
Over time, industries have become more sophisticated and
their products more complex. As industries and products
become more complex, so do facilities, which consist of
many devices with many different parts. In complex facilities,
there is a high probability of equipment failure due to inter-
component factors, such as defective parts, or environmental
factors, such as rapid climate change, as products are produced
on the manufacturing line on site. As the most critical com-
ponent of rotating mechanical equipment, rolling bearings are
the number one cause of rotating equipment failure and have
a major impact on the entire facility and manufacturing line.
Bearing defects gradually occur due to overloading, impact
loading, heat generation due to creep, and the use of unsuitable
lubricants. In addition, the types of bearing defects include
flaking, peeling, scoring, smearing, fracture, crack, etc [1], [2],
[3].

Previous studies include SVM(Support Vector Machine)
[4], Bayesian classification [5], etc. Since then, in recent
years, deep learning models have been increasingly used
for bearing fault diagnosis due to their powerful data pro-
cessing and feature learning capabilities. CNN(Convolution
Neural Network) [6], RNN(Recurrent Neural Network) [7],
GAN(Generative Adversarial Networks) [8], auto encoder, etc.

have been studied. In the above studies, many data-driven and
deep learning-based techniques have been applied to improve
accuracy and reliability, but most deep learning models require
a large number of data samples to learn all failure type
classifications. However, in complex, fast-paced manufacturing
sites, the data for all failure types is limited. Therefore, a few
shot learning algorithms that can effectively proceed with less
data is needed.

In this paper, we propose a Siamese network WDCNN(Wide
First-layer Kernels Deep CNN)+LSTM model fault diagnosis
method based on few shot learning. Along with the proposed
few-shot learning algorithm, we develop a model that improves
the existing WDCNN by adding an LSTM to the WDCNN
backbone. It is hypothesized that the addition of an LSTM
will improve the model’s ability to capture the temporal de-
pendencies present in the vibration signal, thereby improving
its ability to accurately classify various fault conditions. The
proposed approach is evaluated on the CWRU dataset and its
performance is compared with SVM, Wide first-layer kernels
Deep CNN (WDCNN), Five-shot (WDCNN), and Five-shot
(New model) in terms of bearing fault diagnosis accuracy with
different number of samples in each case.

The contributions of this paper are as follows. We developed
a model that improves the existing WDCNN by adding LSTM
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to the WDCNN backbone along with a proposed few-shot
learning algorithm. We demonstrate that the model developed
in this paper outperforms the fault diagnosis performance of
the existing model with several samples.

This paper is organized as follows. Section 2 describes
Few shot learning, Siamese network, and LSTM. Section 3
describes the main idea of this paper, Few-shot learning based
fault diagnosis. Section 4 describes the experimental proce-
dure, dataset construction, and experimental results. Finally,
Section 5 describes the conclusion and future work.

Few-shot learning was first addressed in the 1980s [9].
Deep learning has been very successful in many fields, but
the performance of the model is hindered when the data set is
small. To solve this problem, few shot learning was proposed.
Few-shot learning can alleviate the burden of collecting large-
scale supervised data. It uses a new machine learning paradigm
called few shot learning to learn with less data.

Recently, Few-shot learning has made great progress in
solving the data shortage problem. Few-shot learning is dif-
ferent from a typical CNN model. General deep learning is
divided into training set and test set, but few shot learning is
divided into training set, support set, query set, and performs
N-way K -shot classification. N is the number of classes, K is
the number of support data for each class, and N is inversely
proportional and K is directly proportional, so the larger the
N, the harder the problem to solve, and the larger the K, the
easier the problem to solve [10], [11], [12].

Siamese networks were first introduced by Bromley and
Lekun in the early 1990s to solve signature verification as
an image matching problem [9]. Fig. 1 shows the siamese
network. A Siamese network is a type of neural network ar-
chitecture used to learn the similarity or dissimilarity between
two inputs and was first introduced by Bromley and Lekun in
the early 1990s to solve signature verification as an image
matching problem. The network consists of two identical
subnetworks that share the same weights and architecture,
hence the name ”Siamese”. The inputs are passed through the
subnetworks and a similarity score is calculated by comparing
the output representations of the two inputs [13], [14].

