Efficient multi-objective optimizers by meta-heuristics for power system
control
GHOURAF DJAMEL EDDINE1 , NACERI ABDELLATIF2
Department of Electrical Engineering,
National Polytechnic School
1SCAMRE Laboratory, BP1523 EL M’naour, Oran 31000, ALGERIA
2IRECOM Laboratory, BP 98 22000 ALGERIA
Abstract: - This paper proposes the Meta-heuristics approaches using genetic algorithms (GA) and particle swarm optimization (PSO) for tuning
power system stabilizer PSS parameters. In this work we have proposed a multi-objective function based on two objectives: first maximize the
stability margin by increasing the damping factors and second minimize the eigenvalues real parts. For the effectiveness function proposed
check, we compared it with mono-objective function. The simulation results, by comparative study between genetic algorithms and particle
swarm optimizations techniques via multi objective and mono objective functions proved the efficiency of the PSS adapted by multi-objective
function based genetic algorithms in comparison with particle swarm optimization, it’s enhanced stability of power system works under
different operating modes and different network configurations. The simulation results obtained under developed graphical user interface (GUI)
Keywords- Turbo-Alternator, Genetic Algorithms GA, Particle Swarm Optimization PSO, multi-objective function, mono-objective function,
robustness, graphical interface GUI.
Received: November 23, 2021. Revised: October 11, 2022. Accepted: November 13, 2022. Published: December 5, 2022.
1. Introduction
The electrical energy has become the major form of
energy for end use consumption in today’s world. There is
always a need to make electric energy generation and
transmission, both more economic and reliable. The
voltages throughout the system are also controlled to be
within ±5% of their rated values by automatic voltage
regulators acting on the generator field exciters, and by the
sources of reactive power in the network, [1].
Stability and robustness are considered essential
requirements for friability and continuity of electrical
energy production this latter produced by a series of systems
with very complex mathematical models called power
systems. Since these systems are installed in complex
environmental conditions they are exposed to a variation of
uncertainty which is affected directly in the operation of
these systems and therefore the stability of the energy
production, the power system stabilizer PSS plays an
important role to improve the power systems stability, [2].
The parameters of CPSS are determined based on the
linearized model of the power system. Providing good
damping over a wide operating range, the CPSS parameters
should be fine-tuned in response to both types of
oscillations. Since power systems are highly non-linear
systems, with configurations and parameters which alter
through time, the CPSS design based on the linearized
model of the power system cannot guarantee its
performance in a practical operating environment, [3].
Therefore, an adaptive PSS which considers the nonlinear
nature of the plant and adapts to the changes in the
environment is required for the power system, [3]. In order
to improve the performance of CPSSs, numerous techniques
have been proposed for designing them, such as intelligent
optimization methods and fuzzy logic method [7, 8].
Meta-heuristic techniques are a new family of
stochastic algorithms which aim to solve difficult
optimization problems. Used to solve various
applicative problems, these methods have the advantage to
be generally efficient on a large number of
problems.GA and PSO belong to population approaches.
Meta-heuristics are generally used to solve a simplified
OPF (Optimal Power Flow) problem such as the classic
economic dispatch, security - constrained economic
power dispatch, and reactive optimization problem, as
well as optimal reconfiguration of an electric
distribution network. [4],[6].
Genetic algorithms (GAs) were invented by John
Holland in the 1960s and were developed by Holland
and his students and colleagues at the University of
Michigan in the 1960s and the 1970s. In contrast with
evolution strategies and evolutionary programming,
Holland's original goal was not to design algorithms to
solve specific problems, but rather to formally study the
phenomenon of adaptation as it occurs in nature and to
develop ways in which the mechanisms of natural
adaptation might be imported into computer systems, [5].
The Particle Swarm Optimization (PSO) strategy is
a new class of algorithms proposed to solve continuous
optimization problems . The Particle Swarm Optimizer was
introduced by James Kennedy and Russell Eberhart in 1995.
Inspired by social behavior and movement dynamics of
insects, birds and fish, it is also related, however, to
evolutionary computation, and has links to both genetic
algorithms and evolution strategies, [4], [5].
In this paper, the robust PSS design is realized using
multi-objective function optimization GA and PSO applied
in the automatic excitation regulator of powerful
synchronous generators
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
316
Volume 21, 2022
2. Power Systems Model
The dynamic performance study and stability analysis of
power systems requires faithful mathematical models, we
used in our work permeances networks modeling based on
the PARK-GARIVE model of powerful synchronous
generators for simplifying hypotheses and testing the
control algorithm. The PSG model defined by the following
equations [2, 15]:
Figure 1 Standard system IEEE type SMIB with excitation control
of powerful synchronous generators
Currents equations
qsr
aqq
q
qsr
aqq
q
srd
add
d
sr
adf
f
q
dd
q
d
qq
d
X
i
X
i
X
i
X
i
X
EU
i
X
EU
i
2
2
2
1
1
1
1
1
"
"
"
"
Voltage equations
qqddq
ddqqd
riEiXU
riEiXU
""
""
sfqad
fd
aq
fqsfq
q
sfdsfad
fq
ad
fdsfd
q
ad
fsf
q
XX
E
X
XX
E
XXX
E
X
XX
E
X
XX
E11
1
111
11
'
"
''
"
Flow equations:
Mechanical equations
eTjTdaqqadjMMs
dt
d
TMIIs
dt
d
T -ou ..
