
A proof that the set of NP-problems is bigger than the set of P-problems

by using a logical consideration

AKRAM LOUIZ

Informatics

Landshut Hochschule, Germany

Coopérative Essalam, Rue Kacem Amine, N°10, Settat

MOROCCO

Abstract: - The field of informatics is the domain that emerged by applying the mathematical logic on

electronic devices called computers in order to simplify many tasks for humans. The application of informatics

in all economic and scientific areas is the most important factor that made our civilization reach our current

phase of development. Nowadays, the experts and even the beginners of informatics are eager to use quantum

computers. However, there is still an unsolved problem of classical theoretical informatics in ordinary

electronic computers. It is the famous philosophical problem of the “Millenium Prize” of the Clay Mathematics

Institute concerning the complexity of problems that has been treated by many other researchers but without

acceptable sufficient answers. A solution to this problem can make all the fields based on informatics make

huge progress. And thus, thanks to my short studies about informatics, I present to you this mathematical proof

that deals with the sets of P problems, NP-Complete problems and NP-Hard problems in the field of classical

electronic computers in order to prove new formulas about the cardinals of each group of complexity problems

and about the intersections of each one of these sets. The aim is to contribute to an acceptable solution for this

Millenium Problem and the methodology is purely logical and mathematical. The readers won’t need any

complicated notions from the background of previous informatics or mathematics research in order to

understand the demonstrations of this article since the proof is based only on notions of sets by starting with

easy logical considerations. Furthermore, you will find in this work a proof of an interesting theorem about the

complexity of problems that allows us to identify NP-problems even if their algorithms have infinite time of

execution. This paper ends by proving that the set of NP-Problems is definitely bigger than the set of P-

Problems. Hence, all the readers are invited to understand and develop this work by inspecting the applied

logical considerations in order to succeed in finding a sufficient solution to the interesting Millenium Problem

of complexity.

Key-Words: - P problems ; NP problems ; NP-Complete problems ; NP-Hard problems ; complexity ;

cardinality ; set ; execution time; Clay Mathematics; Millenium problem.

Received: June 9, 2022. Revised: July 25, 2023. Accepted: September 8, 2023. Published: October 3, 2023.

1 Introduction

I've been motivated by my short studies about

informatics in order to produce a scientific article

that treats informatics with easy mathematical logic.

I've also been motivated by my previous work about

the Landau-Siegel Zeros [1] that may contribute to a

solution of the Millenium Prize of Riemann

Hypothesis. Hence, maybe this work can be

accepted as a contribution for the solution of the

important Millenium problem about the complexity

of problems.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 159 Volume 22, 2023

This work concerns the cardinality and the

intersections of the P-problems, the NP problems

and the NP-Hard problems which are presented in

many works dealing with the notions of informatics

and logic [2,3,4]. However, we will focus in this

article on problems complexity by using the

ordinary notions available when we deal with

ordinary computers and not with nondeterministic

Turing machines (NTM) [5,6,7] or Quantum

Computers like it is explained in many works

[8,9,10].

Most of the results of this work are made by

considering that all NP-Hard problems that are not

NP-Complete problems have higher complexity

than NP-Complete problems and by considering that

all NP-Complete problems have one same

complexity that is directly linked to the value of a

number M that should exist and which is a fixed

number of P-Problems. We also supposed the

existence of a number of inputs that keeps all the P-

Problems with finite times of execution but makes

all NP-Hard problems with infinite times of

execution.

2 The considered modelling

Let's consider that each decidable problem can be

modelled by an algorithm that allows us to give an

estimation of the execution time of that algorithm.

The execution time of the algorithms of P problems

is finite. However, the execution times of NP-Hard

problems and NP-Complete problems are

considered infinite since these problems have never

been completely solved.

The set of P-problems is composed of elements

𝑝𝑖 with 𝑖 ∈ ℕ and i>0which are simple

problems that have a finite time of execution.

All the set of decidable problems respects a law

where (×⇔ And) is a product that makes the sum

of the complexities of the problems of this product.

