IV.2.1 Multi objective function.
The system SMIB is stable based on mono objective
function, but it contains a disadvantage especially if the two
factors σ and damping coefficient ζ are minimal
simultaneously. The dynamic behavior of such a system
depends on two values: σ and especially the damping
coefficient ζ. To study the influence of damping coefficient
ζ on the controlled system we consider two systems with
real part σs1= σs2 and ωs1 ≠ ωs2 (ω imaginary part):
System 21: P21, 2=-2±j with ζ = 0.8944
System 22: P22, 2=-2±8j with ζ = 0.2425
The systems poles and step responses match each system
shown in figure 9.
Figure 9 the ζ influence to controlled system
From the obtained results, it can be seen that:
The increase of the damping coefficient ζ improves
system stability. Based on these results we propose a new
objective function composed by two functions. This
function must maximize stability margin by increasing the
damping factors while minimizing the real parts of the
system eigenvalues, and second function must maximize the
set of two objective functions.
max(ζ)-min(σ)
FMult_obj=max (max(ζ)-min(σ))
IV.2.2.Optimization results
A. GA optimization method
To run GA multi objective optimization under GUI we
use: optimization /GA /PSS/ multiobjective
Figure 10 PSS parameters syntheses using GA multi objective
under GUI MATLAB
Optimization example using GA technique with Number
of individuals=10 , Number of population =10
__________________________________________________________________________________________
********* Creating the initial population ********
__________________________________________________________________________________________
********* 1st step coding and initialization ********
__________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
__________________________________________________________________________________________
Individu:01 +02.2588 +10.5882 0.0106 0.0843 -1.3181 +0.1054 +1.4234
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -0.8998 +0.9959 +1.8957
Individu:03 +00.2824 +09.4118 0.0622 0.0890 -0.4643 +0.0381 +0.5023
Individu:04 +02.0706 +08.0941 0.0473 0.0432 -1.1622 +0.0932 +1.2554
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -0.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -1.4711 +0.1082 +1.5794
Individu:07 +00.5647 +03.6706 0.0294 0.0702 -0.6460 +0.0535 +0.6995
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -0.9187 +0.9989 +1.9176
Individu:09 +03.8118 +02.5412 0.0501 0.0095 -0.9165 +0.9964 +1.9129
Individu:10 +05.9765 +11.1529 0.0828 0.0706 -1.2001 +0.0891 +1.2892
********* 2nd step selection ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:03 +02.0706 +08.0941 0.0473 0.0432 -01.1622 +0.0932 +1.2554
Individu:04 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -01.4711 +0.1082 +1.5794
Individu:07 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:09 +03.8118 +02.5412 0.0501 0.0095 -00.9165 +0.9964 +1.9129
Individu:10 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
********* 3rd step Crossing ********
_________________________________________________________________________________________________
croissement state
_________________________________________________________________________________________________
Pc = 0.267 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 -----> Pc < PC: There is a crossing
Pc = 0.267 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 -----> Pc < PC: There is a crossing
Pc = 0.521 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 -----> Pc < PC: There is a crossing
Pc = 0.521 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 -----> Pc < PC: There is a crossing
Pc = 0.766 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 -----> Pc > PC: no crossing ……..
Pc = 0.766 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 -----> Pc > PC: no crossing….......
Pc = 0.571 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 -----> Pc < PC: There is a crossing
Pc = 0.571 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 -----> Pc < PC: There is a crossing
Pc = 0.765 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 -----> Pc > PC: no crossing ……..
Pc = 0.765 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 -----> Pc > PC: no crossing ……____..
