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Abstract: - This research addresses the growing need for efficient data labeling methods by leveraging deep 

learning models. The proposed approach combines pre-training and active learning to automate the labeling 

process and reduce reliance on human annotators. In the pre-training phase, two deep learning models are 

trained using labeled data, adjusting the data ratio to ensure approximately 50% accuracy on the test set. In the 

active learning phase, the models generate pseudo labels for unlabeled data based on a confidence threshold, 

and the selected data is used to improve the models' performance through alternating epochs. The experimental 

results demonstrate the effectiveness of the approach, achieving significant improvements in accuracy 

compared to traditional methods. This research contributes to the trend of using deep learning for efficient data 

labeling and offers a promising solution for reducing the time and cost associated with manual annotation. 
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1 Introduction 
Recently, there has been a lot of research on how 

to leverage deep learning to automatically generate 

and efficiently label training data. This is mainly 

addressed in the fields of active learning and semi-

supervised learning, which explore how to replace 

the role of human annotators with deep learning 

models. A recent trend in these studies is to develop 

efficient labeling techniques by combining methods 

such as active learning, self-training, co-training, 

and pseudo-labeling[1-6]. 

Due to the advancement of artificial intelligence 

technology, there is an increasing demand to utilize 

artificial intelligence models in various fields. 

However, sufficient training data is required to train 

artificial intelligence models based on deep 

learning. However, manually creating training data 

is a costly and time-consuming task. Therefore, 

there is a need for a method to efficiently label 

training data by replacing the role of human 

annotators with deep learning models. With this 

proposal as a background, the problem of studying 

how to replace the role of human annotators in 

active learning using deep learning models was 

raised[1]. 

Noting the recent advances in deep learning 

technology and the importance of training data, 

researchers have been working on various ideas to 

replace the work of human annotators. They 

explored how to use deep learning models to 

efficiently perform labeling and improve model 

performance without relying on human annotators. 

This idea generation process led to the proposed 

method. The proposed method consists of pre-

learning and active learning phases and uses two 

deep learning models to efficiently label unlabeled 

data and improve performance. For this purpose, we 

use pre-trained models on a part of the dataset and 

utilize unlabeled data through Pseudo Labeling. 

Based on these ideas, the proposed technique is 

developed. 

This study proposes a method for two deep 

learning models to complementarily label difficult 

data, rather than relying on a human annotator. The 

proposed method consists of pre-training and active 

learning phases, where two models are pre-trained 

with their respective labeled data, and then the 

models are trained by applying pseudo-labeling to 

unlabeled data. This improves the performance of 

the model and increases the efficiency of the 
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training data. Experimental results show that the 

proposed method improves the performance of the 

model. The two pre-trained models showed 50% 

accuracy on the test data, and the performance of the 

models continued to improve as they learned 

unlabeled data through active learning. It is 

expected that the proposed method will contribute to 

increasing the efficiency of the training data 

generation and labeling process of deep learning 

models. 

The paper is organized as follows. Section 2 

describes related concepts and research. We 

describe the structure of our proposed technique in 

Section 3 and present experimental results in 

Section 4. Finally, we conclude in Section 5 with a 

discussion of the work and future work. 

 

2 Related Work 
 

2.1 Active Learning 
Active learning is a form of machine learning, 

which refers to the process by which a model learns 

by selecting data on its own. Machine learning 

models are typically trained using labeled training 

data and then make predictions on new data. 

However, obtaining unlabeled data is costly and 

time-consuming, and Active Learning was 

developed to overcome these constraints[4,6]. 

The goal of Active Learning is to obtain the 

maximum performance gain by labeling as few 

samples as possible. To do this, it selects the most 

useful samples from the unlabeled dataset and 

offloads the labeling task to an oracle (e.g., a human 

annotator), with the goal of minimizing labeling 

costs while maintaining performance. Active 

Learning approaches can be categorized into the 

following scenarios: Membership Query Synthesis, 

Stream-based Selective Sampling, and Pool-

based[1-3]. 

Membership query synthesis is an approach that 

aims to generate samples from the input space and 

query their labels. This method primarily leverages 

generative adversarial neural networks (GANs) for 

data generation, where the most informative 

samples can play an important role in improving 

model performance. 