Consequently 𝑝3=p
1
× 𝑝2means that the execution

of the algorithm of the problem 𝑝3is equivalent to

the execution of the algorithm of the problem

𝑝1followed by the execution of the algorithm of the

problem 𝑝2. Since the execution time of the

algorithm of the problem 𝑝3is finite, then 𝑝3is also

an element of the set of P-problems. Consequently,

an element of the set of P-problems can be a product

of n elements 𝑝𝑖 with n is a finite natural number.

Let's consider that there is an element e of the set of

P problems that has a null time of execution.

And thus:

 𝑒 × 𝑝𝑖=p
𝑖
× e=p

𝑖
. (1)

And we don't care in this work about the presence of

a memory in the used computer. Hence, our

computer can repeat executing the same element 𝑝𝑖

even if it is a solved problem.

And thus, we consider that we have:

 𝑝𝑖 × 𝑝𝑖=p
𝑖
2 ≠ 𝑝𝑖 (2)

Hence, we consider that 𝑝𝑖
𝑛is in the set of P

problems for any element 𝑝𝑖and for any strictly

positive natural number n since the problem

𝑝𝑖
𝑛consists only on repeating the execution of the

same problem 𝑝𝑖 n finite times. Hence, our

computer shouldn't consider that 𝑝𝑖
𝑛is an infinite

loop when n is bigger than a defined value O that

depends on the computer system otherwise 𝑝𝑖
𝑛

becomes an undecidable problem.

We consider also that G is a fixed number of inputs

for all the decidable problems concerned by this

work. We know that the difference of complexity

time between P-problems and NP-Hard problems

increases as G becomes bigger. And thus, we

suppose the existence of a fixed number of inputs G

that keeps any P-problem as a product of a finite

number of elements 𝑝𝑖which means that P-problems

will keep their finite times of execution, but we

consider that G is big enough to make all decidable

NP-Hard problems a product of an infinite number

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 160 Volume 22, 2023

of elements 𝑝𝑖which means that the decidable NP-

Hard problems will have an infinite time of

execution. This means that even if the number G is

very big, it keeps the strict order of complexity time

for ordinary computers.

We consider that this supposition is possible in the

computing field and we use this fixed number G in

all the following demonstrations.

All decidable problems can be modelled by

algorithms, and we know that the execution time of

some algorithms can't end even if the algorithm

doesn't contain any infinite loop. We have no

solution to these problems and these problems can

belong to the sets of NP problems or NP-Hard

problems. There are indeed decision problems that

are decidable but in the set of NP-Hard problems

because of the time hierarchy theorem.

We will focus here on solving the optimization

corresponding to the decision problem (by using a

polynomial number of calls to the decision

problem).

We can accept that the algorithm execution that

doesn't end is equivalent to the execution of an

infinite series of simple problems 𝑝𝑖. The NP-

Complete problems and the decidable NP-Hard

problems have never been solved even if they have

algorithms. And thus, the execution times of these

algorithms can be considered infinite.

Consequently, we consider that the set of NP-

Complete problems is composed of elements

𝑐𝑗 with 𝑗 ∈ ℕ and j>0 with:

 𝑐𝑗 = ∏ 𝑝𝑖
+∞
i=1 (3)

and we consider that in the set of NP-Hard problems

there are some elements: ℎ𝑘 with 𝑘 ∈

ℕ and k>0 with:

 ℎ𝑘 = ∏ 𝑝𝑖
+∞
i=1 (4)

if ℎ𝑘 is decidable.

However, we can check a solution for any NP-

problem in a finite execution time. Hence, let's

define an application Check that gives problems of

finite times of execution if it is possible when it is

applied to decidable problems. Since NP-problems

are all verifiable, then the application Check gives P

problems when it is applied to them.

