 

many works dealing with the notions of informatics 

and logic [2,3,4]. However, we will focus in this 

article on problems complexity by using the 

ordinary notions available when we deal with 

ordinary computers and not with nondeterministic 

Turing machines (NTM) [5,6,7] or Quantum 

Computers like it is explained in many works 

[8,9,10]. 

Most of the results of this work are made by 

considering that all NP-Hard problems that are not 

NP-Complete problems have higher complexity 

than NP-Complete problems and by considering that 

all NP-Complete problems have one same 

complexity that is directly linked to the value of a 

number M that should exist and which is a fixed 

number of P-Problems. We also supposed the 

existence of a number of inputs that keeps all the P-

Problems with finite times of execution but makes 

all NP-Hard problems with infinite times of 

execution. 

 

 

2 The considered modelling 

Let's consider that each decidable problem can be 

modelled by an algorithm that allows us to give an 

estimation of the execution time of that algorithm. 

The execution time of the algorithms of P problems 

is finite. However, the execution times of NP-Hard 

problems and NP-Complete problems are 

considered infinite since these problems have never 

been completely solved. 

The set of P-problems is composed of elements 

𝑝𝑖   with   𝑖 ∈ ℕ   and   i>0which are simple 

problems that have a finite time of execution. 

All the set of decidable problems respects a law    

where (×⇔ And) is a product that makes the sum 

of the complexities of the problems of this product.                                  

Consequently 𝑝3=p
1
× 𝑝2means that the execution 

of the algorithm of the problem 𝑝3is equivalent to 

the execution of the algorithm of the problem 

𝑝1followed by the execution of the algorithm of the 

problem 𝑝2. Since the execution time of the 

algorithm of the problem 𝑝3is finite, then 𝑝3is also 

an element of the set of P-problems. Consequently, 

an element of the set of P-problems can be a product 

of n elements 𝑝𝑖 with n is a finite natural number. 

Let's consider that there is an element e of the set of 

P problems that has a null time of execution. 

And thus: 

 𝑒 × 𝑝𝑖=p
𝑖
× e=p

𝑖
.                                                 (1)                                                                            

And we don't care in this work about the presence of 

a memory in the used computer.  Hence, our 

computer can repeat executing the same element 𝑝𝑖 

even if it is a solved problem.  

And thus, we consider that we have: 

 𝑝𝑖 × 𝑝𝑖=p
𝑖
2 ≠ 𝑝𝑖                                                    (2)                                 

Hence, we consider that 𝑝𝑖
𝑛is in the set of  P 

problems for any element 𝑝𝑖and for any strictly 

positive natural number n since the problem 

𝑝𝑖
𝑛consists only on repeating the execution of the 

same problem 𝑝𝑖 n finite times. Hence, our 

computer shouldn't consider that 𝑝𝑖
𝑛is an infinite 

loop when n is bigger than a defined value O that 

depends on the computer system otherwise 𝑝𝑖
𝑛 

becomes an undecidable problem. 

 

We consider also that G is a fixed number of inputs 

for all the decidable problems concerned by this 

work. We know that the difference of complexity 

time between P-problems and NP-Hard problems 

increases as G becomes bigger. And thus, we 

suppose the existence of a fixed number of inputs G 

that keeps any P-problem as a product of a finite 

number of elements 𝑝𝑖which means that P-problems 

will keep their finite times of execution, but we 

consider that G is big enough to make all decidable 

NP-Hard problems a product of an infinite number 
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of elements 𝑝𝑖which means that the decidable NP-

Hard problems will have an infinite time of 

execution. This means that even if the number G is 

very big, it keeps the strict order of complexity time 

for ordinary computers. 

We consider that this supposition is possible in the 

computing field and we use this fixed number G in 

all the following demonstrations. 

 

All decidable problems can be modelled by 

algorithms, and we know that the execution time of 

some algorithms can't end even if the algorithm 

doesn't contain any infinite loop. We have no 

solution to these problems and these problems can 

belong to the sets of NP problems or NP-Hard 

problems. There are indeed decision problems that 

are decidable but in the set of NP-Hard problems 

because of the time hierarchy theorem.  