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:03 +02.0706 +08.0941 0.0473 0.0432 -01.1622 +0.0932 +1.2554
Individu:04 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -01.4711 +0.1082 +1.5794
Individu:07 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:09 +05.6941 +02.5412 0.0407 0.0142 -00.9125 +0.9920 +1.9045
Individu:10 +00.7529 +02.4471 0.1000 0.0107 -00.6279 +0.0523 +0.6802
********* 4st Step Mutation ********
_________________________________________________________________________________________________
mutation probabilities used
_________________________________________________________________________________________________
0.03 0.51 0.510.770.470.370.920.640.650.330.240.820.420.240.560.200.620.610.380.440.530.050.810.350.420.750.330.460.730.640.750.8
0.76 0.83 0.830.410.780.420.080.580.060.750.510.200.040.420.100.110.220.490.340.840.950.750.460.240.110.370.790.270.190.040.540.61
0.46 0.20 0.560.970.880.120.560.340.740.650.680.800.490.040.740.130.050.270.990.870.360.620.360.930.480.760.830.530.740.620.1 70.19
0.29 0.39 0.110.030.250.820.030.290.340.670.790.730.100.250.410.830.040.650.040.550.380.430.310.410.770.920.560.960.020.480.210.26
0.84 0.01 0.670.210.600.260.410.560.310.230.050.540.060.860.170.770.070.140.430.620.960.060.110.550.580.900.050.980.280.800.0 70.98
0.65 0.69 0.440.020.780.350.051.000.810.630.990.930.800.520.850.270.860.640.430.330.410.300.210.130.720.610.020.210.310.810.070.96
0.46 0.76 0.460.210.150.150.630.440.120.120.220.380.780.590.280.520.530.590.110.960.770.200.750.680.480.830.420.680.210.730.3 90.14
0.03 0.64 0.270.930.500.890.910.800.750.080.600.331.000.630.910.690.250.130.800.060.950.180.410.470.580.930.810.000.220.540.430.13
0.29 0.88 0.490.680.440.630.440.570.320.200.200.640.660.590.230.320.940.380.270.670.770.940.520.390.110.520.820.910.050.020.8 30.34
0.63 0.81 0.040.690.850.830.600.110.170.440.690.060.390.660.070.830.810.030.590.440.601.000.890.670.520.910.370.830.920.840.4 80.37________
Coding after mutation
_________________________________________________________________________________________________
1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1
0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1
0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0
0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0
1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0
1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +11.0588 +04.4235 0.0824 0.0914 -00.8944 +0.9811 +01.8755
Individu:02 +04.9412 +10.5412 0.0344 0.0459 -02.4718 +0.1902 +02.6619
Individu:03 +04.8941 +07.9529 0.0723 0.0428 -01.7022 +0.1293 +01.8315
Individu:04 +07.1059 +09.6000 0.0454 0.0510 -02.9609 +0.2143 +03.1752
Individu:05 +05.6471 +08.0000 0.0087 0.0640 -02.7400 +0.2169 +02.9569
Individu:06 +05.1294 +11.3882 0.0606 0.0973 -01.1078 +0.0833 +01.1911
Individu:07 +01.6941 +10.0706 0.0766 0.0181 -00.9218 +0.0746 +00.9964
Individu:08 +07.1529 +05.4588 0.0204 0.0244 -00.9094 +0.9958 +01.9052
Individu:09 +11.7176 +03.9529 0.0282 0.0659 -00.8965 +0.9798 +01.8763
Individu:10 +02.3059 +07.8118 0.0750 0.0107 -01.1738 +0.0952 +01.2690
********* Optimization Results ********
_________________________________________________________________________________________________
N pob K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Population:01 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:02 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:03 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:04 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:05 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:06 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:07 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:08 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:09 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
-3 -2.5 -2 -1.5 -1 -0.5 0
-8
-6
-4
-2
0
2
4
6
8
0.030.060.0950.1350.190.28
0.4
0.7
0.030.060.0950.1350.190.28
0.4
0.7
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
Pole-Zero Map
Real Axis
Imaginary Axis
Système 1
Système 2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
D
Step Response
Time (sec )
Amplitude
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Step Response
Time (sec )
Amplitude
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif