
 

 

 

 
 

Abstract—All-to-all broadcast communication, distributing messages from each node to every other node, is a dense 
communication pattern and finds numerous applications in advanced computing and communication networks from the control 
plane to datacenters. A ring network topology is one of the important regular network topologies due to its simple structure, high 
speed, easy to extend and tolerant to link and node failures. Few researchers recommended connecting the alternate nodes of the 
ring with additional fibers in the ring network, to support increased call connection probability, higher tolerable to multiple link 
and node failures, enormous traffic handling capability and improved survivability. To reduce the complicatedness and cost of 
the network, it is essential to reduce the wavelength-number required to establish all-to-all broadcast in wavelength-division 
multiplexed ring network. In this paper, a ring network is extended by directly linking all nodes which are separated by two 
intermediate nodes with additional fibers and this network is referred as ring with 3-length extension. The wavelength allotment 
methods are proposed for realizing all-to-all broadcast over a WDM optical bi-directional ring with 3-length extension under 
multiple unicast routing model using a two-stage heuristic algorithm. The heuristic algorithm is developed to identify non-
overlapping connections and an explicit wavelength allotment method based on the output of the heuristic technique is given. 
The result obtained shows that wavelength-number required atmost to establish all-to-all broadcast in a bi-directional ring with 
3-length extension is reduced by a minimum of 57% and a maximum of 66% when compared to bi-directional primary ring. 
Similarly, the wavelength-number required atmost to establish all-to-all broadcast in a bi-directional ring with 3-length extension 
is reduced by a minimum of 20% and a maximum of 33% when compared to a bi-directional ring with 2-length extension. 
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1. Introduction 

PTICAL Wavelength Division Multiplexing (WDM) 
technologies have the potential to provide the tremendous 
bandwidth demand for emerging high performance 

computing applications. A WDM optical network employs 
numerous optical nodes and these nodes are interconnected 
using optical fibers in some fashion. WDM technology 
permits the passage for multiple wavelength optical signals 
through the same fiber and thus provides abundant bandwidth. 
Each optical node employs required optical sources (Ex: laser 
diodes) at the transmitter section to modulate the input 
electrical signals with light signal as carrier and required 
optical detectors (Ex: photo diodes) at the receiver section to 
demodulate the received signal and extract the input signal 
that was fed at the transmitter. Though the same fiber can be 
used for signal transmission in both forward and reverse 
directions, it is normally assumed that each optical link is a set 
of two fibers, with one fiber dedicated to forward transmission 
and another one for reverse transmission. An optical 
connection (lightpath) (m, n) corresponds to the establishment 
of an optical path for transfer of a packet from source m to 
destination n on a unique wavelength. In the absence of 
wavelength converters at the intermediate optical nodes, each 
lightpath needs to be on the same wavelength from source to 
destination. 

 
All-to-all broadcast communication, distributing 

messages from each node to every other node, finds abundant 
applications from network control plane to datacenters [1-3]. 
In general, all-to-all broadcast is employed for numerous 
applications in advanced distributed computing and 
communication systems which employ WDM optical 
networks comprising hundreds of optical nodes at the 
backbone and involving huge number of operating 
wavelengths [4-18]. Wavelength need to be assigned for 
various lightpaths in such a way that no two lightpaths are 
established using the same wavelength, if they share any 
common link along entire route.  Wavelengths being a scarce 
and costly resource, its usage need to be restricted to reduce 
the complexity and cost of the network. Optical WDM all-to-
all broadcast communication was extensively analysed by 
many researchers but still it contains so many research 
challenges. All-to-all broadcast was studied for numerous 
topologies like ring, linear array, torus, mesh and tree under all 
optical routing models. Preceding research works [19-22] 
proposes interconnecting the alternate nodes of primary ring 
with additional link, and termed as modified-ring / extended-
ring topology to support enormous bandwidth requirement, 
enlarged call connection probability and improved stability. 
The link and node failure analysis are studied for the 
modified/ extended ring networks topology [23-24].  Also, the 
wide-sense non-blocking multicast communication for 
modified/ extended ring is studied [25]. In this work, we 
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examine all-to-all broadcast in a ring with 3-length extension 
network, as it provides lower wavelength usage and eye-
catching for optical control plane.  
Section 2 gives an overview of the basics required to 
understand the investigation done in this paper. Wavelength-
number required atmost to establish all-to-all broadcast and its 
associated link load is obtained in section 3 using proposed 
heuristic algorithm. Finally, section 4 completes the paper 
highlighting future research avenues.  

2. Preliminaries 
If Fig.1 illustrate a 12-node (node 0 to node11) ring with 

3-length extension. A primary ring network topology is 
extended by additionally linking two nodes which are 
separated by two intermediate nodes with additional fibers. 
This network is referred as ring with 3-length extension. In 
this network each node 𝑥 is linked straight to node (𝑥 ⊕ 1)in 
addition to node (𝑥 ⊕ 3)where ⊕stand for addition with 
modulo𝑁. It offers additional paths so as to aid decrease the 
effectual number of hops and also to decrease the wavelength-
number required to establish all-to-all broadcast 
commendation.  
 
The following definitions are necessary to prove the main 
results. 
Definition 1: A shorter link is one that links the nodes 𝑥 with 
(𝑥 ⊕ 1). A longer link is one that directly links the nodes 
𝑥with (𝑥 ⊕ 3). 
Definition 2: “A connection is the set of all links that joins 
source node and destination node following a prescribed 
routing method” [22].  
 

 
Fig. 1. A 12-node ring with 3-length extension 

 

Definition 3: “A connection that selects longest link over a 
shortest link at the source node and at various intermediate 
nodes to reach the destination node is said to follow ‘longest 
link first routing” [22]. For example in Fig. 1, using longest 
link first routing algorithm, a connection from node 2 to 6 
selects first available longest link interconnecting the node 2 
with node 5 and then the shortest link  interconnecting node 5 
with node 6.  

Definition 4: “If the number of intermediate nodes between 
the source node and destination node in the primary ring is𝑙 −
1, then the connection is called a length 𝑙connection. For 
example, in Fig. 1, if the source node is indexed 2 and the 
destination node is indexed 5, then the length of the 
connection is 3”[22]. 
Definition 5: “Two or more connections are said to be non-
overlapping with each other, if they do not share any link 
along their path”[22]. 
Lemma 1: In longest link first routing, for 3 ≤ l ≤ ⌊N

2
⌋,  and 

(l mod 3 = 0), three 𝑙 length connections starting (source) 
from any 3 consecutive nodes do not interfere with each other.  
Proof: Let a, a ⊕ 1, a ⊕ 2  be the index of the three 
consecutive nodes where a ≥ 0.  A 𝑙 length connection starting 
from node index a, first use the longer links joining the nodes 
a and a ⊕ 3, then nodes a ⊕ 3 with a ⊕ 6 and so on. 
Similarly, 𝑙 length connections starting from node index a ⊕
1, first use the longer links joining the nodes a ⊕ 1 and a ⊕ 4, 
then nodes a ⊕ 4 with a ⊕ 7 and so on. Also, 𝑙 length 
connections starting from node index a ⊕ 2, first use the 
longer links joining the nodes a ⊕ 2 and a ⊕ 5, then nodes 
a ⊕ 5 with a ⊕ 8, and so on. Hence, these 3 sets of 
connections do not share any common link and hence they do 
not interfere with each other.  
 