In this article Check is an application:

from: Set of decidable problems to:

Set of P problems ∪ Set of NP-Hard problems

With: Check(𝑐𝑗) = ∏ 𝑝𝑖
𝑛
i=1 with 𝑛 ∈

ℕ and n finite (5)

And since 𝑝𝑖is a solution of 𝑝𝑖then we have also:

 Check(𝑝𝑖)=p
𝑖
 (6)

And also:

 Check(𝑝1 × 𝑝2) = Check(𝑝1) × Check(𝑝2)=p
1
×

𝑝2 (7)

with:Check(𝑒)=e. (8)

However, since we don't know if NP = P or not, it is

still hard to say if we can verify a NP-Hard problem

in polynomial time or not. Hence, we don't check in

this work a solution for NP-Hard problems, and we

have to accept that :

Check(ℎ𝑘)=h𝑘 with ℎ𝑘 has an infinite time of

execution. (9)

We conclude that: 𝑝𝑖 ∈ Set of P problems ⇔

Check(𝑝𝑖)=p
𝑖
 (10)

And:

 𝑐𝑗 ∈ Set of NP-Complete problems ⇔

Check(𝑐𝑗) = ∏ 𝑝𝑖
𝑛
i=1 with 𝑛 ∈ ℕ and n finite

 (11)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 161 Volume 22, 2023

This useful result from the considerations will

allow us to develop a logical mathematical proof

about the sets of complexity.

The compilators of each programmation language

can propose programs that can count the number

of operations necessary for the execution of a

studied algorithm that is equivalent to a problem of

a given complexity.

3 A comparison between NP-

Complete problems and NP-Hard

problems

We remark that:

 Check(𝑐𝑗) = Check(∏ 𝑝𝑖
+∞
i=1) =

∏ 𝑝𝑚
𝑛
m=1 with 𝑛 ∈ ℕ and n finite (12)

Hence:

 ∏ 𝑝𝑖
𝑛
i=1 × Check(∏ 𝑝𝑖

+∞
i=n+1) = ∏ 𝑝𝑚

𝑛
m=1 (13)

We have always:

 ∏ 𝑝𝑖
𝑛
i=1 ≠ ∏ 𝑝𝑚

𝑛
m=1 (14)

otherwise we would have:

 Check(∏ 𝑝𝑖
+∞
i=n+1)=e (15)

which is impossible since we have :

 ∏ 𝑝𝑖
+∞
i=n+1 ≠ 𝑒 for all elements 𝑝𝑖. (16)

Let's consider that A is the inverse of ∏ 𝑝𝑖
𝑛
i=1 . (17)

Hence we have:

 Check(∏ 𝑝𝑖
+∞
i=n+1) = ∏ 𝑝𝑚

𝑛
m=1 × 𝐴 (18)

We also have:

 ∏ 𝑝𝑖
+∞
i=n+1 = ∏ 𝑝n+i

+∞
i=1 (19)

Consequently:

 ∏ 𝑝𝑚
𝑛
m=1 × A=Check(∏ 𝑝n+i

+∞
i=1) (20)

 We don't know if the decidable element ∏ 𝑝n+i
+∞
i=1 is

verifiable (checkable) or not. Hence we consider

that A is an element of the set of NP-Hard

problems.

And we can change n in this method with n+l with l

is an integer with l>-n because if we have 𝑝3=p
1
×

𝑝2 then 𝑝3 is also an element of the set of P

problems.

However, by using the new discovered element A,

we can discover many other elements ℎ𝑖 of the set

of NP-Hard problems that have a bigger complexity

only by considering that ℎ𝑖=A× 𝑑𝑖 where 𝑑𝑖can be

any element of the set of decidable problems.

Finally we proved that each element 𝑐𝑗 of the set of

the NP-Complete problems produces many new

elements ℎ𝑖 that have an algorithm with an infinite

time of execution and that we can't check easily

because we can't deduce obviously the algorithm of

the problem A from the algorithm of its inverse that

is in with the help of the application Check.

 We conclude that each 𝑐𝑗produces at least D

elements of the set of the NP-Hard problems with

D=card(Set of decidable problems).

And thus:

card(Set of NP-Hard problems) ≥

card(Set of decidable problems) ×

card(Set of NP-Complete problems) (21)

Let's remember that there exist many undecidable

problems in the set of NP-Hard problems such as

the Turing halting problem. For these kinds of

problems, there is no algorithm that can answer

correctly on all inputs.