Automatic Voltage Regulator model (AVR)
, FrefE
A
REA
RVVV
T
VVK
V
Power system stabilizer model (PSS)
1
1
1
1
14
3
2
1input
pT
pT
pT
pT
pT
pT
KV PSSPSS
3. Meta-Heuristics
The new paradigms were called meta-heuristics and
were first introduced in the mid-80s as a family of searching
algorithms able to approach and solve complex optimization
problems, using a set of several general heuristics. The term
meta-heuristic was proposed in [16], to define a high level
heuristic used to guide other heuristics for a better evolution
in the search space. Although traditional stochastic search
methods are mainly guided by chance (solutions change
randomly from one step to another), they can be used in
combination with meta-heuristic algorithms to guide the
search process and to accelerate the convergence.
Most meta-heuristics algorithms are only
approximation algorithms, because they cannot always find
the global optimal solution, [9]. But the most attractive
feature of a meta-heuristic is that its application requires no
special knowledge on the optimization problem to be
solved, hence it can be used to define the concept of a
general problem solving model for optimization problems or
other related problems, [17], [18]. Since their introduction in
the mid-80s till now, meta-heuristic methods for solving
optimization problems have been continuously developed,
allowing addressing and solving a growing number of such
problems, previously considered difficult or even
impossible to solve. These methods include simulated
annealing, tabu search, evolutionary computation
techniques, artificial immune systems, genetic algorithms,
particle swarm optimization, ant colony algorithm,
differential evolution, harmony search, honey-bee colony
optimization etc. The next section presents a brief review of
basic issues for the most commonly used meta-heuristics
cited above. Several applications of these methods in the
field of power systems, [10].
In this work we are based on genetic algorithms, particle
swarm optimization techniques.
III.1.Genetic algorithms
Genetic Algorithm (GA) is a search technique that mimics
the mechanisms of natural selection, discovered by John
Holland in 1970, [11], [19].Cell is the building unit of all
living organisms. In each cell there is a set of chromosomes
which are strings of DNA. Every chromosome consists of
genes which encode a particular protein. During
reproduction, crossover first occurs. Genes from parents
form in some way the whole new chromosome. However,
the new created offspring can be mutated. Mutation occurs
when the elements of DNA are a bit changed.
These changes are mainly caused by errors in copying
genes from parents. The fitness of an organism is measured
AVR
PSS
Uter
Exciter
Δω
SG
C
H
A
R
G
E
Uref
Infinity bus
(1)
(2)
(3)
(4)
(5)
(6)
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
317
Volume 21, 2022
by success of the organism in its life. With generations, the
good characteristics remain and the bad ones died which
represents “The survival of the fittest”.
Much work have been done on optimization by genetic
algorithms to tune power system stabilizer parameters for
adaptation and reliability of these techniques to power
systems.
III.2. Particle swarm optimization
Particle swarm optimization is a population based
stochastic optimization method, [12].Explores for the
optimal solution from a population swarm of moving
particle vectors, based on a fitness function. Each ith
particle vector represents a potential answer and has a
position (Xik) and a velocity (Vik) at the kth iteration in the
problem space. Each ith vector keeps a record of its
individual best position (Pik), which is associated with its
own best fitness it has achieved so far, at any kth step in the
iteration process. This value is known as pbesti. Moreover,
the optimum position among all the particles obtained so far
in the swarm is stored as the global best position (Pgk). This
location is called gbest. The new velocity of particle will be
updated according to the following equation, [13]:
k
i
k
g
k
i
k
i
k
l
k
lXPrcXPrcwvv
2211
1
where w is an inertia weight in the first part that
represents the memory of a particle during a search, c1 and
c2 are positive numbers illustrating the weights of the
acceleration terms that guide each particle toward the
individual best and the swarm best positions respectively, r1
and r2 are uniformly distributed random numbers in (0, 1),
and N is the number of particles in the swarm. The second
and the third parts of (8) represent cognitive and social parts
respectively. The inertia weighting function in (7) is usually
calculated using the following equation:
max
minmaxmax )(
iter
iterWWW
W
Where wmax and wmin are the maximum and minimum
values of w respectively, itermax is the maximum number of
iterations and iter is the current iteration number. The first
term in (7) enables each particle to perform a global search
by exploring a new search space. The last two terms in (7)
enable each particle to perform a local search around its
individual best position and the swarm best position. Each
particle changes its position based on the updated velocity
according to the following equation:
11 k
i
k
i
k
iVXX
III.3.The difference between GA and PSO
The PSO algorithm shares many common points with
the genetic algorithm (GA). Both algorithms start with a
population of individuals randomly generated; all both have
objective function values for evaluating the population.
Both algorithms start with the population and seek optimum
random techniques. The two systems do not guarantee
success. They also have the memory, which is important for
the algorithm. Such as genetic algorithms, PSO is based on
populations that slowly converge to one or more solutions.
However, with PSO, the particles are preserved throughout
the entire process; they do not die. Contrary to the genetic
algorithm, this is based on competition for the best chance
of survival and reproduction. PSO uses a type of
cooperation between the molecules; this is realized by
exchanging the coordinates of the best solutions which have
been produced up to this point. PSO traditionally has no
crossover between individuals, and has no mutation and the
particles are never replaced by other individuals during
execution. Instead of that PSO refines its research by
attracting the particles [14, 20].
Table 1 gives us the difference between GA and PSO, [21].
Table 1 a comparative between GA and PSO
I. TUNING POWER SYSTEM STABILIZER PARAMETERS
BASED GA AND PSO .
IV.1 Objectives functions
The objective functions choice based on the needs of our
controlled system, [21].
To study of the influence choice of objective functions
in the controlled system performances we have realized a
comparative study between two objective functions:
Mono objective function.
Multi objective function
IV.1.1 Mono-objective function.
The aim of using PSS is to ensure a satisfactory damping
of the oscillations and to guarantee the overall stability of
the system for different operating points.