We will focus here on solving the optimization 

corresponding to the decision problem (by using a 

polynomial number of calls to the decision 

problem).  

We can accept that the algorithm execution that 

doesn't end is equivalent to the execution of an 

infinite series of simple problems 𝑝𝑖. The NP-

Complete problems and the decidable NP-Hard 

problems have never been solved even if they have 

algorithms. And thus, the execution times of these 

algorithms can be considered infinite. 

Consequently, we consider that the set of NP-

Complete problems is composed of elements 

𝑐𝑗   with   𝑗 ∈ ℕ   and   j>0 with: 

 𝑐𝑗 = ∏ 𝑝𝑖
+∞
i=1                                                           (3)                             

and we consider that in the set of NP-Hard problems 

there are some elements: ℎ𝑘   with   𝑘 ∈

ℕ   and   k>0 with: 

 ℎ𝑘 = ∏ 𝑝𝑖
+∞
i=1                                                          (4)                                

if  ℎ𝑘 is decidable.                                                                   

However, we can check a solution for any NP-

problem in a finite execution time. Hence, let's 

define an application Check that gives problems of 

finite times of execution if it is possible when it is 

applied to decidable problems. Since NP-problems 

are all verifiable, then the application Check gives P 

problems when it is applied to them. 

In this article Check is an application:  

from: Set of decidable problems to: 

Set of P problems ∪ Set of NP-Hard problems  

 

With: Check(𝑐𝑗) = ∏ 𝑝𝑖
𝑛
i=1    with   𝑛 ∈

ℕ   and   n finite                                                    (5)                                        

 

And since 𝑝𝑖is a solution of 𝑝𝑖then we have also: 

  Check(𝑝𝑖)=p
𝑖
                                                     (6)      

And also: 

  Check(𝑝1 × 𝑝2) = Check(𝑝1) × Check(𝑝2)=p
1
×

𝑝2                                                                        (7)            

with:Check(𝑒)=e.                                               (8)                                                                             

However, since we don't know if NP = P or not, it is 

still hard to say if we can verify a NP-Hard problem 

in polynomial time or not. Hence, we don't check in 

this work a solution for NP-Hard problems, and we 

have to accept that :  

Check(ℎ𝑘)=h𝑘 with ℎ𝑘 has an infinite time of 

execution.                                                              (9)  

We conclude that: 𝑝𝑖 ∈ Set of P problems ⇔

Check(𝑝𝑖)=p
𝑖
                                                       (10)      

And: 

  𝑐𝑗 ∈ Set of NP-Complete problems ⇔

Check(𝑐𝑗) = ∏ 𝑝𝑖
𝑛
i=1    with   𝑛 ∈ ℕ   and   n finite    

                                                                         (11)      
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This useful result from the considerations will 

allow us to develop a logical mathematical proof 

about the sets of complexity. 

The compilators of each programmation language 

can propose programs that can count the number 

of operations necessary for the execution of a 

studied algorithm that is equivalent to a problem of 

a given complexity. 

 

 

3 A comparison between NP-

Complete problems and NP-Hard 

problems 

We remark that: 

 Check(𝑐𝑗) = Check(∏ 𝑝𝑖
+∞
i=1 ) =

∏ 𝑝𝑚
𝑛
m=1    with   𝑛 ∈ ℕ   and   n finite              (12)                                        

Hence: 

  ∏ 𝑝𝑖
𝑛
i=1 × Check(∏ 𝑝𝑖

+∞
i=n+1 ) = ∏ 𝑝𝑚

𝑛
m=1           (13)                                                                              

We have always: 

 ∏ 𝑝𝑖
𝑛
i=1 ≠ ∏ 𝑝𝑚

𝑛
m=1                                              (14)                                                       

otherwise we would have: 

 Check(∏ 𝑝𝑖
+∞
i=n+1 )=e                                            (15)                                

which is impossible since we have : 

 ∏ 𝑝𝑖
+∞
i=n+1 ≠ 𝑒 for all elements 𝑝𝑖.                       (16)                      