Stream-based approaches allow the model to 

request additional labels from data that arrive 

sequentially in the form of streams. When the input 

distribution is uniform, stream-based methods can 

behave similarly to membership query learning, but 

when the distribution is non-uniform and unknown, 

it makes sense to draw queries from the actual 

underlying distribution. This method is less studied 

in vision-related tasks compared to membership 

query synthesis and pool-based strategies but is 

effective for tasks where large amounts of data are 

generated in real time. 

The pool-based active learning approach is used 

in situations where a small number of labeled data 

and many unlabeled data are available. This method 

involves selecting samples from a pool of data and 

querying them for labels and is often the most 

practical method because large amounts of 

unlabeled data can often be collected at once. 

Typical methods utilize entropy to measure 

uncertainty and select samples with higher 

uncertainty. 

Active Learning has great potential for reducing 

the cost of labeling data and helping develop 

efficient models. The method can be used in real-

world applications by reducing the time and money 

required for labeling. It can also be used effectively 

in areas where human annotators are required to 

minimize effort and domain expertise. Active 

Learning is one of the core principles of data-driven 

learning, and it is expected to show a lot of potential 

in real-world applications. 

 

2.2 Sampling Startegy 
In Active Learning, various sampling strategies 

have been developed to select the most informative 

data points to improve model performance. 

Uncertainty sampling is a strategy that selects data 

based on how uncertain the model is about its 

current predictions. It uses methods such as least 

confident, margin sampling, and entropy to calculate 

uncertainty and select the most uncertain data. 

The least confident method selects the data with 

the lowest probability. Margin sampling selects the 

data with the smallest difference in probability 

between the most probable class and the next most 

probable class. The entropy method calculates the 

entropy and selects the data with the highest 

entropy. Uncertainty sampling, especially the 

entropy method, is the most widely used sampling 

strategy because it is simple and effective. 

Other sampling strategies include Query-By-

Committee, Expected Model Change, Variance 

Reduction, and Density-Weighted Methods. 

Query-By-Committee is a method that uses 

multiple models or ensembles to select data. Each 

model makes predictions from a different 

perspective on the training data, estimates the 

uncertainty, and selects the most uncertain data. 

Expected Model Change measures the amount of 

information gain by predicting the change in the 

model when new data is added to training and 

selects data with the largest information gain. 
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Expected Error Reduction predicts whether adding 

new data to training will reduce the model's error 

and selects the data with the largest error reduction. 

Variance Reduction selects data to reduce the 

variance of the model's predictions. It reduces the 

uncertainty of the model by selecting data that has a 

large variance in the model's predictions. Density-

Weighted Methods selects data by considering the 

distribution of data points. It selects data from low-

density areas or border regions of the data 

distribution to help the model better explore the data 

space. 

There are many other sampling strategies being 

researched. These sampling strategies utilize 

different principles and methods for efficient data 

selection in active learning to reduce labeling costs 

and improve model performance. 

 

3 Proposed Method 
Instead of asking a human annotator for labeling, 

the technique proposed in this paper induces 

complementary learning by allowing two deep 

learning models to annotate data that each has 

difficulty classifying. The overall structure is shown 

in Fig. 1. 

 

 
Fig. 1 A schematic of the proposed framework. 

 

The operation procedure consists of 3 steps, and 

the data is divided into 4 groups for training as 

follows. 

 
LA: Labeled data for pre-training the A model. 

LB: Labeled data for pre-training the B model. 

T: Labeled data for evaluating the accuracy. 

U: Unlabeled data for performing active learning. 

 

In the first step, the two deep learning models are 

pre-trained on their respective labeled data groups. 

In this case, the test data group T accounts for 20% 

of the total dataset, and the data groups LA and LB for 

pre-training are proportioned so that each model has 

50% accuracy on T when trained to fit. 