To meet this goal, we have used for the first time a mono
objective function to minimize the real parts of the system
eigenvalues. Therefore, all eigenvalues will be in D area of
stability (figure 2)
(9)
(8)
(7)
GA
PSO
Base
Nature
Nature
Principle
Algorithm
Algorithm
Invidious
Chromosome
Bird, insect ...
selection
Utilizable
No utilizable
crossing
Utilizable
No utilizable
mutation
Utilizable
No utilizable
Number of
individuals
generated each
iteration (example
30 individuals in
a population)
60 individuals
(30 individuals
of crossing and
30 individuals
of mutation)
30
individuals
Excursion Time
Court
Average
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
318
Volume 21, 2022
Figure 2 Stability areas.
To understand this notion, we consider two systems with
same imaginary parts ωs1 = ωs2 and the deferent real part σ:
System 1 : P1, 2=-6±6j
System 2 : P1, 2=-1±6j
Figure 3 The σ influence in the controlled system stability
In this result we can see that the decrease of the real part
improved the dynamic performance and system stability.
Depending on this notion we proposed the flowing mono
objective function which must minimize the real parts of the
eigenvalues system.
Fobj= min(σ)
IV.1.2.Optimization results
To optimize and study of power system we created a
graphical user interface GUI (figure 4) under MATLAB
allows to:
Optimize controller parameters using genetic
algorithms and particle swarm optimization by
mono and multi objective.
View system regulation results and simulation.
Calculate the system dynamics parameters.
Test system stability and robustness.
A. GA optimization method
To run optimization by genetic algorithms under GUI
we use: optimization /GA /PSS/ mono objective
Figure 4 PSS parameters syntheses using GA mono objective
under GUI MATLAB
The below optimization result for: 10 generations and 10
individuals obtained using realized graphical interface.
_________________________________________________________________________________________________
********* Creating the initial population ********
_________________________________________________________________________________________________
********* 1st step coding and initialization ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Segma
_________________________________________________________________________________________________
Individu:01 +05.3255 +03.4588 0.0118 0.0726 -0.9124
Individu:02 +05.3255 +05.3529 0.0785 0.0216 -0.9127
Individu:03 +02.3059 +00.5216 0.0313 0.0397 -0.9197
Individu:04 +06.6431 +02.7176 0.0633 0.0138 -0.9099
Individu:05 +06.4784 +00.6039 0.0064 0.0698 -0.9101
Individu:06 +00.2471 +02.9373 0.0169 0.0028 -0.5860
Individu:07 +00.4392 +05.4902 0.0559 0.0616 -0.5478
Individu:08 +03.6235 +02.0588 0.0528 0.0236 -0.9167
Individu:09 +06.8078 +01.0431 0.0906 0.0040 -0.9089
Individu:10 +05.4902 +04.5843 0.0988 0.0514 -0.9112
********* 2nd step selection ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Segma
_________________________________________________________________________________________________
Individu:01 +05.3255 +05.3529 0.0785 0.0216 -00.9127
Individu:02 +02.3059 +00.5216 0.0313 0.0397 -00.9197
Individu:03 +02.3059 +00.5216 0.0313 0.0397 -00.9197
Individu:04 +06.4784 +00.6039 0.0064 0.0698 -00.9101
Individu:05 +06.4784 +00.6039 0.0064 0.0698 -00.9101
Individu:06 +00.2471 +02.9373 0.0169 0.0028 -00.5860
Individu:07 +03.6235 +02.0588 0.0528 0.0236 -00.9167
Individu:08 +03.6235 +02.0588 0.0528 0.0236 -00.9167
Individu:09 +05.4902 +04.5843 0.0988 0.0514 -00.9112
Individu:10 +02.3059 +00.5216 0.0313 0.0397 -00.9197
********* 3rd step Crossing ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Segma
_________________________________________________________________________________________________
Individu:01 +05.8745 +05.7922 0.0801 0.0154 -00.9116
Individu:02 +01.7569 +00.0824 0.0298 0.0459 -00.9209
Individu:03 +02.9647 +00.6314 0.0313 0.0444 -00.9182
Individu:04 +05.8196 +00.4941 0.0064 0.0651 -00.9118
Individu:05 +05.4902 +01.1529 0.0173 0.0526 -00.9126
Individu:06 +01.2353 +02.3882 0.0060 0.0201 -00.9966
Individu:07 +03.6235 +02.0588 0.0528 0.0236 -00.9167
Individu:08 +03.6235 +02.0588 0.0528 0.0236 -00.9167
Individu:09 +05.8196 +04.0353 0.0801 0.0655 -00.9102
Individu:10 +01.9765 +01.0706 0.0501 0.0256 -00.9203
********* 4st Step Mutation ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Segma
_________________________________________________________________________________________________
Individu:01 +04.0078 +01.8392 0.0902 0.0044 -00.9157
Individu:02 +01.7569 +03.6784 0.0793 0.0271 -00.9282
Individu:03 +00.3294 +00.4941 0.0095 0.0444 -00.5863
Individu:04 +02.3059 +00.7137 0.0048 0.0710 -00.9196
Individu:05 +03.8980 +01.5373 0.0485 0.0655 -00.9155
Individu:06 +05.2431 +02.3608 0.0294 0.0099 -00.9138
Individu:07 +05.7647 +02.6078 0.0520 0.0691 -00.9107
Individu:08 +03.2941 +03.6784 0.0863 0.0150 -1.41140
Individu:09 +00.7412 +04.0902 0.0563 0.0628 -00.6215
Individu:10 +05.9294 +02.8275 0.0926 0.0256 -00.9107
********* Optimization Results ********
_________________________________________________________________________________________________
N Pop K1 K2 T1 T2 Segma
_________________________________________________________________________________________________
Population:01 +03.2941 +03.6784 +00.0863 0.0150 -1.4114
Population:02 +06.5333 +06.6431 +00.0856 0.0330 -2.0971
Population:03 +06.5333 +06.6431 +00.0856 0.0330 -2.0971
Population:04 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:05 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:06 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:07 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:08 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:09 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Population:10 +06.5882 +06.7529 +00.0294 0.0177 -3.2822
Optimization is completed .......