Let's consider that A is the inverse of ∏ 𝑝𝑖
𝑛
i=1  .    (17)                                                                           

Hence we have: 

 Check(∏ 𝑝𝑖
+∞
i=n+1 ) = ∏ 𝑝𝑚

𝑛
m=1 × 𝐴                    (18)                                                            

We also have: 

 ∏ 𝑝𝑖
+∞
i=n+1 = ∏ 𝑝n+i

+∞
i=1                                         (19)                                                             

Consequently: 

 ∏ 𝑝𝑚
𝑛
m=1 × A=Check(∏ 𝑝n+i

+∞
i=1 )                      (20)                                                                                         

 We don't know if the decidable element ∏ 𝑝n+i
+∞
i=1  is 

verifiable (checkable) or not. Hence we consider 

that A is an element of the set of  NP-Hard 

problems. 

And we can change n in this method with n+l with l 

is an integer with l>-n because if we have  𝑝3=p
1
×

𝑝2 then 𝑝3 is also an element  of the set of P 

problems. 

However, by using the new discovered element A, 

we can discover many other elements ℎ𝑖 of the set 

of NP-Hard problems that have a bigger complexity 

only by considering that ℎ𝑖=A× 𝑑𝑖 where 𝑑𝑖can be 

any element of the set of decidable problems. 

Finally we proved that each element 𝑐𝑗 of the set of 

the NP-Complete problems produces many new 

elements ℎ𝑖 that have an algorithm with an infinite 

time of execution and that we can't check easily 

because we can't deduce obviously the algorithm of 

the problem A from the algorithm of its inverse that 

is in with the help of the application Check. 

 We conclude that each 𝑐𝑗produces at least D 

elements of the set of the NP-Hard problems with 

D=card(Set of decidable problems). 

And thus: 

card(Set of NP-Hard problems) ≥

card(Set of decidable problems) ×

card(Set of NP-Complete problems)                  (21)                  

                                                                                                                                                      

Let's remember that there exist many undecidable 

problems in the set of NP-Hard problems such as 

the Turing halting problem. For these kinds of 

problems, there is no algorithm that can answer 

correctly on all inputs. 

 

4 The cardinal of NP-Complete 

problems 

If we make the product of all the elements 𝑝𝑖 of the 

set of P problems, then we get a bigger problem B 
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that has an algorithm of an infinite time of execution 

since the number of the elements of the set of P 

problems can be considered infinite. However the 

problem B is decidable since it can be modeled by 

an algorithm that represents the product of problems 

𝑝𝑖. 

Thanks to the time hierarchy theorem, if we want to 

reduce that complexity of the problem B then we 

have to avoid executing some problems that belong 

to the product of problems 𝑝𝑖 when we are 

executing the algorithm of problem B. 

If we want to remove an element 𝑝𝑖 from this 

product (by multiplying B with the inverse of  𝑝𝑖) , 

then we have a number of possibilities equal to 

card(Set of P problems).                                   (22) 

We consider that each possibility of this new 

product is 𝐵𝑖. If we want to remove an other element 

𝑝𝑗 from a product 𝐵𝑖 (by multiplying 𝐵𝑖 with the 

inverse of  𝑝𝑗) , then we have another number of 

possibilities equal to  card(Set of P problems). This 

is because the inverse of 𝑝𝑗 removes only the 

element 𝑝𝑗 but not the element 𝑝𝑗
𝑛 where n can be 

any positive natural number. Furthermore, 𝑝𝑗
n+1 

always exists in the the product of problems 𝑝𝑖that 

makes B since n+1 is also finite.                                              

We consider that each possibility of this new 

product is 𝐵ij.  