In the second step, Active Learning is performed, 

where each pre-trained model pseudo-labels the 

unlabeled data group U to create data to train each 

other. Pseudo-labeled data is created when the 

following conditions are satisfied when classifying 

the unlabeled data group U. The highest probability 

class result predicted by each model is different 

from each other, and compared to a predefined 

threshold, the prediction reliability of one model is 

higher than the threshold and the prediction 

reliability of the other model is lower than the 

threshold. Among the selected data, the data group 

with high prediction reliability of model A and the 

data group with high prediction reliability of model 

B are divided and used for model training. In Even 

Epochs, you use your own pseudo-labeled data as 

your training data, and in Odd Epochs, you use your 

opponent's labeled data as your training data. When 

learning, you learn the labeled data group L that you 

have pre-learned together. The unlabeled data group 

U is immutable, and RA and RB are newly created at 

each epoch. 

Finally, in the third step, the accuracy is 

measured by classifying the test group T with each 

of the trained models. The user can select or recycle 

the better performing model among the models.  

 

4 Experiment and Results 

 
4.1 Datasets and Training Models 

This section consists of experimental results of 

our proposed technique using the Caltech101 dataset 

and EfficientNet-B0. 

The Caltech101 dataset is one of the widely used 

public datasets for image classification tasks. It 

consists of images belonging to 101 different 

categories. 
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The Caltech101 dataset mainly contains images 

of objects and animals. Each category contains at 

least 80 images, and often more. The dataset 

consists of a total of 9,144 images, split into training 

and test sets. 

Each image has different sizes and resolutions, 

and may have variations in background, lighting, 

and rotation. These are included to mimic image 

classification tasks in the real world. 

The Caltech101 dataset can be used for a variety 

of computer vision tasks, including performance 

evaluation of deep learning models, development of 

image classification algorithms, and transfer 

learning. The dataset is publicly available and 

heavily utilized by academic researchers and 

computer vision developers. 

EfficientNet-B0 is the smallest model explored 

through Neural Architecture Search (NAS) and is a 

deep learning model with computational and 

parameter efficiency. EfficientNet-B0 is designed 

for image classification tasks and can be applied to a 

variety of computer vision tasks. 

Compound Scaling: EfficientNet uses a concept 

called compound scaling to scale the network. This 

improves the performance and efficiency of the 

model by simultaneously adjusting the depth, width, 

and resolution of the network. EfficientNet-B0 

keeps the model small while maintaining an 

efficient structure. 

EfficientNet Architecture: EfficientNet uses an 

efficient network structure to maximize 

computational and parametric efficiency. It utilizes 

techniques such as Depthwise Separable 

Convolution, Inverted Residuals, Squeeze-and-

Excitation, and more to achieve more 

expressiveness with fewer parameters. 

Wide range of applications: EfficientNet-B0 can 

be utilized for a variety of computer vision tasks, 

including image classification, object detection, 

segmentation, transfer learning, and more. The 

model's small size and efficiency make it suitable 

for deployment on mobile devices or in lightweight 

environments. 

 

4.2 Results 
As a first step in our proposed technique, we 

adjust the proportion of training data so that the 

accuracy of each model on test group T is close to 

50%. The pre-training data groups LA and LB each 

account for 20% of the total Caltech101 dataset and 

have different image data. With this data, models A 

and B were trained for 50 epochs to classify test 

group T with 99% accuracy on their respective data, 

and we found that the accuracy did not deviate 

significantly from 50% even after further pre-

training. 

Table 2 shows the accuracy of test group T for 

each additional training epoch. Fig. 2 is a graphical 

representation of Table 2. 

 

Table 2 Accuracy of Each Model Except AL. 
Epochs 1 2 3 4 5 6 7 8 9 10 

Efficie

ntNet A 

48.

71 

51.

10 

49.

36 

51.

65 

50.

07 

50.

55 

52.

40 

51.

04 

52.

26 

51.

38 

Efficie

ntNet B 

49.

95 

50.

67 

49.

63 

49.

35 

51.

27 

51.

18 

50.

06 

50.

73 

50.

94 

51.

94 

 

 
Fig. 2 Accuracy of Each Model Except AL. 

 

The results of performing Active Learning are 

the result of the following two steps. 

 

Condition 1: When you use the other party's labeled 

data for learning without exchanging pseudo-labeled 

data. 

Condition 2: When you use your own labeled data 

for odd epochs and the other party's labeled data for 

even epochs. 