The optimized parameters K1= +06.5882 K2= +06.7529 T1=+00.0294 T2= 0.0177 Segma= -3.2822
D area
σcr
Imaginary
Real
(10)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Step Res ponse
Time (sec )
Amplitude
System 2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Step Res ponse
Time (sec )
Amplitude
System 1
-8 -7 -6 -5 -4 -3 -2 -1 0
-8
-6
-4
-2
0
2
4
6
8
0.080.170.280.380.50.64
0.8
0.94
0.080.170.280.380.50.64
0.8
0.94
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Pole-Zero Map
Real Axis
Imaginary Axis
Systeme 1
Systeme 2
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
319
Volume 21, 2022
0 1 2 3 4 5 6 7 8
-1.5
-1
-0.5
0
0.5
1
1.5
2x 10-3 GLISSEMENT
temps en sec
glissement
PSS-GA-MONOOBJ
PSS-PSO-MONOOBJ
0 1 2 3 4 5 6 7 8
1.32
1.34
1.36
1.38
1.4
1.42
1.44
DELTA
temps en sec
delta
PSS-GA-MONOOBJ
PSS-PSO-MONOOBJ
B. PSO optimization method
To run particle swarm optimization under GUI we use:
optimization /PSO /PSS/ mono objective
Figure 5 PSS parameters syntheses using PSO mono objective under GUI
MATLAB
__________________________________________________________________________________________
********* PSO initialization ********
__________________________________________________________________________________________
N ind K1 K2 T1 T2 Segma
__________________________________________________________________________________________
Individu:01 +02.2669 +03.7478 0.0196 0.0735 -1.2297
Individu:02 +01.8199 +03.4169 0.0887 0.0380 -0.8399
Individu:03 +03.5118 +01.0559 0.0077 0.0258 -0.9175
Individu:04 +00.9394 +02.0283 0.0995 0.0431 -0.6079
Individu:05 +00.9999 +04.9862 0.0136 0.0070 -0.9263
Individu:06 +01.3419 +01.7628 0.0087 0.0457 -1.0159
Individu:07 +05.4810 +01.0900 0.0381 0.0693 -0.9117
Individu:08 +01.9461 +06.7947 0.0322 0.0798 -1.0203
Individu:09 +03.0305 +01.3165 0.0950 0.0563 -0.9171
Individu:10 +05.9236 +04.6694 0.0731 0.0946 -0.9093
__________________________________________________________________________________________
***** PSO algorithm *****
__________________________________________________________________________________________
N Pop K1 K2 T1 T2 Segma
__________________________________________________________________________________________
Iteration:01 +02.2669 +03.7478 0.0196 0.0735 -1.2297
Iteration:02 +01.9678 +03.6840 0.0197 0.0479 -1.2695
Iteration:03 +02.8359 +05.3230 0.0241 0.0581 -1.5411
Iteration:04 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:05 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:06 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:07 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:08 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:09 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Iteration:10 +04.2027 +04.9842 0.0396 0.0528 -1.9376
Optimization is completed .......
The optimized parameters K1= +04.2027 K2= +04.9842 T1=+00.0396 T2= 0.0528 Segma= -1.9376
Figure 6 Optimization result of GA and PSO using mono
objective function
The optimization results obtained show that the GA (σ =
-3.2822) more reliable compared to PSO (σ = -1.9376)
IV.1.3.Simulation results
For SMIB system stability study we have performed
perturbation in turbine torque (ΔTm =15% at 0.5 second)
We simulated SMIB system under
Different operations regimes: under-excited, the
nominal and the over-excited.
Different electrical network: long, court and
average
Different synchronous generators: TBB 200,
500, 1000 and BBC720.
We optimized the controller parameters by GA and PSO
under different conditions cited above.
The following results were obtained by SMIB studied
with following cases: closed loop System with PSS_GA_
mono objective and PSS_PSO_ mono objective
Figures 7 and 8 show simulation results of power system
under critical regime (under excited and long transmission
line network)
Figure 7 Variable speed
Figure 8 Internal angle
From the obtained results it can be seen that:
The parameters optimization of power system stabilizer
PSS using mono objective GA and PSO gives the SMIB
system a considerable improvements in the stability and
dynamics performances
Concerning the optimization method, the GA is well
adapted with the system SMIB compared to the PSO.
1 2 3 4 5 6 7 8 9 10
-3.5
-3
-2.5
-2
-1.5
-1
itération
segma
Convergence vers la solution optimale méthode GA et PSO
GA
PSO
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
320
Volume 21, 2022
IV.2.1 Multi objective function.
The system SMIB is stable based on mono objective
function, but it contains a disadvantage especially if the two
factors σ and damping coefficient ζ are minimal
simultaneously. The dynamic behavior of such a system
depends on two values: σ and especially the damping
coefficient ζ. To study the influence of damping coefficient
ζ on the controlled system we consider two systems with
real part σs1= σs2 and ωs1 ≠ ωs2 imaginary part):
System 21: P21, 2=-2±j with ζ = 0.8944
System 22: P22, 2=-2±8j with ζ = 0.2425
The systems poles and step responses match each system
shown in figure 9.