 

We repeat the same operation L times with 

card(Set of P problems) − L=+∞                    (23)           

And this operation allows us to create a set DC of N 

decidable elements 𝐶𝑘   with   0<k<N+1 and each 

𝐶𝑘 = ∏ 𝑝𝑖
+∞
i=1  is a problem that has an algorithm 

with an infinite time of execution, and we have:  

N=(card(Set of P problems))
𝐿
                       (24)                                                                                                   

L can even have an infinite value but in order to 

have: 𝐶𝑘 ∈ Set of NP-Hard problems ∩

Set of decidable problems                               (25)                                                                                        

We should always have: 

 card(Set of P problems) − L=+∞                  (26)                                                                       

We know that when L increases, the complexity of 

the problems 𝐶𝑘decreases, and thus we can find the 

smallest value M that reduces the complexity of all 

the problems 𝐶𝑘 when L=M such as we get: 𝐶𝑘 ∈

Set of NP-Complete problems .                 (27)                                                                                  

This means that with  L=M we have  

Set of NP-Complete problems ⊆ DC.                (28)                

Consideration: 

Despite its high complexity, each NP-Complete 

problem can be reduced to another NP-Complete 

problem and vice versa since NP-Complete 

problems are also NP problems. Hence, let's 

consider that all NP-Complete problems have the 

same complexity time that is directly linked to the 

value of M. We consider that if the value of L 

decreases then all the elements of the set DC 

become NP-Hard problems. This is because we 

consider that all NP-Hard problems that are not NP-

Complete problems have higher complexity than 

NP-Complete problems. 

This means that with  L=M we have  

Set of NP-Complete problems=DC .                  (29)                

In this case, we have:  

card(Set of NP-Complete problems) =

(card(Set of P problems))
𝑀

                                (30)          

 

This result is an equation that allows us also to 

understand the difference between the cardinals of 

the set of NP-Complete problems and the set of P-

problems even if these two sets have both infinite 

cardinals.                   

 

5 The bijection that links P problems 

and the set of decidable problems 

Let's consider that PW is the power set of the set of 

P problems with the decidable problem e removed. 
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Let's consider that PW𝑖   with   i>0 are the sets that 

are elements of PW except the element: {∅} (the 

empty set) that we won't use. 

Let's consider an application G defined:  

from the set PW ∖ {∅} to Set of decidable problems 

with: 𝐺(PW𝑖) equals the product of all the elements 

of PW𝑖. 

Since the elements PW𝑖 are all the possible subsets 

of the set of P problems, then the elements 𝐺(PW𝑖) 

are all the possible elements of the set of decidable 

problems with the decidable problem e removed. 

Hence, the application G is a bijection between:  

PW ∖ {∅}  

and the set of decidable problems considered 

without the element e. 

 

And thus: 

  card(Set of decidable problems) − 1 =

2card(Set of P problems)−1 − 1                                  (31)                     

 

Consequently: 

card(Set of decidable problems) =

2card(Set of P problems)−1                                         (32)                                                                                                                                                                      

We can deduce that: 

 card(Set of P problems) ≤ 2card(Set of P problems)−1                                     

                                                                     (33)                   

And:  card(Set of NP problems) ≤

2card(Set of P problems)−1                                                         

                                                                     (34)                     

And also: 

 card(Set of NP-Complete problems) ≤

2card(Set of P problems)−1                                         (35)        

This result is a new attempt to compare the 

cardinals of the set of NP-Complete problems and 

the set of P-problems even if these two sets have 

both infinite cardinals.                 

 

 

6 First conclusions and remarks 

We can deduce from formula (21) and formula (31) 

that:  

card(Set of NP-Hard problems) ≥

2card(Set of P problems)−1 ×

card(Set of NP-Complete problems)                  (36)                                                                                                                                                                                     

And thus, we can deduce from formula (35) and 

formula (36) that: 

  card(Set of NP-Complete problems) ≤

card(Set of NP-Hard problems)

card(Set of NP-Complete problems)
                                  (37)        

Which is equivalent to: 

  card(Set of NP-Complete problems) ≤

√card(Set of NP-Hard problems)                      (38)                           

 

And we can also conclude from formula (30) and 

formula (35) that: 

(card(Set of P problems))
𝑀
≤

2card(Set of P problems)−1                                         (39)                                                  

 

where M is the smallest value that reduces the 

complexity of the elements of the Set DC into the 

complexity of NP-Complete problems. However, 

we should always have card(Set of P problems) −

M=+∞.  