Subnetworks can be any type of neural network architec-
ture, such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), or a combination of several types of
networks. Subnetworks are trained to learn representations of
inputs so that similar inputs have similar representations and
different inputs have different representations.

Siamese networks are commonly used for tasks such as im-
age or text similarity, one-shot learning, and few-shot learning.
They are also used in conjunction with triple loss functions, a
method of training a network to produce similar outputs (e.g.,
1 or positive pair) for similar inputs and different outputs (e.g.,
0 or negative pair) for different inputs.

Fig. 1. Siamese Network Structure

LSTM stands for Long Short-Term Memory and is a type
of Recurrent Neural Network (RNN), a type of deep learning
proposed by Hochreiter et al. LSTMs are models that can
remember long-term information, solving one of the limita-
tions of RNNs, the gradient blowup problem. It is widely
used in fields such as natural language processing and speech
recognition [15]. Fig. 2 shows the LSTM structure. An LSTM
consists of four gates and one memory cell. It consists of four
gates, Forget Gate, Input Gate, Output Gate, and Cell State,
and an update memory cell that creates a new memory cell
by updating the information in the previous memory cell. The
roles of each gate are as follows.

1. Forget Gate: Determines which of the information in the
previous memory cell is discarded.

2. Input Gate: Adds or modifies information about the
current input value.

3. Output Gate: Determines which information to use to
generate the final output value.

4. Cell State: The memory cell of the LSTM, which
remembers and transmits information in the long term.

Fig. 2. LSTM Structure.

It is a Siamese network few-shot learning classification
method based on our proposed WDCNN+LSTM model. Fig. 3
shows the system structure.

It consists of data preparation step (first), training and
testing process with few shot learning (second), and finally
Siamese network structure based on WDCNN+LSTM model
(third). To verify the model performance, 12k drive end
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Fig. 3. System Structure.

bearing failure data from the bearing data set of Case Western
Reserve University (CWRU) is selected as the experimental
data.

The first step is data preparation. In the experiment, each
sample is extracted from two vibration signals (fan end, drive
end). Half of the vibration signals are used to generate training
samples and the other half are used to generate test samples.
The training samples were generated with a window size of
2048 points and 80 shift steps. The test samples are also
generated with the same window size and non-overlapping.

The second is the training and testing phase. During train-
ing, the model is trained on a set of sample pairs of the same
or different categories. The inputs are pairs of samples with
the same or different classes. The WDCNN+LSTM model
takes as input the two vibration signals prepared above. Each
model outputs two feature vectors extracted from the two
input vibration signals. After the output, find the difference
(distance) between the two feature vectors. Then use a dense
layer to find the difference between the vectors. Apply a
sigmoidal activation function to get a number between 0 and
1. Measure the similarity between the two, outputting a value
close to 1 if the two vibration signals are in the same class of
normal or faulty type, and close to 0 otherwise, and measure
the difference between the target value and the predicted scalar
using the loss function.

The test is performed using multiple one-shot k-way tests.
In an N-shot K-way test, the model is given a support set of
K different classes, each with N samples. Determine which
support set class the test sample belongs to. In this paper, we
used 5 shots, so each time a support set is randomly selected
from the training data, we repeat the one-shot K-way test 5
times. After 5 attempts, 5 probability factors (P1, P2, P3, P4,
P5) are calculated and then their sum is calculated to get the
largest value,

The third is the structure of WDCNN+LSTM model in the
Siamese network. Table I shows the WDCNN+LSTM struc-

ture. This model consists of three convolution layers and an
LSTM layer. We also added Batchnomalization, maxpooling,
and dropout between convolutional layers.