4 The cardinal of NP-Complete

problems

If we make the product of all the elements 𝑝𝑖 of the

set of P problems, then we get a bigger problem B

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 162 Volume 22, 2023

that has an algorithm of an infinite time of execution

since the number of the elements of the set of P

problems can be considered infinite. However the

problem B is decidable since it can be modeled by

an algorithm that represents the product of problems

𝑝𝑖.

Thanks to the time hierarchy theorem, if we want to

reduce that complexity of the problem B then we

have to avoid executing some problems that belong

to the product of problems 𝑝𝑖 when we are

executing the algorithm of problem B.

If we want to remove an element 𝑝𝑖 from this

product (by multiplying B with the inverse of 𝑝𝑖) ,

then we have a number of possibilities equal to

card(Set of P problems). (22)

We consider that each possibility of this new

product is 𝐵𝑖. If we want to remove an other element

𝑝𝑗 from a product 𝐵𝑖 (by multiplying 𝐵𝑖 with the

inverse of 𝑝𝑗) , then we have another number of

possibilities equal to card(Set of P problems). This

is because the inverse of 𝑝𝑗 removes only the

element 𝑝𝑗 but not the element 𝑝𝑗
𝑛 where n can be

any positive natural number. Furthermore, 𝑝𝑗
n+1

always exists in the the product of problems 𝑝𝑖that

makes B since n+1 is also finite.

We consider that each possibility of this new

product is 𝐵ij.

We repeat the same operation L times with

card(Set of P problems) − L=+∞ (23)

And this operation allows us to create a set DC of N

decidable elements 𝐶𝑘 with 0<k<N+1 and each

𝐶𝑘 = ∏ 𝑝𝑖
+∞
i=1 is a problem that has an algorithm

with an infinite time of execution, and we have:

N=(card(Set of P problems))
𝐿
 (24)

L can even have an infinite value but in order to

have: 𝐶𝑘 ∈ Set of NP-Hard problems ∩

Set of decidable problems (25)

We should always have:

 card(Set of P problems) − L=+∞ (26)

We know that when L increases, the complexity of

the problems 𝐶𝑘decreases, and thus we can find the

smallest value M that reduces the complexity of all

the problems 𝐶𝑘 when L=M such as we get: 𝐶𝑘 ∈

Set of NP-Complete problems . (27)

This means that with L=M we have

Set of NP-Complete problems ⊆ DC. (28)

Consideration:

Despite its high complexity, each NP-Complete

problem can be reduced to another NP-Complete

problem and vice versa since NP-Complete

problems are also NP problems. Hence, let's

consider that all NP-Complete problems have the

same complexity time that is directly linked to the

value of M. We consider that if the value of L

decreases then all the elements of the set DC

become NP-Hard problems. This is because we

consider that all NP-Hard problems that are not NP-

Complete problems have higher complexity than

NP-Complete problems.

This means that with L=M we have

Set of NP-Complete problems=DC . (29)

In this case, we have:

card(Set of NP-Complete problems) =

(card(Set of P problems))
𝑀

 (30)

This result is an equation that allows us also to

understand the difference between the cardinals of

the set of NP-Complete problems and the set of P-

problems even if these two sets have both infinite

cardinals.

5 The bijection that links P problems

and the set of decidable problems

Let's consider that PW is the power set of the set of

P problems with the decidable problem e removed.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 163 Volume 22, 2023

Let's consider that PW𝑖 with i>0 are the sets that

are elements of PW except the element: {∅} (the

empty set) that we won't use.

Let's consider an application G defined:

from the set PW ∖ {∅} to Set of decidable problems

with: 𝐺(PW𝑖) equals the product of all the elements

of PW𝑖.

Since the elements PW𝑖 are all the possible subsets

of the set of P problems, then the elements 𝐺(PW𝑖)

are all the possible elements of the set of decidable

problems with the decidable problem e removed.

Hence, the application G is a bijection between:

PW ∖ {∅}

and the set of decidable problems considered

without the element e.