Lemma 2: Under longest link first routing, for 4 ≤ l ≤

⌊
N

2
⌋,  and (l mod 3 = 1),  three 𝑙 length connections starting 

(source) from any 3 consecutive nodes do not interfere with 
each other.  
Proof: Let a, a ⊕ 1, a ⊕ 2 be the index of the three 
consecutive nodes where a ≥ 0. A 𝑙 length connection starting 
from node index a, first use the longer links joining the nodes 
a and a ⊕ 3, then nodes a ⊕ 3 with a ⊕ 6, and so on and 
finally end with one shorter link. Similarly, 𝑙 length 
connections starting from node index a ⊕ 1,first use the 
longer links joining the nodes a ⊕ 1 and  a ⊕ 4, then nodes 
a ⊕ 4 with a ⊕ 7, and so on and finally end with one shorter 
link. Also, 𝑙 length connections starting from node index a ⊕
2, first use the longer links joining the nodes a ⊕ 2  and  a ⊕
5, then nodes a ⊕ 5 with a ⊕ 8, and so on and finally end 
with one shorter link. As the longer links involved in the 3 sets 
of connections are completely different, the shorter link 
immediately following the last longer link in the 3 sets of 
connections will also be different (as the source node of 
shorter links are not same). Hence, these 3 sets of connections 
do not share any common link and hence they do not interfere 
with each other.  
 
Lemma 3: Let 𝑁 be a positive integer. Then, two wavelengths 
are sufficient to establish all connections of length 𝑙 = 2 in 
a𝑁node ring with 3-length extension using longest link first 
routing.  
Proof: Let  a, a ⊕ 2 be the index of the two nodes (where a ≥
0) which are separated by exactly one intermediate node 
indexed a ⊕ 1. A length 2 connection starting from node 
indexa, involve two consecutive shorter links, first the link 
interconnecting the nodes a and a ⊕ 1, then the link 
interconnecting the nodes a ⊕ 1 and a ⊕ 2. Similarly, 
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connections of length 2 originating from node index a ⊕ 2, 
involve two consecutive shorter links, first the link joining the 
nodes a ⊕ 2 and a ⊕ 3, then the link joining the nodes a ⊕ 3 
and a ⊕ 4. Hence, these 2 sets of connections do not share any 
common link and hence they do not interfere with each other. 
Hence, two wavelengths are sufficient to route all connections 
of length 2.  
 
Lemma 4: Under longest link first routing, for 5 ≤ l ≤

⌊
N

2
⌋, and(l mod 3 = 2), connections of same length l, and 

originating (source) from any 3 nodes which are separated by 
exactly one intermediate node do not interfere with each other.  
Proof: Let a, a ⊕ 2, a ⊕ 4 be the indices of the three nodes 
(where a ≥ 0) which are separated by one intermediate nodes. 
A connection of length l, originating from node index a,first 
use the longer links joining the nodes a and a ⊕ 3, then nodes 
a ⊕ 3 with a ⊕ 6, and so on and finally end with two 
consecutive shorter links. Similarly, connections of length l, 
originating from node index a ⊕ 2, first use the longer links 
joining the nodes a ⊕ 2 and a ⊕ 5, then nodes a ⊕ 5 
with a ⊕ 8, and so on and finally end with two consecutive 
shorter links. Similarly, connections of length l, originating 
from node index a ⊕ 4, first use the longer links joining the 
nodes a ⊕ 4 and a ⊕ 7, then nodes a ⊕ 7 with a ⊕ 10, and 
so on and finally end with two consecutive shorter links. As 
the longer links involved in the 3 sets of connections are 
different, the two consecutive shorter links immediately 
following the longer links in the 3 sets of connections would 
also be different (as the indices of the source node of the first 
shorter link in the 3 set of connections differ exactly by 2). 
Hence, these 3 sets of connections do not share any common 
link and hence they do not interfere with each other. 
 

Illustration 1: Wavelength allotment for all-to-all broadcast 
in a 12-node bi-directional ring with 3-length extension under 
shortest path/longest link first routing. 
 
Consider the 12-node ring with 3-length extension shown in 
Fig. 1. The shortest connections in clockwise direction are 
considered and listed below, the reasons for this are provided 
in next section. 
(0,1), (0,2), (0,3), (0,4), (0,5), (0,6) 
(1,2), (1,3), (1,4), (1,5), (1,6), (1,7) 
(2,3), (2,4), (2,5), (2,6), (2,7), (2,8) 
(3,4), (3,5), (3,6), (3,7), (3,8), (3,9) 
(4,5), (4,6), (4,7), (4,8), (4,9), (4,10) 
(5,6), (5,7), (5,8), (5,9), (5,10), (5,11) 
(6,7), (6,8), (6,9), (6,10), (6,11), (6,0) 
(7,8), (7,9), (7,10), (7,11), (7,0), (7,1) 
(8,9), (8,10), (8,11), (8,0), (8,1), (8,2) 
(9,10), (9,11), (9,0), (9,1), (9,2), (9,3) 
(10,11), (10,0), (10,1), (10,2), (10,3), (10,4) 
(11,0), (11,1), (11,2), (11,3), (11,4), (11,5) 
 
For 𝑁 = 12, the connection length 𝑙  for all-to-all broadcast 
communications are staring from length 1 to length 6.  The 
various connections of all-to-all broadcast communication are 
grouped as given below:  

 
Group 1: {6,4,1}, Group 2: {3}, Group 3:{2}, Group 4: {5} 
 
 The non-overlapping connections in each group can be 
combined after each group’s values are stored in ascending 
order and a unique wavelength is allocated as shown below: 
 

{
(0,1), (1,5), (5,11), (1,2), (2,6), (6,0), (2,3), (3,7),

(7,1)
} − 𝜆1 

{
(3,4), (4,8), (8,2), (4,5), (5,9), (9,3), (5,6), (6,10),

(10,4)
} − 𝜆2 

{
(6,7), (7,11), (11,5), (7,8), (8,0), (0,6), (8,9), (9,1),

(1,7)
} − 𝜆3 

{
(9,10), (10,2), (2,8), (10,11), (11,3), (3,9), (11,0),

(0,4), (4,10)
} − 𝜆4 

{
(0,3), (3,6), (6,9), (9,0), (1,4), (4,7), (7,10), (10,1),

(2,5), (5,8), (8,11), (11,2)
} − 𝜆5 

{(0,2), (2,4), (4,6), (6,8), (8,10), (10,0)} − 𝜆6 
{(1,3), (3,5), (5,7), (7,9), (9,11), (11,1)} − 𝜆7 
{(0,5), (2,7), (4,9), (6,11)}−𝜆8 
{(1,6), (3,8), (5,10), (7,12)}−𝜆9 

 
Thus, nine wavelengths are required atmost to establish all-

to-all broadcast communication of a 12-node ring with 3-
length extension 

3. Two stage Heuristic algorithm and 

wavelength allotments 

A ring network topology with 3-length extension 
comprising of N nodes labeled from 0 to N-1 is taken as the 
source of this investigation. All-to-all broadcast 
communication is grouped into two clusters of connections 
with one cluster aggregating all possible connections 
established in clockwise direction while the other cluster 
aggregating all possible connections established in 
anticlockwise direction. All connections are assumed to be 
routed in the shortest path and by adopting longest link first 
routing technique. However, clockwise direction is preferred, 
if the path length of a connection is same in both clockwise 
and anticlockwise direction. Since each optical link is assumed 
to be a fiber pair, with each fiber taking care of connections in 
one particular direction, set of wavelengths employed for 
connections routed through clockwise direction may also be 
employed for connections routed through anticlockwise 
direction. Hence, connections established in clockwise 
direction are only taken for investigation in this paper. 
 