TABLE I
WDCNN+LSTM STRUCTURE

no Layer type
1 Conv 1 Filters 16 Kernel Size 64 Strides 16
2 Batchnormalization
3 MaxPooling(pool size = 2, strides = 2)

4 Dropout
5 Conv 2 Filters 32 Kernel Size 3 Strides 1
6 Batchnormalization
7 MaxPooling(pool size = 2, strides = 2)

8 Dropuout
9 Conv 3 Filters 64 Kernel Size 3 Strides 1

10 Batchnormalization
11 MaxPooling(pool size = 2, strides = 2)
12 Dropuout
13 LSTM

Table II shows the experimental environment. The hardware
used in this study consisted of an Intel Core i5- 13600KF
processor and Geforce RTX 4080. The software uses Window
10, Tensorflow 2.10 and Python 3.9.

TABLE II
SYSTEM SPECIFICATION

Hardware Environment Software Environment
CPU: Intel Core i5-13600KF CPU@ 3.50GHZ window10

GPU : NVIDIA Geforce RTX 4080 Python 3.9, Tensorflow 2.10

The Case Western Reserve University (CWRU) bearing
dataset was used to validate the performance of the model in
this paper. The CWRU dataset consists of three types of data:
healthy and defective. The defect data types are inner race,
outer race, and ball. The defect sizes for each type are 0.007,
0.014, and 0.021 inches. The data was collected from the fan
end and drive end, measured at 12k (12000 vibrations per
second) and 48k (48000 vibrations per second), respectively.
For each fault size, we configured 0 to 3 horsepower, and the
outer race fault measured faults at the 3, 6, and 12 o’clock
positions.

Table III shows the composition of the data. Label from 0
to 10 for normal and for the size of each fault type. dataset
A, B, and C have training data and test data corresponding to
angular loads 1, 2, and 3. dataset D has training data and test
data. dataset d is the combined dataset of datasets A, B, and
C. There are 1980 training and 75 test data for each type of
defect, corresponding to load 1, 2, and 3.

Fig. 4 shows the bearing simulator of CWRU. CWRU The
CWRU simulator is composed of the dynamometer, Electric
motor, Drive end bearing, Fan end bearing and Torque trans-
ducer and encoder.

4. Experiment and Results 
4.1 Experiment Environments 
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TABLE III
DESCRIPTION OF ROLLING BEARING DATASETS

Fault Location None Ball Inner Race Outer Race Load
Fault Diameter(inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Fault Label 1 2 3 4 5 6 7 8 9 10

Dataset A Train 660 660 660 660 660 660 660 660 660 660 1Test 25 25 25 25 25 25 25 25 25 25

Dataset B Train 660 660 660 660 660 660 660 660 660 660 2Test 25 25 25 25 25 25 25 25 25 25

Dataset C Train 660 660 660 660 660 660 660 660 660 660 3Test 25 25 25 25 25 25 25 25 25 25

Dataset D Train 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1,2,3Test 75 75 75 75 75 75 75 75 75 75

Fig. 4. CWRU Bearing Simulator.

Accuracy is the most intuitive indicator. The problem,
however, is that unbalanced data labels can skew performance.
The equation for this parameter is:

Accuracy =
|TP |+ |TN |

|TP |+ |FP |+ |FN |+ |TN |
(1)

The recall is the ratio of a class to what the model predicts
as true among those that are actually true. The recall can be
expressed by the following equation:

Recall(Sensitivity) =
|TP |

|TP |+ |FN |
(2)

Precision is the proportion of what the model classifies as
true that is actually true. Precision can be expressed by the
following equation:

Precision =
|TP |

|TP |+ |FP |
(3)

The f1-score is the harmonic average of precision and recall.
When the data labels are unbalanced, the performance of
the model can be accurately evaluated. The f1 score can be
expressed in the following equation:

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(4)

Fig 5 shows accuracy comparison between the models.
These accuracy figures are averaged over 20 iterations of 5-
shot. It can be seen that the accuracy of the model presented
in this paper is high in all samples. This is especially true for
samples 90, 120, 200, and 300. However, as the number of
samples increases, the accuracy of the existing model is also

high, so it can be seen that there is not much difference with
the model presented in this paper.