Figure 9 the ζ influence to controlled system
From the obtained results, it can be seen that:
The increase of the damping coefficient ζ improves
system stability. Based on these results we propose a new
objective function composed by two functions. This
function must maximize stability margin by increasing the
damping factors while minimizing the real parts of the
system eigenvalues, and second function must maximize the
set of two objective functions.
max(ζ)-min(σ)
FMult_obj=max (max(ζ)-min(σ))
IV.2.2.Optimization results
A. GA optimization method
To run GA multi objective optimization under GUI we
use: optimization /GA /PSS/ multiobjective
Figure 10 PSS parameters syntheses using GA multi objective
under GUI MATLAB
Optimization example using GA technique with Number
of individuals=10 , Number of population =10
__________________________________________________________________________________________
********* Creating the initial population ********
__________________________________________________________________________________________
********* 1st step coding and initialization ********
__________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
__________________________________________________________________________________________
Individu:01 +02.2588 +10.5882 0.0106 0.0843 -1.3181 +0.1054 +1.4234
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -0.8998 +0.9959 +1.8957
Individu:03 +00.2824 +09.4118 0.0622 0.0890 -0.4643 +0.0381 +0.5023
Individu:04 +02.0706 +08.0941 0.0473 0.0432 -1.1622 +0.0932 +1.2554
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -0.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -1.4711 +0.1082 +1.5794
Individu:07 +00.5647 +03.6706 0.0294 0.0702 -0.6460 +0.0535 +0.6995
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -0.9187 +0.9989 +1.9176
Individu:09 +03.8118 +02.5412 0.0501 0.0095 -0.9165 +0.9964 +1.9129
Individu:10 +05.9765 +11.1529 0.0828 0.0706 -1.2001 +0.0891 +1.2892
********* 2nd step selection ********
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:03 +02.0706 +08.0941 0.0473 0.0432 -01.1622 +0.0932 +1.2554
Individu:04 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -01.4711 +0.1082 +1.5794
Individu:07 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:09 +03.8118 +02.5412 0.0501 0.0095 -00.9165 +0.9964 +1.9129
Individu:10 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
********* 3rd step Crossing ********
_________________________________________________________________________________________________
croissement state
_________________________________________________________________________________________________
Pc = 0.267 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 -----> Pc < PC: There is a crossing
Pc = 0.267 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 -----> Pc < PC: There is a crossing
Pc = 0.521 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 -----> Pc < PC: There is a crossing
Pc = 0.521 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 -----> Pc < PC: There is a crossing
Pc = 0.766 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 -----> Pc > PC: no crossing ……..
Pc = 0.766 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 -----> Pc > PC: no crossing….......
Pc = 0.571 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 -----> Pc < PC: There is a crossing
Pc = 0.571 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 -----> Pc < PC: There is a crossing
Pc = 0.765 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 -----> Pc > PC: no crossing ……..
Pc = 0.765 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 -----> Pc > PC: no crossing ……____..
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:02 +10.9647 +09.2706 0.0329 0.0459 -00.8998 +0.9959 +1.8957
Individu:03 +02.0706 +08.0941 0.0473 0.0432 -01.1622 +0.0932 +1.2554
Individu:04 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:05 +09.1765 +07.8118 0.0711 0.0659 -00.9022 +0.9960 +1.8982
Individu:06 +05.9765 +11.4353 0.0602 0.0792 -01.4711 +0.1082 +1.5794
Individu:07 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:08 +02.6353 +02.4471 0.0906 0.0154 -00.9187 +0.9989 +1.9176
Individu:09 +05.6941 +02.5412 0.0407 0.0142 -00.9125 +0.9920 +1.9045
Individu:10 +00.7529 +02.4471 0.1000 0.0107 -00.6279 +0.0523 +0.6802
********* 4st Step Mutation ********
_________________________________________________________________________________________________
mutation probabilities used
_________________________________________________________________________________________________
0.03 0.51 0.510.770.470.370.920.640.650.330.240.820.420.240.560.200.620.610.380.440.530.050.810.350.420.750.330.460.730.640.750.8
0.76 0.83 0.830.410.780.420.080.580.060.750.510.200.040.420.100.110.220.490.340.840.950.750.460.240.110.370.790.270.190.040.540.61
0.46 0.20 0.560.970.880.120.560.340.740.650.680.800.490.040.740.130.050.270.990.870.360.620.360.930.480.760.830.530.740.620.1 70.19
0.29 0.39 0.110.030.250.820.030.290.340.670.790.730.100.250.410.830.040.650.040.550.380.430.310.410.770.920.560.960.020.480.210.26
0.84 0.01 0.670.210.600.260.410.560.310.230.050.540.060.860.170.770.070.140.430.620.960.060.110.550.580.900.050.980.280.800.0 70.98
0.65 0.69 0.440.020.780.350.051.000.810.630.990.930.800.520.850.270.860.640.430.330.410.300.210.130.720.610.020.210.310.810.070.96
0.46 0.76 0.460.210.150.150.630.440.120.120.220.380.780.590.280.520.530.590.110.960.770.200.750.680.480.830.420.680.210.730.3 90.14
0.03 0.64 0.270.930.500.890.910.800.750.080.600.331.000.630.910.690.250.130.800.060.950.180.410.470.580.930.810.000.220.540.430.13
0.29 0.88 0.490.680.440.630.440.570.320.200.200.640.660.590.230.320.940.380.270.670.770.940.520.390.110.520.820.910.050.020.8 30.34
0.63 0.81 0.040.690.850.830.600.110.170.440.690.060.390.660.070.830.810.030.590.440.601.000.890.670.520.910.370.830.920.840.4 80.37________
Coding after mutation
_________________________________________________________________________________________________
1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1