And thus:

 card(Set of decidable problems) − 1 =

2card(Set of P problems)−1 − 1 (31)

Consequently:

card(Set of decidable problems) =

2card(Set of P problems)−1 (32)

We can deduce that:

 card(Set of P problems) ≤ 2card(Set of P problems)−1

 (33)

And: card(Set of NP problems) ≤

2card(Set of P problems)−1

 (34)

And also:

 card(Set of NP-Complete problems) ≤

2card(Set of P problems)−1 (35)

This result is a new attempt to compare the

cardinals of the set of NP-Complete problems and

the set of P-problems even if these two sets have

both infinite cardinals.

6 First conclusions and remarks

We can deduce from formula (21) and formula (31)

that:

card(Set of NP-Hard problems) ≥

2card(Set of P problems)−1 ×

card(Set of NP-Complete problems) (36)

And thus, we can deduce from formula (35) and

formula (36) that:

 card(Set of NP-Complete problems) ≤

card(Set of NP-Hard problems)

card(Set of NP-Complete problems)
 (37)

Which is equivalent to:

 card(Set of NP-Complete problems) ≤

√card(Set of NP-Hard problems) (38)

And we can also conclude from formula (30) and

formula (35) that:

(card(Set of P problems))
𝑀
≤

2card(Set of P problems)−1 (39)

where M is the smallest value that reduces the

complexity of the elements of the Set DC into the

complexity of NP-Complete problems. However,

we should always have card(Set of P problems) −

M=+∞.

Furthermore, the value of

(card(Set of P problems))
𝑀

 increases when M

increases.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 164 Volume 22, 2023

After this step, we have new formulae that allow us

to develop logical mathematical demonstrations

about the sets of complexity especially by using

their cardinals.

7 Investigating the value of M that

reduces the complexity of the elements

of the Set DC into the complexity of

NP-Complete problems

Now we should compare :

(card(Set of P problems))
𝑀

and: 2card(Set of P problems)−1 =
2card(Set of P problems)

2

Let's consider that:

 M=
card(Set of P problems)

𝑥
 with x>1. (40)

Hence, we have:

(card(Set of P problems))
𝑀
=

(card(Set of P problems))
card(Set of P problems)

𝑥 (41)

And thus:

(card(Set of P problems))
𝑀
=

((card(Set of P problems))
1

𝑥)
card(Set of P problems)

 (42)

However ((card(Set of P problems))
1

𝑥) is infinite

for any finite positive number x.

We conclude that if M=
card(Set of P problems)

𝑥
 with x>1,

then we have: (card(Set of P problems))
𝑀

 is much

bigger than 2card(Set of P problems)−1.

Consequently, we should have:

M<
card(Set of P problems)

𝑥
 ∀x>1 and x finite (43)

This easy mathematical result characterizes the

point M. However, other characteristics can be

deduced about the point M in order to develop easy

other demonstrations about the sets of complexity.

8 Second conclusions and remarks

If we make the set DC by using M with:

card(Set of P problems) −M=+∞

but 𝑀 ≥
card(Set of P problems)

𝑥

with x is a real positive finite number, then we have:

(card(Set of P problems))
𝑀
>

2card(Set of P problems)−1

which makes a contradiction.

And thus, we have always: M<
card(Set of P problems)

𝑥

∀x>1 and x finite .

We remark that when a decidable problem 𝑑𝐻 is

expressed as: 𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1 (44)

where H is a natural number that respects

H=card(Set of P problems) − N'=+∞ (45)

with: N' ≥
card(Set of P problems)

𝑥
>M with x is a

finite real number with x>1 (46)

Then we have:

 𝐻 ≤
card(Set of P problems)×(𝑥−1)

𝑥
 (47)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 165 Volume 22, 2023

we can also have x bigger that 1 but very close to 1

and consider that x=1+, and this can be useful as

demonstrated in the final results of this article since

it still allows that:

card(Set of P problems)×(𝑥−1)

𝑥
> 0 .

Furthermore, the problem: 𝑑𝐻stays a decidable

problem because the number H exists and we can

also have H=+∞. However we should also remark

from the previous paragraphs that 𝑑𝐻 in this case

has a complexity of NP-Problems since N>M.