Furthermore, the value of 

(card(Set of P problems))
𝑀

 increases when M 

increases. 
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After this step, we have new formulae that allow us 

to develop logical mathematical demonstrations 

about the sets of complexity especially by using 

their cardinals. 

 

7 Investigating the value of M that 

reduces the complexity of the elements 

of the Set DC into the complexity of 

NP-Complete problems 

Now we should compare : 

(card(Set of P problems))
𝑀

  

and:  2card(Set of P problems)−1 =
2card(Set of P problems)

2
  

Let's consider that: 

 M=
card(Set of P problems)

𝑥
 with x>1.                         (40)                                    

Hence, we have: 

(card(Set of P problems))
𝑀
=

(card(Set of P problems))
card(Set of P problems)

𝑥            (41)                                                                                                                                                    

And thus: 

(card(Set of P problems))
𝑀
=

((card(Set of P problems))
1

𝑥)
card(Set of P problems)

 (42)                                                                                                                                                                                

However ((card(Set of P problems))
1

𝑥) is infinite 

for any finite positive number x. 

 

We conclude that if M=
card(Set of P problems)

𝑥
 with x>1,  

then we have: (card(Set of P problems))
𝑀

 is much 

bigger than 2card(Set of P problems)−1. 

 

Consequently, we should have: 

M<
card(Set of P problems)

𝑥
     ∀x>1    and  x finite     (43)                    

 

This easy mathematical result characterizes the 

point M. However, other characteristics can be 

deduced about the point M in order to develop easy 

other demonstrations about the sets of complexity.  

 

8 Second conclusions and remarks 

If we make the set DC by using M with: 

card(Set of P problems) −M=+∞  

but 𝑀 ≥
card(Set of P problems)

𝑥
                           

with x is a real positive finite number, then we have: 

(card(Set of P problems))
𝑀
>

2card(Set of P problems)−1  

which makes a contradiction.  

And thus, we have always: M<
card(Set of P problems)

𝑥
     

∀x>1    and  x finite .                   

          

We remark that when a decidable problem 𝑑𝐻 is 

expressed as: 𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1                                   (44) 

where H is a natural number that respects 

H=card(Set of P problems) − N'=+∞                 (45)                

with: N' ≥
card(Set of P problems)

𝑥
>M          with x is a 

finite real number with x>1                            (46)                                                          

Then we have: 

 𝐻 ≤
card(Set of P problems)×(𝑥−1)

𝑥
                             (47)                                                       
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we can also have x bigger that 1 but very close to 1 

and consider that x=1+, and this can be useful as 

demonstrated in the final results of this article since 

it still allows that: 

  
card(Set of P problems)×(𝑥−1)

𝑥
> 0 . 

Furthermore, the problem: 𝑑𝐻stays a decidable 

problem because the number H exists and we can 

also have H=+∞. However we should also remark 

from the previous paragraphs that 𝑑𝐻 in this case 

has a complexity of NP-Problems since N>M.  

 

Theorem:  

When a decidable problem 𝑑𝐻 is expressed as:  

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1  where 𝑝𝑖 are P problems that have a 

finite time of execution 

If we have 𝐻 ≤ card(Set of P problems) × (1 −
1

𝑥
)  

where x is a finite real number with x>1 

then the problem 𝑑𝐻is a NP-Problem.  

 

Remark: This new theorem about NP-Complete 

problems doesn’t require that 𝒙 = 𝟏+. This 

theorem can be very useful for the readers who 

aim to make personal demonstrations about the 

sets of complexity or to propose a personal solution 

for the Millenium Problem of Clay Mathematics 

about complexity problems (P=NP ?). 

An artificial intelligence can also be useful to 

compare and verify any proposed demonstrations 

to this problem based on principles of informatics 

theory. 

 

 

9 Investigation about NP-Problems 
 

NB: This part of the article is a personal attempt 

to easily finish the demonstration concerning the 

millennium problem P=NP. This part of the 

demonstration needs that the existence of the two 

considered numbers “z” and “ n’ ” be logically 

possible in the field of computer science by 

taking in consideration the mathematical logics 

respected in this article. 