0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0
0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1
0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0
0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0
1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0
1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1
_________________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Individu:01 +11.0588 +04.4235 0.0824 0.0914 -00.8944 +0.9811 +01.8755
Individu:02 +04.9412 +10.5412 0.0344 0.0459 -02.4718 +0.1902 +02.6619
Individu:03 +04.8941 +07.9529 0.0723 0.0428 -01.7022 +0.1293 +01.8315
Individu:04 +07.1059 +09.6000 0.0454 0.0510 -02.9609 +0.2143 +03.1752
Individu:05 +05.6471 +08.0000 0.0087 0.0640 -02.7400 +0.2169 +02.9569
Individu:06 +05.1294 +11.3882 0.0606 0.0973 -01.1078 +0.0833 +01.1911
Individu:07 +01.6941 +10.0706 0.0766 0.0181 -00.9218 +0.0746 +00.9964
Individu:08 +07.1529 +05.4588 0.0204 0.0244 -00.9094 +0.9958 +01.9052
Individu:09 +11.7176 +03.9529 0.0282 0.0659 -00.8965 +0.9798 +01.8763
Individu:10 +02.3059 +07.8118 0.0750 0.0107 -01.1738 +0.0952 +01.2690
********* Optimization Results ********
_________________________________________________________________________________________________
N pob K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Population:01 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:02 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:03 +10.1176 +10.0706 0.0360 0.0009 -4.2122 +0.3687 +4.5809
Population:04 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:05 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:06 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:07 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:08 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Population:09 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
(11)
(12)
-3 -2.5 -2 -1.5 -1 -0.5 0
-8
-6
-4
-2
0
2
4
6
8
0.030.060.0950.1350.190.28
0.4
0.7
0.030.060.0950.1350.190.28
0.4
0.7
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
Pole-Zero Map
Real Axis
Imaginary Axis
Système 1
Système 2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
D
Step Response
Time (sec )
Amplitude
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Step Response
Time (sec )
Amplitude
System 21
System 22
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
321
Volume 21, 2022
Population:10 +11.9529 +11.8118 0.0216 0.0232 -5.2799 +0.4568 +5.7367
Optimization is completed .......
The optimized parameters:K1= +11.9529 K2= +11.8118 T1=+00.0216 T2= 0.0232 Sigma= -5.2799 Ksi= +0.4568
multi-obj =5.7367
B. PSO optimization method
To run GUI for optimization by particle swarm we use
optimization /PSO /PSS/ multiobjective
Figure 11 PSS parameters syntheses using PSO multi objective
under GUI MATLAB
Optimization example using PSO technique with
Number of individuals=10 , Number of population =10
__________________________________________________________________________________________
********* PSO initialization ********
________________________________________________________________________________________________
N ind K1 K2 T1 T2 Sigma ksi multi-obj
__________________________________________________________________________________________
Individu:01 +09.6808 +07.9646 0.0268 0.0441 -0.9029 +0.9957 +1.8987
Individu:02 +00.6388 +10.6478 0.0098 0.0804 -0.8217 +0.0668 +0.8885
Individu:03 +10.9561 +09.3053 0.0686 0.0126 -0.9005 +0.9968 +1.8973
Individu:04 +05.3306 +08.7789 0.0816 0.0432 -1.6275 +0.1226 +1.7501
Individu:05 +06.4605 +11.5067 0.0345 0.0986 -1.8937 +0.1387 +2.0324
Individu:06 +01.9972 +09.8907 0.0077 0.0755 -1.2895 +0.1040 +1.3936
Individu:07 +07.6214 +07.1632 0.0062 0.0689 -0.9071 +0.9982 +1.9053
Individu:08 +08.1054 +05.5867 0.0723 0.0080 -0.9067 +0.9940 +1.9007
Individu:09 +07.6468 +06.0865 0.0152 0.0033 -0.9090 +0.9966 +1.9056
Individu:10 +03.6881 +08.7959 0.0277 0.0887 -1.4943 +0.1161 +1.6104
***** PSO algorithm *****
________________________________________________________________________________________________
N itération K1 K2 T1 T2 Sigma ksi multi-obj
_________________________________________________________________________________________________
Itération:01 +06.2910 +08.8352 0.0285 0.0964 -2.0428 +0.1517 +2.1945
Itération:02 +08.7976 +10.7664 0.0568 0.0233 -4.1044 +0.3012 +4.4056
Itération:03 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:04 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:05 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:06 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:07 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:08 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:09 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Itération:10 +10.2320 +10.3196 0.0606 0.0195 -4.7231 +0.3415 +5.0645
Optimization is completed.......
The optimized parameters
K1= +10.2320 K2= +10.3196 T1=+00.0606 T2= 0.0195 Sigma= -2.0428 ksi= +0.1517 multiobj= +5.0645
Figure 12 Optimization results of GA and PSO
The optimization results obtained (examples and figure 5)
show that:
1. GA and PSO optimizations techniques well adapted to
multi objective function:
Increase damping coefficient ζ.
Decrease of real part of the poles σ.
Increase multi objective function.
2. GA (GA_Multi = +5.7367) more reliable than PSO
(PSO_Multi = +5.0645).
IV.2.3.Simulation results
Figures 13, 14 and 15 show simulation results of power
system studied under different regimes with: a:'s' variable
speed, b:'delta' the power angle. System SMIB controlled
using: PSS_GA_ mono objective, PSS_PSO_ mono
objective, PSS_GA_ multi objective and PSS_PSO_ multi
objective. Table 2 present the static and dynamics
performances analyze of power system and PSS parameters
optimized using GA and PSO calculated under GUI realized
for long transmission line network and different values of
reactive power (under excited, nominal, and over excited)
for TBB 200.
With:
εs %: the static error.
ts : the settling time for 5%.
d%: the maximum overshoot.
Poles.