Theorem:

When a decidable problem 𝑑𝐻 is expressed as:

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1 where 𝑝𝑖 are P problems that have a

finite time of execution

If we have 𝐻 ≤ card(Set of P problems) × (1 −
1

𝑥
)

where x is a finite real number with x>1

then the problem 𝑑𝐻is a NP-Problem.

Remark: This new theorem about NP-Complete

problems doesn’t require that 𝒙 = 𝟏+. This

theorem can be very useful for the readers who

aim to make personal demonstrations about the

sets of complexity or to propose a personal solution

for the Millenium Problem of Clay Mathematics

about complexity problems (P=NP ?).

An artificial intelligence can also be useful to

compare and verify any proposed demonstrations

to this problem based on principles of informatics

theory.

9 Investigation about NP-Problems

NB: This part of the article is a personal attempt

to easily finish the demonstration concerning the

millennium problem P=NP. This part of the

demonstration needs that the existence of the two

considered numbers “z” and “ n’ ” be logically

possible in the field of computer science by

taking in consideration the mathematical logics

respected in this article.

Let's consider a decidable problem 𝑑𝐻 expressed as

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1 (48)

where𝑝𝑖 are P problems that have a finite time of

execution with:

 𝐻 ≤ card(Set of P problems) × (1 −
1

𝑧
) where

z>1. (49)

The problem 𝑑𝐻is a NP-Problem. Consequently,

let's find the cardinal of the set DH of all the

possibilities of the problems 𝑑HJsimilar to 𝑑𝐻.

Since 𝐻 ≤ card(Set of P problems) × (1 −
1

𝑧
) for

each 𝑑HJ = ∏ 𝑝𝑖
𝐻
i=1 in DH, then we consider that H

is the integer part of card(Set of P problems) ×

(1 −
1

𝑧
).

Consequently, we write:

H= [card(Set of P problems) × (1 −
1

𝑧
)] (50)

Hence, the number of possibilities of 𝑑HJcan be

expressed as:

 D=(card(Set of P problems))
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

 (51)

And thus:

 card(DH) =

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0

 (52)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 166 Volume 22, 2023

We remark that: card(DH) ≥

card(Set of P problems) (53)

However, we defined the Set DH as a set that

respects: DH ⊂ Set of NP-problems (54)

Which means that:

card(DH)<card(Set of NP-problems) (55)

Which is equivalent to:

card(Set of NP-problems) >

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0

 (56)

And we conclude that:

card(Set of P problems)<card(Set of NP-problems)

 (57)

Which means that:

 𝑃 ≠ NP (58)

However, since we have:

card(Set of NP problems) ≤ 2card(Set of P problems)−1

Then we have in this case:

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0 <

2card(Set of P problems)−1

 (59)

And thus we should check if this is a contradiction

for any real number z with z>1.

Let's consider that z=
card(Set of P problems)

card(Set of P problems)−n'
 where n'

has a natural positive value. (60)

In this case, even if card(Set of P problems) can be

considered infinite, we should find a big natural

number n' in order to have at least z=1+ > 1 . (61)

and we have : [card(Set of P problems) ×

(1 −
1

𝑧
)] − J=n'− 𝐽 (62)

And we have: [card(Set of P problems) ×

(1 −
1

𝑧
)] − 1=n'− 1 (63)

Hence, if z=
card(Set of P problems)

card(Set of P problems)−n'
 then:

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0
=

∑ cardn'−1
i=0 (Set of P problems)n'−𝑖 (64)

And if n' allows also to respect the scale of limits

then we have:

 2card(Set of P problems)−1>card(Set of NP problems)n'+1>n'×

card(Set of NP problems)n' > ∑ cardn'−1
i=0 (Set of P problems)n'−𝑖

 (65)

And thus, if z=
card(Set of P problems)

card(Set of P problems)−n'
 where n' exists,

then this formula stays correct:

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽[card(Set of P problems)×(1−

1

𝑧
)]−1

J=0 <

2card(Set of P problems)−1 (66)

However we should choose the appropriate number

n' that is big enough to be significant compared to

card(Set of P problems) in order to verify the

formula (61) and the formula (66) at the same time.