 

Let's consider a decidable problem 𝑑𝐻 expressed as 

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1                                                         (48) 

where𝑝𝑖 are P problems that have a finite time of 

execution with: 

  𝐻 ≤ card(Set of P problems) × (1 −
1

𝑧
)  where 

z>1.                                                                 (49)    

The problem 𝑑𝐻is a NP-Problem. Consequently, 

let's find the cardinal of the set DH of all the 

possibilities of the problems 𝑑HJsimilar to 𝑑𝐻. 

Since  𝐻 ≤ card(Set of P problems) × (1 −
1

𝑧
) for 

each 𝑑HJ = ∏ 𝑝𝑖
𝐻
i=1 in DH, then we consider that H 

is the integer part of card(Set of P problems) ×

(1 −
1

𝑧
). 

Consequently, we write: 

H= [card(Set of P problems) × (1 −
1

𝑧
)]             (50)                                       

 

Hence, the number of possibilities of 𝑑HJcan be 

expressed as: 

 D=(card(Set of P problems))
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

                                                              

                                                                                             (51)                                     

 

And thus: 

  card(DH) =

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0    

                                                                                                            (52)                                                                                                                           
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We remark that:     card(DH) ≥

card(Set of P problems)                 (53)                                                               

                         

However, we defined the Set DH as a set that 

respects: DH ⊂ Set of NP-problems                   (54) 

 

Which means that: 

card(DH)<card(Set of NP-problems)                (55)                                                      

Which is equivalent to: 

card(Set of NP-problems) >

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0
  

                                                                       (56)                                                                                 

And we conclude that: 

card(Set of P problems)<card(Set of NP-problems)                                

                                                                         (57)             

Which means that: 

 𝑃 ≠ NP                                                              (58)                                              

However, since we have: 

card(Set of NP problems) ≤ 2card(Set of P problems)−1                                      

Then we have in this case: 

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0 <

2card(Set of P problems)−1                                                                                                                     

                                                                        (59) 

And thus we should check if this is a contradiction 

for any real number z with  z>1. 

Let's consider that z=
card(Set of P problems)

card(Set of P problems)−n'
 where n' 

has a natural positive value.                      (60)                   

 

In this case, even if card(Set of P problems) can be 

considered infinite, we should find a big natural 

number n' in order to have at least z=1+ > 1 .    (61)                                                                                                                             

and we have : [card(Set of P problems) ×

(1 −
1

𝑧
)] − J=n'− 𝐽                                          (62)                                  

And we have: [card(Set of P problems) ×

(1 −
1

𝑧
)] − 1=n'− 1                                         (63)                                                 

 

Hence, if z=
card(Set of P problems)

card(Set of P problems)−n'
 then: 

 

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0
=

∑ cardn'−1
i=0 (Set of P problems)n'−𝑖                                               (64)    

                                                                                                                                                     

And if n' allows also to respect the scale of limits 

then we have: 

 2card(Set of  P problems)−1>card(Set of NP problems)n'+1>n'×

card(Set of NP problems)n' > ∑ cardn'−1
i=0 (Set of P problems)n'−𝑖                     

                                                                        (65)                                                                                                                          

And thus, if z=
card(Set of P problems)

card(Set of P problems)−n'
  where n' exists, 

 

then this formula stays correct: 

 

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0 <

2card(Set of P problems)−1                                                       (66)                                                                            

However we should choose the appropriate number 

n' that is big enough to be significant compared to 

card(Set of P problems) in order to verify the 

formula (61) and the formula (66) at the same time.  

We conclude that if we find the appropriate real 

number z that prevents formula (66) from being a 

contradiction, then we can accept this conclusion: 

Final conclusion depending on the taken 

considerations:  

We have: 

card(Set of P problems)<card(Set of NP-problems)                                                  
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And thus: 𝑃 ≠ NP.            