Figure 13 over excited regime operation
a
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5
-1
-0.5
0
0.5
1
1.5 x 10-3 GLISSEMENT
temps en sec
glissement
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0.8 1 1.2 1.4 1.6 1.8
-8
-6
-4
-2
0
2
4
6
x 10-4 GLISSEMENT
temps en sec
glissement
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.36
1.37
1.38
1.39
1.4
1.41
1.42
1.43
1.44
1.45
DELTA
temps en sec
delta
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
1.39
1.395
1.4
1.405
1.41
1.415
1.42
1.425
1.43
DELTA
temps en sec
delta
b
0 5 10
-6
-5
-4
-3
-2
Convergence vers la solution optimale méthode GA et PSO
itération
segma
0 5 10
0.1
0.2
0.3
0.4
0.5
itération
Ksi
1 2 3 4 5 6 7 8 9 10
2
3
4
5
6
itération
fonction multobjective
GA
PSO
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
322
Volume 21, 2022
Figure 14 under excited regime operation
Figure 15 nominal regime operation
Table 2 static and dynamic performances of PSS optimized
using GA and PSO mono objective and multi objective function
__________________________________________________________________________
K1 K2 T1 T2 Poles ζ D% ε tr
__________________________________________________________________________
Over excited regime
__________________________________________________________________________
GA MULTI 04.3647 06.2039 0.0294 0.0354 -5.9729 ± j 7.9196 0.6021 1.5042 0.0000 0.2628
GA MONO 05.2157 06.3412 0.0091 0.0475 -3.2284 ± j17.4565 0.1819 3.7240 0.0500 0.3023
PSO MULTI 04.3562 06.3870 0.0309 0.0416 -4.0989 ± j 8.8387 0.5679 1.6796 0.0139 0.2878
PSO MONO 05.8831 06.4536 0.0367 0.0759 -2.5594 ± j 19.656 0.1291 4.1776 0.0500 0.3037
Nominal regime
_______________________________________________________________________________________
GA MULTI 05.7922 06.6706 0.0614 0.0189 -4.2363 ± j 6.4478 0.5491 2.9247 0.0000 0.2998
GA MONO 04.7255 04.3137 0.0274 0.0600 -3.7175 ± j 18.954 0.1925 4.4628 0.0129 0.3106
PSO MULTI 07.2520 07.4527 0.0207 0.0331 -3.9057 ± j 8.4649 0.4190 2.9207 0.0087 0.3084
PSO MONO 03.9005 02.4449 0.0491 0.0259 -3.1927 ± j 18.544 0.1697 4.8218 0.0130 0.3114
Under excited regime
_______________________________________________________________________________________
GA MULTI 05.7922 06.3686 0.0462 0.0013 -2.7460 ± j 6.6338 0.3825 4.3941 0.0000 0.3001
GA MONO 01.9529 00.1412 0.0458 0.0052 -3.5238 ± j 21.876 0.1590 4.0305 0.0234 0.3981
PSO MULTI 05.2003 06.3812 0.0750 0.0498 -2.3075 ± j 8.5888 0.2595 4.6191 0.0123 0.3035
PSO MONO 02.0196 01.0644 0.0088 0.0295 -3.2726 ± j 20.973 0.1542 4.7322 0.0234 0.3027
From table results, it can be observed that the use of
PSS-GA and PSS-PSO improves considerably the dynamics
performances by increasing damping coefficient ζ and
improves stability by decreasing the real part of the poles σ
under different operating regimes. However optimization by
the genetic algorithm in the majority of results obtained very
effective compared to the use of particle swarms
optimization.
The simulation results shown in figures 13,14 and 15
show the effectiveness of the use of GA mult-objective in
comparison with GA mono objective, PSO mono objective,
and PSO mult-objective, it can be observed static errors
negligible so better precision, and very short setting time so
very fast system, and we found that after a few oscillations,
the system returns to its equilibrium state even in diffirent
regimes operations.
The optimization and simulation results satisfy to show
the reliability of the proposed optimization technique GA
multi-objective.
4. Conclusion
In this article, the PSS parameters optimized using a
genetic algorithm and particle swarm optimization applied
to powerful synchronous generators exciter voltage control
to improve static and dynamic performances of power
system.
Genetic algorithm technique optimization allows us to
obtain a considerable improvement in dynamics
performances and robustness stability of the power system
studied. The optimization and simulation results show that
the optimization by the genetic algorithm very effective in
comparison with the particle swarms optimization
All results are obtained by using our created GUI/MATLAB
References
[1] T.K. Das, and G.K. Venayagamoorthy, “Optimal
Design of Power System Stabilizers Using a Small
Population Based PSO” IEEE Power Engineering
Society General Meeting, 2006.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.18
1.19
1.2
1.21
1.22
1.23
1.24
1.25
1.26
1.27
DELTA
temps en sec
delta
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1
-0.5
0
0.5
1
1.5 x 10-3 GLISSEMENT
temps en sec
glissement
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0.7 0.8 0.9 1 1.1 1.2 1.3
-6
-5
-4
-3
-2
-1
0
1
2
3
x 10-4 GLISSEMENT
temps en sec
glissement
b
a
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.3
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
DELTA
temps en sec
delta
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0.6 0.7 0.8 0.9 1 1.1 1.2
1.345
1.35
1.355
1.36
1.365
1.37
DELTA
temps en sec
delta
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5
-1
-0.5
0
0.5
1
1.5
2x 10-3 GLISSEMENT
temps en sec
glissement
PSS-GA-MONOOBJ
PSS-GA-MULTOBJ
PSS-PSO-MONOOBJ
PSS-PSO-MULTIOBJ
0.9 1 1.1 1.2 1.3 1.4 1.5 1. 6 1.7 1.8
-4
-2
0
2
4
6
x 10-4 GLISSEMENT
temps en sec
glissement
a
b
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
323
Volume 21, 2022
[2] GHOURAF Djamel Eddine and NACERI Abdellatif
‘’ An Advanced PID-PSS Based Genetic Algorithms
Implemented using GUI - MATLAB ‘’,IEEE Xplore
Proceedings of International Renewable and
Sustainable Energy Conference
(IRSEC’14),Page(s):411 - 418
[3] Sayed Mojtaba Shirvani Boroujeni, Reza Hemmati,
Hamideh Delafkar and Amin Safarnezhad Boroujeni
‘Optimal PID power system stabilizer tuning based
on particle swarm optimization’ Indian Journal of
Science and Technology Vol. 4 No. 4,pp 379-383
[4] Sumathi N, Selvan MP and Kumaresan N (2007) A
hybrid genetic algorithm based power system
stabilizer. Int. conf. on intelligent & advanced
systems. pp:876-881.