a. Heuristic algorithm 
 
The identification of non-overlapping connections is the key 
and is done using a heuristic technique. This technique is 
executed in two stages namely stage 1 and stage 2. The first 
stage of the algorithm is presented in Fig. 2.  The total number 
of nodes in the ring N, is inputted to the stage 1 algorithm. 
Using the value of N, the algorithm generates the lengths of 
various connections of all-to-all broadcast.  Obviously, the 
length of various connections exists from 1 to till  ⌊𝑁

2
⌋.  Next, 
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these length values are partitioned into two groups. One group 
comprises of length values, which output a reminder of 2, 
when it is divided by 3 (List A). Further, the elements namely 
2 and 5 are then separated from this group, as wavelength 
allotment for connections corresponding to it are dealt 
separately. The other group comprises of length values, which 
output a reminder not equal to 2, when it is divided by 3 (List 
B). The stage 1 algorithm then groups the elements of List A 
and List B separately into multiple disjoint sets (no two sets 
contain a same element) in such a way that the sum of the 
elements of each set, excluding the last set, is equal to N. The 
reason for making the sum of elements of each set equal to N 
is for an efficient wavelength allotment. This ensures that non-
overlapping connections of length equal to each of the value 
of the elements in the set (one connection for every length 
equal to the value of the elements in the set), when routed 
sequentially one after another on a unique wavelength (the 
destination of one connection being the source for another 
connection), covers a maximum number of available longest 
links over a single round along the ring. This strategy ensures 
that a particular wavelength is used on maximum number of 
longest links for a single round over a ring and may pertain to 
optimal wavelength allotment.  However, as the sum of the 
elements in the last set may not be equal to N, adopting the 
above logic may not pertain to optimal wavelength allotment.  
If adopted as such, the allotted wavelength may not be present 
in an entire round over the ring, which paves the way for more 
wavelength requirement. The pseudocode for stage 1 
algorithm is displayed in Fig.3. Further, wavelength allotment 
for connection lengths equal to the element values of the last 
set is deliberated in the heuristic algorithm stage 2.  
 
The second stage of the heuristic algorithm is displayed in 
Fig.4.  This algorithm first inputs all the elements of last set 
obtained through List A of stage 1 algorithm. This algorithm 
processes the inputs and outputs either the same input set or 
outputs the input elements in two or more disjoint set. The 
algorithm first generates a power set with the input elements. 
Power set is all possible subsets for the given set of input 
elements. Then the subset-sum, which is the sum of all the 
element in a subset, is calculated for all the generated subsets 
but excluding null set which is omitted as it of no relevance 
for the analysis. For every subset, N is made to divide the 
subset-sum and the quotient obtained is recorded. The 
fractional element of the quotient is zero when, N is integer 
multiples on subset-sum. This ensures that non-overlapping 
connections of length equal to each of the values of the 
elements in the subset (one connection for every length equal 
to the value of the elements in the subset and the destination of 
one connection being the source for another connection), when 
routed sequentially one after another and then repeated z times 
where z is the corresponding quotient value, on a unique 
wavelength covers a maximum number of available longest 
links over a single round along the ring. This strategy ensures 
that a particular wavelength is used on maximum number of 
longest links for a single round over a ring and may pertain to 
optimal wavelength allotment. 
 
A value of non-zero in the fractional part of the quotient 
corresponds to the scenario where N is a not an integer 

multiple of subset-sum. In this scenario,  non-overlapping 
connections of length equal to each of the values of the 
elements in the subset (one connection for every length equal 
to the value of the elements in the subset and the destination of 
one connection being the source for another connection), when 
routed sequentially one after another and then repeated z times 
where z is the corresponding quotient value, on a unique 
wavelength do not cover a maximum number of available 
longest links over a single round along the ring. The fractional 
part of a quotient which has bigger value results in a situation 
where the number of longest links getting assigned a unique 
wavelength (so as to result in one full round around the ring) 
is less. The fractional part of a quotient which has lower value 
results in a situation where the number of longest links getting 
assigned a unique wavelength (so as to result in one full round 
around the ring) is more. However, irrespective of whether the 
fractional part is lower or bigger, the connections routed on a 
unique wavelength, as said above, do not make one full round. 
Hence, among all the subsets generated through power set, the 
subset which produced lowest fractional part in its quotient 
value is outputted.  In the case of more than one subset 
producing the same value of fractional part in its quotient, the 
subset comprising of more element count is outputted. In the 
scenario of having same values in both fractional part and 
element count, the subset which was processed first is 
outputted.  
Once a subset is outputted based on the value of the fractional 
part of the quotient, then a decision has to be made regarding 
how to employ the elements of the subset towards wavelength 
allotment. One option is about employing the elements of the 
subset together for wavelength allotment while the other is 
passing each and every element of the selected subset 
separately for wavelength allotment. Remaining options are 
not considered here to reduce the complexity of this study. 
This choice to be made is made based on the wavelength-
number requirement and the one which require less is selected. 
The logic for wavelength requirement calculation is, suppose 
the length of a connection is 𝑙1, and then the maximum 
number of 𝑙1length connections that can be established 
without overlapping with each other on the N node ring with 
3-length extension is 3 ⌊𝑁

𝑙1
⌋. For establishing 𝑁 connections of 

length  𝑙1, the total wavelength required is⌈ 𝑁

3⌊
𝑁

𝑙1
⌋
⌉.  

Let𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑧be the elements of a subset and if they are 
assumed to be independently employed for wavelength 
allotment, then the total wavelength-number required is 

(⌈
𝑁

3⌊
𝑁

𝑙1
⌋
⌉ + ⌈

𝑁

3⌊
𝑁

𝑙2
⌋
⌉ + ⋯+ ⌈

𝑁

3⌊
𝑁

𝑙𝑍
⌋
⌉). On the contrary, if the 

elements of a subset are assumed to be employed together for 
wavelength allotment, then the wavelength-number required 

are ⌈ 𝑁

3⌊
𝑁

∑𝑙𝐽𝑓𝑜𝑟 0≤𝐽≤𝑍
⌋
⌉. 

 
Based on the wavelength-number either the elements of the 
input are outputted as separate sets or together as one output 
set same as input. This set of elements is removed from the 
original input list of stage 2 algorithm. Again stage 2 
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algorithm is executed with the remaining inputs, if the input 
list A is not empty. Similarly, the same procedure is repeated 
again for the last group elements obtained from list B at the 
end of execution of stage 1 algorithm. The pseudocode of 
stage 2 algorithm is displayed in Fig. 5. The sets outputted 
from stage 1 and stage 2 of the heuristic algorithm is used to 
complete wavelength allocation by mapping with appropriate 
wavelength allotment methods described in the succeeding 
section. It is required that the elements of each set need to be 
arranged in non-decreasing order. The following additional 
points need to be noted here for wavelength allotment: For 
(𝑙 mod 3 ≠ 2) all connections of length l, and originating 
(source) from any 3 consecutive nodes do not interfere with 
each other (Lemma 1). Also, for (𝑙 mod 3 = 2), all 
connections of length l, from nodes 𝑥, 𝑥 ⊕ 2, and 𝑥 ⊕ 4(if 
such nodes exist) do not interfere with each other (Lemma 4).   
 
b. Wavelength allotment methods 
Note: Let 𝑎1 = 𝑙1, 𝑎2 = 𝑙1 + 𝑙2, 𝑎3 = 𝑙1 + 𝑙2 + 𝑙3, … , 𝑎𝑑 =
𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑 
 
Category 1: Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑 be the elements of a list such 
that 𝑎𝑑 = 𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑 = 𝑁 
Case i) 𝑁 = 3𝑚 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−3

3
 

let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is(𝑁−3

3
+ 1) =

𝑁

3
 

Case ii) 𝑁 = 3𝑚 + 1 
For 𝑥 = 0,1,2, … , 𝑁 − 1  let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−4

3
let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪

𝐺(3𝑥 + 2) and 𝑆 (𝑁−1
3
) = 𝐺(𝑁 − 1).  