Fig. 5. Compare of Model Accuracy

Table IV shows the accuracy comparison for each model.
Diagnostic results of the proposed model training with

different number of training samples, SVM, WDCNN, 5-
shot(WDCNN) [16], and comparison graph. In all samples, the
accuracy of the model proposed in this paper is the highest.
However, it can be seen that the general WDCNN model is
higher than 5-shot in 300, 600, and 900 samples.

TABLE IV
ACCURACY OF MODEL

90 120 200 300 600 900 1500
SVM 26.56 31.2 38.67 43.89 50.05 52.35 54.53
WDCNN 77.39 84.19 93.97 96.59 97.03 98.69 98.87
Five-shot
WDCNN 91.37 92.66 94.32 95.65 96.14 98.55 99.13

Five-shot
New model 94.06 97.22 98.5 99.13 99.38 99.34 99.58

Table V shows the F1-score as a function of the number
of samples. F1-score is a machine learning metric used in
classification models. In all samples, the F1-score is better
than 94% indicating that the data is not imbalanced.

TABLE V
MODEL OF F1-SCORE

90 120 200 300 600 900 1500
F1-score 94.06 97.27 98.51 99.11 99.37 99.32 99.59

Table VI shows the accuracy comparison for each model.
The model of WDCNN block3 is model in [16] accuracy.

Ref. [16] the block3 model is less accurate than the
block 5 [16] model. However, in the model presented in
this paper, although the number of blocks is 3 (convolu-
tion layer+maxpooling), the accuracy is sharply improved by
adding batchnormalization, dropout, and LSTM to the existing
block3 model, and the accuracy is higher than the existing
block3 model and block5 model. Also, Table VII we can see
that the F1-score is high.

Confusion matrices are used to train a model using a training
set and then evaluate its performance using a test set when

4.2 Evaluation Metrics 

4.3 Results 
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TABLE VI
COMPARE OF MODEL ACCURACY

Block3 90 120 200
WDCNN 74.47 78.46 86.16
WDCNN+LSTM 94.06 97.22 98.5

TABLE VII
COMPARE OF MODEL F1-SCORE

Block3 90 120 200
WDCNN 74.47 78.46 86.16
WDCNN+LSTM 94.06 97.22 98.5

training and testing. The confusion matrix shows the predicted
result of a sample on the horizontal axis and the actual label
of the sample on the vertical axis. In this paper, the confusion
matrix represents the value when testing once for 5-shot. on
the horizontal axis and the sample’s actual label on the vertical
axis. In this paper, the confusion matrix represents the values
when testing once for 5-shot.

Fig 6, Fig 7, Fig 8 shows the confusion matrix results
for samples 120, 200, and 3000. The higher the number of
samples, the better the performance.

Fig. 6. Samples 120 Confusion Matrix.

In this paper, a Siamese network-based WDCNN+LSTM
model is proposed, and the accuracy of bearing fault diag-
nosis is verified using a push-pull learning algorithm and
CWRU dataset. The proposed algorithm and model improve
the performance of the existing model by about 4%. In future
research, we can validate the proposed model in this paper
with other open datasets. In addition to open datasets, we can
also utilize data from actual manufacturing sites with noise to
measure the accuracy of bearing fault diagnosis. Second, we
can consider combining not only LSTM but also new models
such as attention module and transformer.

[1] Zhu. Y, chen. H, Meng. W, Xiong. Q and Li. Y, ”A wide kernel
CNN-LSTM-based transfer learning method with domain adaptability

Fig. 7. Samples 200 Confusion Matrix.