[5] Jiang P, Yan W and Weigu '' PSS parameter
optimization with genetic algorithms'', DRPT 2008,
Nanjing China. pp: 900-903.
[6] Yassami H, Darabi A and Rafiei SMR ''Power
system stabilizer design using strength pareto
multiobjective optimization approach'', Electric
Power Systems Res. 80, 2010, pp838–846.
[7] Dubey M ''Design of genetic algorithm based fuzzy
logic power system stabilizers in multi machine
power system'', Int. Conf. on soft computing &
intelligent systems, (2007) pp:214-219.
[8] Gi-Hyun Hwang; June-Ho Park; Hyeon Tae Kang;
Sungshin,'Design of fuzzy power system stabilizer us
ing adaptive evolutionary algorithm', IEEE Xplore
Proceedings of the International Symposium on
Industrial Electronics, 2000
[9] Zhu Jizhong. ''Optimization of power system
operation '', IEEE Press Editorial Board WILEY,
2009, p 470.
[10] Dhubkarya D.C., Deepak Nagariya, Jay Kumar,
''Function Optimization Using Genetic Algorithm
by VHDL'', Global Journal of Computer Science and
Technology, 2010, Vol. 1, Issue 9, pp 73-78.
[11] Melanie Mitchell. ‘'An Introduction to Genetic
Algorithms’', Cambridge, Massachusetts London,
England: A Bradford Book The MIT Press, 1999.
0−262−13316−4 (HB), 0−262−63185−7 (PB)
[12] Wei Zhang; Weifeng Shi; Jinbao Zhuo ''Quantum-
PSO based system stabilizer optimization for
shipboard power system'' ,IEEE Xplore Proceedings
of 35th Chinese Control Conference (CCC), 2016
[13] F. Schutte, ‘'The Particle Swarm Optimization
Algorithm'', Structural Optimization, 2005. EGM
6365.
[14] Med. MEKHANET, L. MOKRANI and Med.
LAHDEB '' Comparison between Three
Metaheuristics Applied to Robust Power System
Stabilizer Design'', ACTA ELECTROTEHNICA
Vol51, N 1, 2012, pp 3-10
[15] S.V. SMOLOVIK ‘mathematical modeling Method
of transient processes synchronous generators most
usual and non-traditional in the electro-energy
systems’ PhD Thesis State, Leningrad Polytechnic
Institute, 1988, p 213, (translated from Russian).
[16] F. Glover, ' Future Paths for Integer Programming
and Links to Artificial Intelligence'’, Computers and
Operations Research , vol 13 (5),pp 533–549, 1986.
[17] K. Y. Lee and M.A. El-Sharkawi, ''Modern Heuristic
Optimization Techniques with Applications to Power
Systems'’, IEEE Press Series on Power Engineering,
John Wiley & Sons, 2008.
[18] Prasenjit Dey; Aniruddha Bhattacharya; Juhi Datta;
Priyanath Das '' Parameter tuning
of power system stabilizer using a meta
heuristic algorithm'' ,IEEE Xplore Proceedings
Second International Conference on Electrical,
Computer and Communication Technologies
(ICECCT), 2017
[19] J.H. Holland, ‘Adaptation in Natural and Artificial
Systems’, University of Michigan Press, 1975.
[20] J. Kennedy, R. Eberhart. ‘Particle swarm
optimization.’ In: Proceedings of the IEEE
international conference of neural network
(ICNN’95), vol. IV; 1995. p. 19428.
[21] Yosra Welhazi; Tawfik Guesmi; Chefai Dhifaoui;
Hsan Hadj Abdallah '' Robust design of multi
machine power system stabilizers using multi
objective PSO algorithm '' 2014 5th International
Renewable Energy Congress (IREC), IEEE Xplore
Proceedings APPENDIX
1. Parameters of the used Turbo –Alternator
Parameters
TBB-200
TBB-500
BBC-720
TBB1000
Units of
measure
power
nominal
200
500
720
1000
MW
Factor of
power
nominal.
0.85
0.85
0.9
0.85
p.u.
d
X
2.56
1.869
2.67
2.35
p.u.
q
X
2.56
1.5
2.535
2.24
p.u.
s
X
0.222
0.194
0.22
0.32
p.u.
f
X
2.458
1.79
2.587
2.173
p.u.
sf
X
0.12
0.115
0.137
0.143
p.u.
sfd
X
0.0996
0.063
0.1114
0.148
p.u.
qsf
X1
0.131
0.0407
0.944
0.263
p.u.
qsf
X2
0.9415
0.0407
0.104
0.104
p.u.
a
R
0.0055
0.0055
0.0055
0.005
p.u.
f
R
0.000844
0.000844
0.00176
0.00132
p.u.
d
R1
0.0481
0.0481
0.003688
0.002
p.u.
q
R1
0.061
0.061
0.00277
0.023
p.u.
q
R2
0.115
0.115
0.00277
0.023
p.u.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.38
Ghouraf Djamel Eddine, Naceri Abdellatif
E-ISSN: 2224-2872
324
Volume 21, 2022