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is(𝑁−4

3
+ 1 + 1) =

𝑁+2

3
 

Case iii) 𝑁 = 3𝑚 + 2 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−5

3
let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪

𝐺(3𝑥 + 2)and 𝑆 (𝑁−2
3
) = 𝐺(𝑁 − 2) ∪ 𝐺(𝑁 − 1). 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is(𝑁−5

3
+ 1 + 1) =

𝑁+1

3
 

 
Category 2: Let 𝑙1 be the solo element of a list such that 𝑙1𝑧 =
𝑁 where 𝑧 is a positive integer. 
Case i ) 𝑁

𝑧
= 3𝑚 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1, let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

3𝑧
⌉ − 1, let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 +

1) ∪ 𝐺(3𝑥 + 2) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is(⌊𝑁

3𝑧
⌋ − 1 + 1) = ⌈

𝑁

3𝑧
⌉ 

 
Case ii) 𝑁

𝑧
= 3𝑚 + 1 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥
⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
3𝑧
⌉ − 2 , 

let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) also 𝑆 (⌈
𝑁

3𝑧
⌉ −

1) = 𝐺 (
𝑁

𝑧
− 1) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is⌈𝑁

3𝑧
⌉ − 2  + 1 + 1 = ⌈

𝑁

3𝑧
⌉ 

 
Case iii) 𝑁

𝑧
= 3𝑚 + 2 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1  let  

𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥
⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 

Then for 𝑥 = 0,1,2, … , ⌈
𝑁

3𝑧
⌉ − 2  let 𝑆(𝑥) = 𝐺(3𝑥) ∪

𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) and 𝑆 (⌈
𝑁

3𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 2) ∪

𝐺 (
𝑁

𝑧
− 1). 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is(⌈𝑁

3𝑧
⌉ − 2 + 1 + 1) = ⌈

𝑁

3𝑧
⌉ 

 
Category 3: Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑  be the elements of an array 
such that (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑)𝑧 = 𝑁 where 𝑧 is a positive 
integer. 
Case i)𝑁

𝑧
= 3𝑚 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
3𝑧
⌉ -1 

let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
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be assigned for them. As a result, the wavelength-number 
required is⌈𝑁

3𝑧
⌉ − 1 + 1 = ⌈

𝑁

3𝑧
⌉ 

 
Case ii)𝑁

𝑧
= 3𝑚 + 1 

For 𝑥 = 0,1,2, … , 𝑁−1
𝑧

let  
𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

3𝑧
⌉  − 2 

let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) and 𝑆 (⌈
𝑁

3𝑧
⌉ −

1) = 𝐺(𝑁 − 1) 
 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is⌈𝑁

3𝑧
⌉  − 2 + 1 + 1 = ⌈

𝑁

3𝑧
⌉ 

 
Case iii) 𝑁

𝑧
= 3𝑚 + 2 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
,  let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
3𝑧
⌉  − 2 

let 𝑆(𝑥) = 𝐺(3𝑥) ∪ 𝐺(3𝑥 + 1) ∪ 𝐺(3𝑥 + 2) and 𝑆 (⌈
𝑁

3𝑧
⌉ −

1) = 𝐺(𝑁 − 2) ∪ 𝐺(𝑁 − 1). As the connections available in 
every 𝑆(𝑥)are non-overlapping with each other, an exclusive 
wavelength needs to be assigned for them. As a result, the 
wavelength-number required is ⌈𝑁

3𝑧
⌉  − 2 + 1 + 1 = ⌈

𝑁

3𝑧
⌉ 

 
Category 4: Let  𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑   be the elements of a list such 
that 𝑁

2
< (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑) < 𝑁 

Wavelength allotment is identical to Category 1. 
 
Category 5: Let 𝑙1 be the solo element of a list such that 𝑙1𝑧 =
𝑁 − 𝜖 where 𝑧, 𝜖  are positive integers and 0 <  𝜖 < 𝑙1 
Let 𝐺(0) = {(0, 𝑎1), (𝑎1, 2𝑎1), … , ((𝜖 − 1)𝑎1, 𝜖𝑎1)} 
The remaining connections are grouped as each arrangement 
no two connections are non-overlapping as per the following 
procedure. All the connections available in the series (1, 𝑙1⊕
1),  (2, 𝑙1⊕2) (3, 𝑙1⊕ 3),… ,  (𝑁 − 1, 𝑙1⊕𝑁 − 1) except 
those incorporated in 𝐺(0)are taken one by one as a matrix of  
𝑙1rows first in column wise and then row wise. Here, all 

connections available in a same row do not overlap with each 
other. . Hence, an exclusive wavelength required to be 
assigned for them. So, 𝑙1 + 1 wavelength-numbers are 
required to route all such connections.  
 
Category 6: Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑  be the elements of an array 
such that  
(𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑)𝑧 = 𝑁 − 𝜖 where 𝑧, 𝜖 are positive 
integers and 
0 <  𝜖 < (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑) 
For 𝑥 = 0,1,2, … , 𝑁 − 1, let 𝐻(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1,𝑥 ⊕ 𝑎𝑑)} 
 Let 𝑆(0) = {𝐻(0) ∪ 𝐻(𝑎𝑑) ∪ 𝐻(2𝑎𝑑) ∪ …∪ 𝐻((𝜖 − 1)𝑎𝑑) 
The remaining connections are grouped as each arrangement 
no two connections are noverlapping as per the following 
procedure. All the groups in the sequence 
𝐻(1), 𝐻(2), 𝐻(3), … , 𝐻(𝑁 − 1) except those included in 
𝑆(0)are written one by one as a matrix of  𝑎𝑑 rows first in 
column wise and then row wise. Here, all the connections 
present in a same row do not overlap with each other and they 
can be on the same wavelength. So, 𝑎𝑑 + 1 wavelengths are 
required to route all connections of length 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑 . 
 