 

Table 3 shows the Accuracy for Test Group T by 

Epoch when the other party's labeled data is used for 

learning without exchanging Pseudo Labeled Data 

in Condition 1. Fig. 3 is a graphical representation 

of Table 3. 

 

Table 3 Accuracy of Each Model in Condition 1. 
Epochs 2 4 6 8 10 12 14 16 18 20 

Efficie

ntNet A 

56.

56 

61.

63 

62.

37 

61.

58 

62.

72 

61.

89 

62.

34 

62.

43 

62.

60 

62.

16 

Efficie

ntNet B 

59.

38 

60.

14 

60.

32 

61.

75 

62.

31 

62.

34 

61.

76 

62.

03 

61.

93 

61.

95 
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Fig. 3 Accuracy of Each Model in Condition 1. 

 

We can see that after 7 epochs, both models 

converge to 62% accuracy. 

Seeing that the two models no longer 

outperformed each other in Condition 1 because 

their predictions were identical, in Condition 2 they 

used their own labeled data for odd epochs and their 

opponent's labeled data for even epochs to increase 

the prediction bias of each model. 

Table 4 shows the Accuracy for Test Group T 

per Epoch when trained with Condition 2. Fig. 4 is a 

graphical representation of Table 4. 

 

Table 4 Accuracy of Each Model in Condition 2. 
Epochs 2 4 6 8 10 12 14 16 18 20 

Efficie

ntNet A 

61.

42 

62.

34 

63.

14 

63.

37 

64.

85 

65.

41 

64.

49 

65.

69 

65.

44 

65.

82 

Efficie

ntNet B 

60.

04 

62.

23 

62.

89 

63.

82 

63.

84 

65.

25 

65.

85 

65.

68 

66.

20 

66.

19 

 

 
Fig. 4 Accuracy of Each Model in Condition 2. 

 

As a result of exchanging pseudo-labeled data, 

the accuracy of Condition 1 was achieved at 4 

epochs, and it continued to increase slightly 

thereafter. By 20 epochs, we achieved about 66% 

accuracy, which is about 16%p better than without 

active learning. 

 

5 Conclusion 
The technique proposed in this paper explores 

how to perform efficient Active Learning by 

replacing the role of a human annotator with a deep 

learning model. The proposed technique combines 

dictionary learning and pseudo-labeling to 

efficiently learn unlabeled data and improve the 

performance of the model. Experimental results 

show that the proposed technique improves 

performance through complementary learning 

between two deep learning models. By performing 

active learning, the performance was improved by 

16 percentage points, and efficient utilization of 

training data was achieved. 

The main contributions of this research are as 

follows: First, we propose a technique to efficiently 

generate training data by replacing the role of 

human annotators, which can save time and cost; 

Second, by combining pre-learning and pseudo-

labeling, we effectively utilize unlabeled data to 

improve the performance of the model; Third, by 

using active learning, we maximize the efficiency of 

the labeling task by allowing the model to select and 

update training data on its own. Through these main 

contributions, the proposed technique succeeds in 

efficiently utilizing training data and improving 

performance at the same time. 

Although the techniques proposed in this study 

have contributed to the efficient utilization of 

training data and improved model performance, 

there are some limitations. To overcome them, 

future research plans can include the following. 

First, improving the quality of unlabeled data: 

Although the proposed technique utilizes unlabeled 

data through pseudo-labeling, the automatic labeling 

may cause errors in some data. Therefore, future 

research should investigate methods to further 

improve the quality of unlabeled data.  

Second, scalability for small-scale datasets: In 

the current study, we utilized the Caltech101 dataset 

to conduct experiments, but in real-world 

applications, we need to deal with much larger and 

more diverse datasets. Future research should 

develop techniques that can scale from small-scale 

datasets to large-scale datasets to further expand 

their applicability in various applications. 

Third, development of domain-specific Active 

Learning techniques: Although the current proposed 

techniques used a general Active Learning 

approach, effective Active Learning strategies may 

vary depending on domain characteristics. Future 
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research should develop domain-specific Active 

Learning techniques to maximize the efficiency and 

performance improvement of labeling. 
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