 

10  Conclusion 

The results of this work are made by considering 

that:  

1) A fixed number of inputs G exists and can be 

defined in the field of computing such as G keeps 

any P-problem as a product of a finite number of 

P-problems pi, but G is big enough to make all 

decidable NP-Hard problems a product of an 

infinite number of elements pi. 

2) All NP-Hard problems that are not NP-

Complete problems have higher complexity than 

NP-Complete problems and by considering that 

all NP-Complete problems have one same 

complexity that is directly linked to the value of a 

number M that should exist and which is a fixed 

number of P-Problems. M should have a natural 

value that respects: M<
card(Set of P problems)

x
     

∀x>1    and  x finite. 

3) The appropriate real number z that prevents 

formula (66) from being a contradiction exists 

and can be defined in the computing field. 

 

We proved in this article by using these 

considerations that:  

card(Set of NP-Hard problems) ≥

card(Set of decidable problems) ×

card(Set of NP-Complete problems)  

And also: card(Set of NP-Complete problems) =

(card(Set of P problems))
𝑀

   

where M is the smallest value that reduces the 

complexity of the elements of the Set DC presented 

above into the complexity of NP-Complete 

problems.  

However, we should always have 

card(Set of P problems) −M=+∞.  

We proved also that: 

card(Set of decidable problems) =

2card(Set of P problems)−1                                                                                                                                                      

Hence, we deduced that:  card(Set of P problems) ≤

2card(Set of P problems)−1                                              

And:  card(Set of NP problems) ≤

2card(Set of P problems)−1                                                                     

And also:  card(Set of NP-Complete problems) ≤

2card(Set of P problems)−1       

We concluded that: 

card(Set of NP-Hard problems) ≥

2card(Set of P problems)−1 ×

card(Set of NP-Complete problems)                                                                                                                                                    

And that: card(Set of NP-Complete problems) ≤

card(Set of NP-Hard problems)

card(Set of NP-Complete problems)
                                

Which is equivalent to: 

  card(Set of NP-Complete problems) ≤

√card(Set of NP-Hard problems)                                         

 

We could also conclude that: 

(card(Set of P problems))
𝑀
≤

2card(Set of P problems)−1  

with always M<
card(Set of P problems)

𝑥
     

∀x>0    and  x finite 

And we proved that: 

card(Set of NP-problems)

> ∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

[card(Set of P problems)×(1−
1

𝑧
)]−1

J=0

 

 

Finally we concluded this theorem: 
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When a decidable problem 𝑑𝐻 is expressed as:  

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1  where 𝑝𝑖 are P problems that have a 

finite time of execution 

If x is a finite real number with x>1, then we have: 

 (x is a finite real number with x>1   and   𝐻 ≤

card(Set of P problems) × (1 −
1

𝑥
)) ⇒

𝑑𝐻  is a NP-Problem  

 

And if we can define in the field of computer 

science the considered number “z” that prevents 

the following formula from being a contradiction:  

 

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

[card(Set of P problems)×(1−
1

𝑧
)]−1

J=0

< 2card(Set of P problems)−1 

 

then this allows to make this conclusion:  

 

We have: 

card(Set of P problems)<card(Set of NP-problems) 

And thus: 𝑃 ≠ NP. 

NB: the value of the number “M” can be studied 

further in order to find new mathematical 

characteristics that allow finding a solution to the 

problems of complexity sets without needing to 

find the considered numbers “z” and “ n’ ”. 

 

Final conclusion: 

The Millenium problem (P=NP ?) is not only a 

problem of informatics but also a logical 

philosophical problem. A solution to this Clay 

Mathematics problem will allow us to classify 

logical problems better in order to find the suitable 

computer for each kind of problems which will 

allow us to enhance the efficiency of all the fields 

that need informatics. 

This proof can also be useful as a basis for the 

researchers who deal with Quantum Computers. 

Furthermore, the value of the demonstrated 

number “M” can be studied further in order to 

find a solution to this Millenium problem without 

needing to find the considered number “z”. 

The readers are invited to this opportunity in order 

to investigate the proposed logical considerations 

for a solution to this important Clay Mathematics 

Millenium problem. 
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