Category 7: Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑 be the elements of a list such 
that 𝑎𝑑 = 𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑 = 𝑁 
Case i) 𝑁 = 6𝑚 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−6

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 (𝑁−6

6
+ 1) =

𝑁

3
 

 
Case ii) 𝑁 = 6𝑚 + 1 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−7

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also, 𝑆1 (

𝑁−1

6
) = 𝐺(𝑁 − 1) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 (𝑁−7

6
+ 1) + 1 =

𝑁+2

3
 

 
Case iii) 𝑁 = 6𝑚 + 2 
For 𝑥 = 0,1,2, … , 𝑁 − 1  let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−8

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also,  𝑆1 (

𝑁−2

6
) = 𝐺(𝑁 − 1)and𝑆2 (

𝑁−2

6
) = 𝐺(𝑁 − 2) 
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As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 (𝑁−8

6
+ 1) + 2 =

𝑁+4

3
 

 
Case iv) 𝑁 = 6𝑚 + 3 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−9

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also,𝑆1 (

𝑁−3

6
) = 𝐺(𝑁 − 3) ∪ 𝐺(𝑁 − 1)and  𝑆2 (

𝑁−3

6
) =

𝐺(𝑁 − 2) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 (𝑁−9

6
+ 1) + 2 =

𝑁+3

3
 

 
Case v) 𝑁 = 6𝑚 + 4 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−10

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also, 𝑆1 (

𝑁−4

6
) = 𝐺(𝑁 − 3) ∪ 𝐺(𝑁 − 1)and 𝑆2 (

𝑁−4

6
) =

𝐺(𝑁 − 4) ∪ 𝐺(𝑁 − 2) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 (𝑁−10

6
+ 1) + 2 =

𝑁+2

3
 

 
Case vi) 𝑁 = 6𝑚 + 5 
For 𝑥 = 0,1,2, … , 𝑁 − 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕
𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)} 
Then for 𝑥 = 0,1,2, … , 𝑁−5

6
 

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also,𝑆1 (

𝑁−4

6
) =∪ 𝐺(𝑁 − 5)𝐺(𝑁 − 3) ∪ 𝐺(𝑁 − 1)and 

𝑆2 (
𝑁 − 4

6
) = 𝐺(𝑁 − 4) ∪ 𝐺(𝑁 − 2) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is  2 (𝑁−5

6
+ 1) =

𝑁+1

3
 

 
Category 8: Let  𝑙1be the single element of a list such 
that 𝑙1𝑧 = 𝑁 where 𝑧  is a positive integer. 
Case i) 𝑁

𝑧
= 6𝑚 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let G(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉ − 1 let  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 

𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 ∗ (⌈𝑁

6𝑧
⌉ − 1 + 1) = 2 ⌈

𝑁

6𝑧
⌉ 

 
Case ii) 𝑁

𝑧
= 6𝑚 + 1 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5)Also 
𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 1 = (2 ∗ ⌈

𝑁

6𝑧
⌉) − 1 

 
Case iii) 𝑁

𝑧
= 6𝑚 + 2 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also, 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1), 𝑆2 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 2) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case iv) 𝑁

𝑧
= 6𝑚 + 3 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also, 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3), 𝑆2 (⌈

𝑁

6𝑧
⌉ − 1) =

𝐺 (
𝑁

𝑧
− 2) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case v) 𝑁

𝑧
= 6𝑚 + 4 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
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Also, 𝑆1 (⌈
𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3),𝑆2 (⌈

𝑁

6𝑧
⌉ − 1) =

𝐺 (
𝑁

𝑧
− 2) ∪ 𝐺 (

𝑁

𝑧
− 4) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case vi) 𝑁

𝑧
= 6𝑚 + 5 

For 𝑥 = 0,1,2, … ,
𝑁

𝑧
− 1 let 𝐺(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 2𝑎1), … , (𝑥 ⊕ (𝑧 − 1)𝑎1, 𝑥 ⊕ 𝑧𝑎1)} 
Then for 𝑥 = 0,1,2, … , ⌈𝑁

6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3) ∪ 𝐺 (

𝑁

𝑧
− 5), 

𝑆2 (⌈
𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 2) ∪ 𝐺 (

𝑁

𝑧
− 4) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Category 9: Let  𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑   be the elements of an array 
such that (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑)𝑧 = 𝑁  where z is a positive 
integer. 
Case i)𝑁

𝑧
= 6𝑚 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉ − 1 let  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉ − 1 + 1) = 2 ⌈

𝑁

6𝑧
⌉ 

 
Case ii) 𝑁

𝑧
= 6𝑚 + 1 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 1 = (2 ∗ ⌈

𝑁

6𝑧
⌉) − 1 

 
Case iii) 𝑁

𝑧
= 6𝑚 + 2 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1),𝑆2 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 2) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case iv) 𝑁

𝑧
= 6𝑚 + 3 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3),𝑆2 (⌈

𝑁

6𝑧
⌉ − 1) =

𝐺 (
𝑁

𝑧
− 2) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is 2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case v) 𝑁

𝑧
= 6𝑚 + 4 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  
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𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also, 𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3),  𝑆2 (⌈

𝑁

6𝑧
⌉ −

1) = 𝐺 (
𝑁

𝑧
− 2) ∪ 𝐺 (

𝑁

𝑧
− 4) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is  2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Case vi) 𝑁

𝑧
= 6𝑚 + 5 

For 𝑥 = 0,1,2, … , 𝑁
𝑧
− 1 let  

𝐺(𝑥)

=

{
  
 

  
 

(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕ 𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1, 𝑥 ⊕ 𝑎𝑑)

(𝑥 ⊕ 𝑎𝑑 , 𝑥 ⊕ 𝑎𝑑 ⊕𝑎1), (𝑥 ⊕ 𝑎𝑑⊕ 𝑎1, 𝑥 ⊕ 𝑎𝑑 ⊕𝑎2), … ,

(𝑥 ⊕ 𝑎𝑑⊕ 𝑎𝑑−1, 𝑥 ⊕ 2𝑎𝑑), … ,
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 , 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1),                                   

(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎1, 𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎2), …,                   
(𝑥 ⊕ (𝑧 − 1)𝑎𝑑 ⊕𝑎𝑑−1, 𝑥 ⊕ 𝑧𝑎𝑑) }

  
 

  
 

 

Then for 𝑥 = 0,1,2, … , ⌈𝑁
6𝑧
⌉  − 2  

𝑆1(𝑥) = 𝐺(6𝑥) ∪ 𝐺(6𝑥 + 2) ∪ 𝐺(6𝑥 + 4) 
𝑆2(𝑥) = 𝐺(6𝑥 + 1) ∪  𝐺(6𝑥 + 3) ∪ 𝐺(6𝑥 + 5) 
Also,𝑆1 (⌈

𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 1) ∪ 𝐺 (

𝑁

𝑧
− 3) ∪ 𝐺 (

𝑁

𝑧
− 5), 

𝑆2 (⌈
𝑁

6𝑧
⌉ − 1) = 𝐺 (

𝑁

𝑧
− 2) ∪ 𝐺 (

𝑁

𝑧
− 4) 

As the connections available in every 𝑆(𝑥)are non-
overlapping with each other, an exclusive wavelength needs to 
be assigned for them. As a result, the wavelength-number 
required is2 ∗ (⌈𝑁

6𝑧
⌉  − 2  + 1) + 2 = (2 ∗ ⌈

𝑁

6𝑧
⌉) 

 
Category 10: Let  𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑  be the elements of a list such 
that 𝑁

2
< (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑) < 𝑁 

Wavelength allotment is same as that given for Category 7. 
 
Category 11: Let 𝑙1 be the single element of a list such that 
𝑙1𝑧 = 𝑁 − 𝜖  where 𝑧, 𝜖  are positive integers and 0 <  𝜖 < 𝑙1 
Let 𝐺(0) = {(0, 𝑎1), (𝑎1, 2𝑎1), … , ((𝜖 − 1)𝑎1, 𝜖𝑎1)} 
The remaining connections are grouped as each group no two 
connections are non-overlapping as per the following 
procedure. All the connections in the series (1, 𝑙1⊕
1),  (2, 𝑙1⊕2) (3, 𝑙1⊕ 3),… ,  (𝑁 − 1, 𝑙1⊕𝑁 −
1)  excluding those available in 𝐺(0)are taken one by one as a 

matrix of 1l  rows first in column wise and then row wise. It 
may be prominent that all connections present in a same row 
do not overlap with each other. Hence, a unique wavelength 

required to be allotted for them. So, 𝑙1 + 1 wavelengths are 
required to route all such connections.  
 