We conclude that if we find the appropriate real

number z that prevents formula (66) from being a

contradiction, then we can accept this conclusion:

Final conclusion depending on the taken

considerations:

We have:

card(Set of P problems)<card(Set of NP-problems)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 167 Volume 22, 2023

And thus: 𝑃 ≠ NP.

10 Conclusion

The results of this work are made by considering

that:

1) A fixed number of inputs G exists and can be

defined in the field of computing such as G keeps

any P-problem as a product of a finite number of

P-problems pi, but G is big enough to make all

decidable NP-Hard problems a product of an

infinite number of elements pi.

2) All NP-Hard problems that are not NP-

Complete problems have higher complexity than

NP-Complete problems and by considering that

all NP-Complete problems have one same

complexity that is directly linked to the value of a

number M that should exist and which is a fixed

number of P-Problems. M should have a natural

value that respects: M<
card(Set of P problems)

x

∀x>1 and x finite.

3) The appropriate real number z that prevents

formula (66) from being a contradiction exists

and can be defined in the computing field.

We proved in this article by using these

considerations that:

card(Set of NP-Hard problems) ≥

card(Set of decidable problems) ×

card(Set of NP-Complete problems)

And also: card(Set of NP-Complete problems) =

(card(Set of P problems))
𝑀

where M is the smallest value that reduces the

complexity of the elements of the Set DC presented

above into the complexity of NP-Complete

problems.

However, we should always have

card(Set of P problems) −M=+∞.

We proved also that:

card(Set of decidable problems) =

2card(Set of P problems)−1

Hence, we deduced that: card(Set of P problems) ≤

2card(Set of P problems)−1

And: card(Set of NP problems) ≤

2card(Set of P problems)−1

And also: card(Set of NP-Complete problems) ≤

2card(Set of P problems)−1

We concluded that:

card(Set of NP-Hard problems) ≥

2card(Set of P problems)−1 ×

card(Set of NP-Complete problems)

And that: card(Set of NP-Complete problems) ≤

card(Set of NP-Hard problems)

card(Set of NP-Complete problems)

Which is equivalent to:

 card(Set of NP-Complete problems) ≤

√card(Set of NP-Hard problems)

We could also conclude that:

(card(Set of P problems))
𝑀
≤

2card(Set of P problems)−1

with always M<
card(Set of P problems)

𝑥

∀x>0 and x finite

And we proved that:

card(Set of NP-problems)

> ∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

[card(Set of P problems)×(1−
1

𝑧
)]−1

J=0

Finally we concluded this theorem:

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 168 Volume 22, 2023

When a decidable problem 𝑑𝐻 is expressed as:

𝑑𝐻 = ∏ 𝑝𝑖
𝐻
i=1 where 𝑝𝑖 are P problems that have a

finite time of execution

If x is a finite real number with x>1, then we have:

 (x is a finite real number with x>1 and 𝐻 ≤

card(Set of P problems) × (1 −
1

𝑥
)) ⇒

𝑑𝐻 is a NP-Problem

And if we can define in the field of computer

science the considered number “z” that prevents

the following formula from being a contradiction:

∑ card(Set of P problems)
[card(Set of P problems)×(1−

1

𝑧
)]−𝐽

[card(Set of P problems)×(1−
1

𝑧
)]−1

J=0

< 2card(Set of P problems)−1

then this allows to make this conclusion:

We have:

card(Set of P problems)<card(Set of NP-problems)

And thus: 𝑃 ≠ NP.

NB: the value of the number “M” can be studied

further in order to find new mathematical

characteristics that allow finding a solution to the

problems of complexity sets without needing to

find the considered numbers “z” and “ n’ ”.

Final conclusion:

The Millenium problem (P=NP ?) is not only a

problem of informatics but also a logical

philosophical problem. A solution to this Clay

Mathematics problem will allow us to classify

logical problems better in order to find the suitable

computer for each kind of problems which will

allow us to enhance the efficiency of all the fields

that need informatics.