Fig. 8. Samples 3000 Confusion Matrix.

for rolling bearing fault diagnosis with a small dataset,” Advances in
Mechanical Engineering, vol. 14, pp. 1-20, November 2022.

[2] Lee. S and Jeong. J, “ SSA-SL Transformer for Bearing Fault Diagnosis
under Noisy Factory Environments,” Journal of electronics, vol. 11, pp.
1-21, May 2022.

[3] Widodo. A and Yang. B. S, ”Support vector machine in machine
condition monitoring and fault diagnosis,” Mechanical systems and
signal processing, vol. 21, pp. 2560-2574, August 2007.

[4] Zhou. D. H and Frank, P. M, ”Fault diagnostics and fault tolerant
control,” IEEE Transactions on aerospace and electronic systems, vol.
34, pp. 420-427, April 1988.

[5] Zhao. B, Zhang. X, Li. H and Yang. Z, ”Intelligent fault diagnosis of
rolling bearings based on normalized CNN considering data imbalance
and variable working conditions,” Knowledge-Based Systems, vol. 199,
July 2020.

[6] Liu. H, Zhou. J, Zheng. Y, Jiang. W and Zhang. Y, ”Fault diagnosis
of rolling bearings with recurrent neural network-based autoencoders,”
ISA transactions, vol. 77, pp. 167-178, June 2018.

[7] Mao. W, Liu. Y, Ding. L and Li. Y, ”Imbalanced fault diagnosis of
rolling bearing based on generative adversarial network: A comparative
study,” Ieee Access, vol. 7, pp. 9515-9530, January 2019.

[8] K. Yip and G. Sussman, “Sparse Representations for fast, One-Shot
Learning,” National Conference on Artificial Intelligence, pp. 1-29, July
1997.

[9] Wang. Y, Yaol. Q, Kwok. J. T and Ni. L. M, ”Generalizing from a few
examples: A survey on few-shot learning,” ACM computing surveys,
vol. 53, pp. 1-34, June 2020.

[10] L. Fei-Fei, R. Fergus and P. Perona, ”One-shot learning of object

5. Conclusion 

References 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.10

Daehwan Lee, Jongpil Jeong, Chaegyu Lee, 
 Hakjun Moon, Jaeuk Lee, Dongyoung Lee

E-ISSN: 2224-2872 88 Volume 22, 2023



categories,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 28, pp. 594–611, February 2006.

[11] M. Fink, ”Object classification from a single example utilizing class rel-
evance metrics,” In Advances in Neural Information Processing Systems,
vol 17, 2004.

[12] Koch. G, Zemel. R and Salakhutdinov. R, ”Siamese Neural Networks
for One-shot Image Recognition”, In ICML deep learning workshop,
vol. 2, pp. 1-27, July 2015.

[13] Chopra. S, Hadsell. R and LeCun. Y, ”Learning a similarity metric
discriminatively, with application to face verification,” In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), pp. 539-546, June 2005.

[14] Chen. H, Cen. J, Yang. Z, Si. W and Cheng. H, ”Fault Diagnosis of
the Dynamic Chemical Process Based on the Optimized CNN-LSTM
Network,” ACS omega, vol. 7, pp. 34389-34400, september 2022.

[15] Zhang. A, Li. S, Cui. Y, Yang. W, Dong. R and hu. J, ” Limited
Data Rolling Bearing Fault Diagnosis With Few-Shot Learning,” IEEE
Access, vol. 7, pp. 110895-110904, August 2019.

[16] Lee. D and Jeong, J. ”Bearing Fault Detection based on Few-Shot
Learning in Siamese Network,” in WSEAS Transactions on Systems,
vol. 21, pp. 276-282, December 2022.

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
   
 
Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 
  
Conflict of Interest
The authors have no conflicts of interest to declare 
that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.10

Daehwan Lee, Jongpil Jeong, Chaegyu Lee, 
 Hakjun Moon, Jaeuk Lee, Dongyoung Lee

E-ISSN: 2224-2872 89 Volume 22, 2023