Category 12: Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑   be the elements of an array 
such that  
(𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑)𝑧 = 𝑁 − 𝜖  where z, 𝜖 are positive 
integers and 
0 <  𝜖 < (𝑙1 + 𝑙2 + 𝑙3 +⋯+ 𝑙𝑑) 
For 𝑥 = 0,1,2, … , 𝑁 − 1, let 𝐻(𝑥) = {(𝑥, 𝑥 ⊕ 𝑎1), (𝑥 ⊕

𝑎1, 𝑥 ⊕ 𝑎2), … , (𝑥 ⊕ 𝑎𝑑−1,𝑥 ⊕ 𝑎𝑑)} 
 Let 𝑆(0) = {𝐻(0) ∪ 𝐻(𝑎𝑑) ∪ 𝐻(2𝑎𝑑) ∪ …∪ 𝐻((𝜖 − 1)𝑎𝑑) 
The remaining groups can be combined as each arrangement 
no two connections are noverlapping as per the following 
procedure.  
All the groups in the series 𝐻(1), 𝐻(2), 𝐻(3), … , 𝐻(𝑁 − 1) 
except those included in 𝑆(0)are taken one by one as a matrix 
of  𝑎𝑑 rows first in column wise and then row wise. The 
connections of all group present in a same row do not overlap 
with each other and they can be on the same wavelength. So, 
𝑎𝑑 + 1 wavelengths are required to route all connections of 
length 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑑. 
 
Illustration 2: Wavelength allotment for all-to-all broadcast in 
a 28 node WDM optical ring with 3-length extension: 
For, 𝑁 = 28. The output of stage 1 and stage 2 heuristic 
algorithms are given below: 
𝐺1 = {13,12,3}, 𝐺2 = {10,9,7,1}, 𝐺3 = {4}, 𝐺4 = {6} 
𝐻1 = {14,11}, 𝐻2 = {8} 
The connections of the output groups are sorted in ascending 
order as shown below,before applying wavelength allotment, 
G1 = {1,12,13}, G2 = {1,7,9,10}, G3 = {4}, G4 = {6} 
H1 = {11,14}, H2 = {8} 
The following output is obtained when 𝐺1, 𝐺2, 𝐺3, 𝐺4 are 
passed for wavelength allotment: 
For Group  𝐺1: (By Category 1) 

𝑆(0) =  {
(0,3), (3,15), (15,0), (1,4), (4,16), (16,1),

(2,5), (5,17), (17,2)
} −λ1 

 

𝑆(1) =  {
(3,6), (6,18), (18,3), (4,7), (7,19), (19,4),

(5,8), (8,20), (20,5)
} − λ2 

. 

. 

. 

𝑆(8) =  {
(24,27), (27,11), (11,24), (25,0), (0,12),

(12,25), (26,1), (1,13), (13,26)
} − λ9 

𝑆(9) = {(27,2), (2,14), (14,27)} − 𝜆10 
For Group  𝐺2: (By Category 4) 

𝑆(0) = {

(0,1), (1,8), (8,17), (17,27),
(1,2), (2,9), (9,18), (18,0),
(2,3), (3,10), (10,19), (19,1)

} −λ11 

𝑆(1) = {

(3,4), (4,11), (11,20), (20,2),
(4,5), (5,12), (12,21), (21,3),
(5,6), (6,13), (13,22), (22,4)

} −λ12 

. 

. 

. 
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𝑆(8) = {

(24,25), (25,4), (4,13), (13,23),
(25,26), (26,5), (5,14), (14,24),
(26,27), (27,6), (6,15), (15,25)

} −λ19 

𝑆(9) = {(27,0), (0,7), (7,16), (16,26)} −λ20 
 
For Group  𝐺3: (By Category 2) 

𝑆(0) =  {

(0,4), (4,8), (8,12), (12,16), (16,20),

(20,24), (24,0)(1,5), (5,9), (9,13), (13,17),
(17,21), (21,25), (25,1)(2,6), (6,10),

(10,14), (14,18), (18,22), (22,26), (26,2)

} – 𝜆21 

𝑆(1) = {
(3,7), (7,11), (11,15), (15,19), (19,23),

(23,27), (27,3)
} − λ22 

For Group  𝐺4: (By Category 5) 

𝑆(0) = {

{(0,6), (6,12), (12,18), (18,24), (24,2),

(1,7), (7,13), (13,19), (19,25), (25,3),

(2,8), (8,14), (14,20), (20,26), (26,4)

} − λ23 

𝑆(1) = {

(3,9), (9,15), (15,21), (21,27), (27,5),
(4,10), (10,16), (16,22), (22,0),
(5,11), (11,17)(17,23), (23,1)

} − λ24 

 
For Group 𝐻1: (By Category 11)     
𝑆(0) =

{(0,11), (11,25), (2,13), (13,27), (4,15), (15,1)}  –λ25 
{(1,12), (12,26), (3,14), (14,0), (5,16), (16,2)}     –λ26 
. 
. 
. 
𝑆(4) = {(24,7), (7,21), (26,9), (9,23)}–λ33 
{(25,8), (8,22), (27,10)(10,24)} −λ34 
For Group 𝐻2: (By Category   11) 

𝑆(0) = {
(0,8), (8,16), (16,24), (24,4), (2,10), (10,18),
(18,26), (26,6), (4,12), (12,20), (20,0)

} –λ35 

{
(1,9), (9,17), (17,25), (25,5), (3,11), (11,19), (19,27),

(27,7), (5,13), (13,21), (21,1)
} –λ3

6 
𝑆(1) = {(6,14), (14,22), (22,2)}–λ37 
{(7,15), (15,23), (23,3)} −λ38 
For length 2: (Lemma 3) 

{

(0,2), (2,4), (4,6), (6,8), (8,10), (10,12), (12,14),
(14,16), (16,18), (18,20), (20,22), (22,24),

(24,26), (26,0)
} − 𝜆39 

{
(1,3), (3,5), (5,7), (7,9), (9,11), (11,13), (13,15),
(15,17), (17,19), (19,21), (21,23), (23,25), (25,27)

} − 𝜆40 

 
For length 5: (Lemma 4) 

{
(0,5), (2,7), (4,9), (6,11), (8,13), (10,15), (12,17),

(14,19), (16,21), (18,23), (20,25), (22,27)
} − 𝜆41 

{
(1,6), (3,8), (5,10), (7,12), (9,14), (11,16), (13,18),

(15,20), (17,22), (19,24), (21,26), (23,0)
}−𝜆42 

 
 
C. Link load 
Let 𝜋 indicate the network link load which is the maximum 
number of paths that share a common link. The link load of a 
bi-directional ring with 3-length extension is derived as shown 
below:  
Case i) 𝑁 = 6𝑚, where m denotes a positive number.  

We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁

6
 nodes available at a 

length 3𝑙 previous to node (𝑥 ⊕ 3)in the anti clockwise route, 
utilize this longest link to share its information to(𝑁

2
− 3𝑙 +

1)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁

2
− 3𝑙 + 1)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠

𝑁

6
𝑙=1 (

𝑁2−2𝑁

24
) 

We can arbitrarily select any shortest link that links the nodes 
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁

6
− 1, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route, utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2). Similarly nodes available at a length(3𝑙 −
1 )previous to node 𝑥 in the anti clockwise route, utilize this 
shortest link to share its information to node (𝑥 ⊕ 1). 
Therefore, connections that utilize this shortest link = 2 ∗
(
𝑁

6
− 1 + 1) + (

𝑁

6
− 1 + 1) =

𝑁

2
 

. The link load of longest link is higher than that of shortest 
link, so the link load of a longest link is the link load of the 
network. Therefore, the link load of the network  𝜋 = 𝑁2−2𝑁

24
. 