This proof can also be useful as a basis for the

researchers who deal with Quantum Computers.

Furthermore, the value of the demonstrated

number “M” can be studied further in order to

find a solution to this Millenium problem without

needing to find the considered number “z”.

The readers are invited to this opportunity in order

to investigate the proposed logical considerations

for a solution to this important Clay Mathematics

Millenium problem.

References:

[1] akram louiz. Complex mathematical

statements useful as criterion for Landau-

Siegel Zeros, 29 January 2023, PREPRINT

(Version 2) available at Research Square.

DOI: https://doi.org/10.21203/rs.3.rs-

2520944/v2

[2] Hidalgo-Herrero, M., Rabanal, P.,

Rodriguez, I., & Rubio, F. (2013).

Comparing problem solving strategies for

NP-hard optimization problems.

Fundamenta Informaticae, 124(1-2), 1-25,

2013, DOI: https://doi.org/10.3233/FI-

2013-822

[3] Izadkhah, H. (2022). P, NP, NP-Complete,

and NP-Hard Problems. In Problems on

Algorithms: A Comprehensive Exercise

Book for Students in Software

Engineering (pp. 497-511). Cham: Springer

International Publishing, 2022. DOI:

https://doi.org/10.1007/978-3-031-17043-

0_15

[4] Alizadeh, R., Allen, J.K. & Mistree, F.

Managing computational complexity using

surrogate models: a critical review. Res Eng

Design 31, 275–298, 2020. DOI:

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 169 Volume 22, 2023

https://doi.org/10.21203/rs.3.rs-2520944/v2
https://doi.org/10.21203/rs.3.rs-2520944/v2
https://doi.org/10.3233/FI-2013-822
https://doi.org/10.3233/FI-2013-822
https://doi.org/10.1007/978-3-031-17043-0_15
https://doi.org/10.1007/978-3-031-17043-0_15

https://doi.org/10.1007/s00163-020-00336-

7

[5] Savitch, W. J. (1970). Relationships

between nondeterministic and deterministic

tape complexities. Journal of computer and

system sciences, 4(2), 177-192, 1970. DOI:

https://doi.org/10.1016/S0022-

0000(70)80006-X

[6] Paul, W. J., Pippenger, N., Szemeredi, E.,

& Trotter, W. T. (1983, November). On

determinism versus non-determinism and

related problems. In 24th Annual

Symposium on Foundations of Computer

Science (sfcs 1983) (pp. 429-438). IEEE,

1983. DOI:

https://doi.org/10.1109/SFCS.1983.39

[7] ZAK, S. (1983). A turing machine time

hierarchy. Theoretical computer

science, 26(3), 327-333, 1983. DOI:

https://doi.org/10.1016/0304-

3975(83)90015-4

[8] Freedman, M. H. (1998). P/NP, and the

quantum field computer. Proceedings of the

National Academy of Sciences, 95(1), 98-

101, 1998. DOI:

https://doi.org/10.1073/pnas.95.1.98

[9] Gharibian, S., Huang, Y., Landau, Z., &

Shin, S. W. (2015). Quantum hamiltonian

complexity. Foundations and Trends® in

Theoretical Computer Science, 10(3), 159-

282, 2015. DOI:

https://doi.org/10.1561/0400000066

[10] Ohya, M., & Masuda, N. (2000).

NP problem in quantum algorithm. Open

Systems & Information Dynamics, 7(1), 33-

39, 2000. DOI:

https://doi.org/10.1023/A:1009651417615

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.19 Akram Louiz

E-ISSN: 2224-2872 170 Volume 22, 2023

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The author contributed in the present research, at all

stages from the formulation of the problem to the

final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The author has no conflict of interest to declare that

is relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://doi.org/10.1007/s00163-020-00336-7
https://doi.org/10.1007/s00163-020-00336-7
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1109/SFCS.1983.39
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1073/pnas.95.1.98
https://doi.org/10.1561/0400000066
https://doi.org/10.1023/A:1009651417615
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