 
 
 
Case ii) 𝑁 = 6𝑚 + 1,  where m denotes a positive number.  
We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁−1

6
 nodes available at a 

length 3𝑙 previous to node (𝑥 ⊕ 3)in the anti clockwise route, 
utilize this longest link to share its information to(𝑁+1

2
−

3𝑙)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁+1

2
−

𝑁−1

6
𝑙=1

3𝑙)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 (
𝑁2−4𝑁+3

24
) 

We can arbitrarily select any shortest link that links the nodes  
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁−1

6
− 1, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route, utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2). Similarly nodes available at a length(3𝑙 −
1 )previous to node 𝑥 in the anti clockwise route, utilize this 
shortest link to share its information to node (𝑥 ⊕ 1). 
Therefore, connections that utilize this shortest link = 2 ∗
(
𝑁−1

6
− 1 + 1) + (

𝑁−1

6
− 1 + 1) =

𝑁−1

2
. The link load of 

longest link is higher than that of shortest link, so the link load 
of a longest link is the link load of the network. Therefore, the 
link load of the network  𝜋 = 𝑁2−4𝑁+3

24
. 

 
Case iii) 𝑁 = 6𝑚 + 2,  where m denotes a positive number.  
We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁−2

6
 nodes available at a 

length 3𝑙 previous to node (𝑥 ⊕ 3)in the anti clockwise route, 
utilize this longest link to share its information to(𝑁+2

2
−
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3𝑙)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁+2

2
− 3𝑙)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠

𝑁−2

6
𝑙=1

(
𝑁2−2𝑁

24
) 

We can arbitrarily select any shortest link that links the nodes  
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁−2

6
, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route, utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2). Similarly For 0 ≤ 𝑙 ≤

𝑁−2

6
− 1 , nodes available 

at a length(3𝑙 − 1)previous to node 𝑥 in the anti clockwise 
route, utilize this shortest link to share its information to node 
(𝑥 ⊕ 1).Therefore, connections that utilize this shortest link 
=2 ∗ (𝑁−2

6
+ 1) + (

𝑁−2

6
− 1 + 1) =

𝑁+2

2
 

The link load of longest link is higher than that of shortest 
link, so the link load of a longest link is the link load of the 
network. Therefore, the link load of the network  𝜋 = 𝑁2−2𝑁

24
. 

 
Case iv) 𝑁 = 6𝑚 + 3,  where m denotes a positive number.   
We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁−3

6
 nodes available at a 

length 3𝑙 previous to node(𝑥 ⊕ 3)in the anti clockwise route, 
utilize this longest link to share its information to(𝑁+1

2
−

3𝑙)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁+1

2
−

𝑁−3

6
𝑙=1

3𝑙)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 (
𝑁2−4𝑁+3

24
) 

We can arbitrarily select any shortest link that links the nodes  
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁−3

6
, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route, utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2). Similarly For 0 ≤ 𝑙 ≤ 𝑁−3

6
− 1 nodes available 

at a length(3𝑙 − 1 )previous to node 𝑥 in the anti clockwise 
route, utilize this shortest link to share its information to node 
(𝑥 ⊕ 1).  Therefore, connections that utilize this shortest link 
= 2 ∗ (𝑁−3

6
+ 1) + (

𝑁−3

6
− 1 + 1) =

𝑁+1

2
 

The link load of longest link is higher than that of shortest 
link, so the link load of a longest link is the link load of the 
network. Therefore, the link load of the network  π = N2−4N+3

24
. 

 
Case v) 𝑁 = 6𝑚 + 4,  where m denotes a positive number.  
We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁−4

6
 nodes available at a 

length 3𝑙 previous to node (𝑥 ⊕ 3)in the anti clockwise route, 
utilize this longest link to share its information to(𝑁+2

2
−

3𝑙)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁+2

2
−

𝑁−4

6
𝑙=1

3𝑙)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 (
𝑁2−2𝑁−8

24
) 

 
We can arbitrarily select any shortest link that links the nodes  
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁+2

6
− 1, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2). Similarly nodes available at a length(3𝑙 −
1 )previous to node 𝑥 in the anti clockwise route, utilize this 
shortest link to share its information to node (𝑥 ⊕ 1). 
Therefore, connections that utilize this shortest link = 2 ∗
(
𝑁+2

6
− 1 + 1) + (

𝑁+2

6
− 1 + 1) =

𝑁+2

2
 

The link load of longest link is higher than that of shortest 
link, so the link load of a longest link is the link load of the 
network. Therefore, the link load of the network  𝜋 =
𝑁2−2𝑁−8

24
. 

 
Case vi) 𝑁 = 6𝑚 + 5,  where m denotes a positive number.   
We can arbitrarily choose one longest link that links the nodes 
𝑥 and (𝑥 ⊕ 3). For 1 ≤ 𝑙 ≤ 𝑁−5

6
 nodes available at a 

length  3𝑙  previous to node (𝑥 ⊕ 3)in the anti clockwise 
route, utilize this longest link to share its information to(𝑁+1

2
−

3𝑙)instant nodes after the node 𝑥. Therefore, connections that 

utilize this longest link = ∑ (
𝑁+1

2
−

𝑁−5

6
𝑙=1

3𝑙)𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 (
𝑁2−4𝑁−5

24
) 

We can arbitrarily select any shortest link that links the nodes  
𝑥 and (𝑥 ⊕ 1). For 0 ≤ 𝑙 ≤ 𝑁+1

6
− 1, nodes available at a 

length 3𝑙 previous to node 𝑥 in the anti clockwise route, utilize 
this shortest link to share its information to node (𝑥 ⊕ 1)  and 
node (𝑥 ⊕ 2).  
 
Similarly, nodes available at a length(3𝑙 − 1 )previous to node 
𝑥 in the anti clockwise route, utilize this shortest link to share 
its information to node (𝑥 ⊕ 1).  Therefore, connections that 
utilize this shortest link = 2 ∗ (𝑁+1

6
− 1 + 1) + (

𝑁+1

6
− 1 +

1) =
𝑁+1

2
 

 
The link load of longest link is higher than that of shortest 
link, so the link load of a longest link is the link load of the 
network. Therefore, the link load of the network  𝜋 =
𝑁2−4𝑁−5

24
. 

 
It may be noted that for a every value of  N, the link load of all 
longest links and shortest links are same. Hence, the 
wavelength-number required atmost to establish all-to-all 
broadcast must be greater than or equal to the link load. The 
outcome of the Table 1 provides the difference between the 
wavelength-number required and the link load is less, which 
proves that the results are either optimal or near optimal. From 
Table 2, it can be observed that the wavelength-number 
required atmost to establish all-to-all broadcast in a ring with 
3-length extension is reduced by a minimum of 56% and a 
maximum of 66% when compared to primary ring. Similarly, 
the wavelength-number required atmost to establish all-to-all 
broadcast in a bi-directional ring with 3-length extension is 
reduced by a minimum of 13% and a maximum of 33% when 
compared to bi-directional ring with 2-length extension.  
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Table 1 Wavelength-number required atmost to establish all-
to-all broadcast along with link load for certain values of node 
number N in a bi-directional ring with 3-length extension. 
 

Node 
number N 

Wavelength-
number 
required 

Link 
load 

Difference between 
wavelength-number 

and link load 

25 33 22 11 

28 42 30 12 

30 48 35 13 

40 79 63 16 

55 138 117 21 

60 164 145 19 

70 224 198 26 

85 317 287 30 

90 355 330 25 

100 442 408 34 

201 1694 1650 44 

500 10483 10375 108 
 
 
 
Table 2 Comparison of wavelength-number required atmost to 
establish all-to-all broadcast for certain value of node number 
Nin a bi-directional ring, bi-directional ring with 2-length 
extension and bi-directional ring with 3-length extension. 
 

Node 
number 

N 

Wavelength-number of required atmost to 
establish all-to-all broadcast 

Bi-
directional 

ring [4] 

Bi-directional 
ring with 2-

length 
extension [22] 

Bi-directional 
ring with 3-

length 
extension 

25 78 41 33 

28 98 53 42 

30 113 60 48 

40 200 105 79 

55 378 189 138 

60 450 233 164 

70 613 315 224 

85 903 449 317 

90 1013 518 355 

100 1250 638 442 

201 5050 2500 1694 

500 31250 15688 10483 

4. Conclusion 

A two stage heuristic algorithm is proposed to identify non-
overlapping connections among the various connections of all-
to-all broadcast in a bi-directional ring with 3-length 
extension. Explicit wavelength allotment methods are also 
provided for the same. The result obtained shows that the 
wavelength-number required is nearly equal to the link load of 
the network and so the results are either optimal or near 
optimal. Also, the wavelength-number required atmost to 
establish all-to-all broadcast in a bi-directional ring with 3-
length extension is reduced by a minimum of 57% and a 
maximum of 66% when compared to bi-directional primary 
ring. Similarly, the wavelength-number required atmost to 
establish all-to-all broadcast for a bi-directional ring with 3-
length extension is reduced by a minimum of 20% and a 
maximum of 33% when compared to a bi-directional ring with 
2-length extension. This reduction in wavelength-number is at 
the expense of directly linking two nodes which are separated 
by two intermediate nodes with additional fibers. 

Future works incorporate the examining the similar problem 
in other network topologies with 2 length and 3 length 
extension. Wavelength-number requirement needs to be 
investigated with still higher order extensions, to judge the 
rate of reduction in wavelength-number requirements. Also, 
deriving a generalized expression for wavelength-number 
requirement in a ring network with k-length extension (k is 
any positive integer and k < N where N is the total number of 
nodes in the network) is an interesting and challenging future 
work. The impact of physical layer impairments for these 
networks needs to be studied. Another issue that requires 
attention is studying wavelengths requirement under multiple 
link and node failures in this network. 
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Fig. 2 Flowchart of the stage 1 algorithm for ring with 3-length extension (cont..) 
 

 
  

START 

Read node number ‘N’ 

Create two subsets A and B. Subset A contains the elements of S (except 2 and 5), which 
divided by 3 gives a remainder value 2. Subset B contains the elements of S, which divided 

by 3 gives a remainder not equal to 2. 
Further A ∩ 𝐵 = { } and A ∪ 𝐵  ={S } 

CNT1 = No of elements in A and CNT2 = No of elements in B 

Unmark all elements of A 

Create an empty group 𝐺𝑖, C=0 

Copy the first unmarked element of A to 𝐺𝑖 
Mark the corresponding element in A, C = C+1 

 
NT1-1. 

Read the next unmarked element in A. 
SUM1 = Sum of all the elements of  𝐺𝑖 with currently read unmarked 

element. C = C+1 
 

If (SUM1< =N) 

Mark the currently read unmarked element in 
A. Copy it in 𝐺𝑖  

Compute S ={⌊𝑁
2
⌋ , ⌊

𝑁

2
⌋ − 1, ⌊

𝑁

2
⌋ − 2,… , 1 } 

B 

C 

A 
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Fig. 2 Flowchart of the stage 1 algorithm for ring with 3-length extension (cont..) 
  

F 

If (SUM1==N) 

If (C < CNT1) 

If (All element of 
A marked) 

i = i + 1 

B 

Unmark all elements of B 

Create an empty group 𝐻𝑗, F = 0 

Copy the first unmarked element of B to 𝐻𝑗 
Mark the corresponding element in B, F = F+1 

 
NT1-1. 

D 

Read the next unmarked element in B. 
SUM2 = Sum of all the elements of  𝐻𝑗  with currently read unmarked 

element. F = F+1 
 

If (SUM2< =N) 

Mark the currently read unmarked element in B. 
Copy it in  𝐻𝑗  

E 

A C 
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Fig. 2 Flowchart of the stage 1 algorithm for ring with 3-length extension 
 
𝑁- Total No. of nodes available in the network. 

𝑆𝑈𝑀1, 𝑆𝑈𝑀2, 𝐶𝑁𝑇1 = 0, 𝐶𝑁𝑇2 = 0, 𝐶, 𝐹, 𝐼, 𝐽, 𝐾, 𝐿,𝑀 = ⌊
𝑁

2
⌋ , 𝑋are integer variables. 

𝐴[ ] →An array 𝐴 containing length of connections as elements (inputs). 

𝐵[ ] →An array 𝐵 containing length of connections as elements (inputs). 

𝐷[ ] → An array 𝐷 containing elements as flags for elements of array 𝐴 [ ]. 

𝐸[ ] → An array 𝐸 containing elements as flags for elements of array 𝐵 [ ]. 

𝐺[ ][ ] → An array 𝐺 with row as the list number and column as the element index (outputs). 

𝐻[ ][ ] → An array 𝐻 with row as the list number and column as the element index (outputs). 

Step 1: While (𝑀 > 0) 

  𝐼𝑓 ((𝑀%3 = = 2)&&(𝑀 ≠  2)&& (𝑀 ≠  5)) 

   𝐴[𝐶𝑁𝑇1] ← 𝑀 

   𝐶𝑁𝑇1 = 𝐶𝑁𝑇1 + 1 

  Else 𝐼𝑓(𝑀%3 ≠ 2) 
   𝐵[𝐶𝑁𝑇2] ← 𝑀 
   𝐶𝑁𝑇2 = 𝐶𝑁𝑇2 + 1 
            End 𝑖𝑓. 

  𝑀 ← 𝑀 − 1 

If (SUM2 == N) 

If (F < CNT2) 

If (All element of 
B marked) 

j = j + 1 

E D 

STOP 

F 
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Step 2: End While. 

Step 3: Initialize 𝐼 ← 0, 𝐷[ ] ← 0 

Step 4: Assign 𝑆𝑈𝑀1 ← 0, 𝐽 ← 0, 𝐶 ← 0 

Step 5: While(𝐶 < 𝐶𝑁𝑇1) 

 𝐼𝑓 (𝐷 [𝐶]  = 0   & ((𝑆𝑈𝑀1 +  𝐴[𝐶])  ≤  𝑁)), 

𝑆𝑈𝑀1 ←  𝑆𝑈𝑀1 +  𝐴[𝐶], 𝐺[𝐼][𝐽] ← 𝐴[𝐶], 𝐽 ← 𝐽 + 1, 𝐷[𝐶] ← 1. 

  𝐼𝑓 (𝑆𝑈𝑀1 == 𝑁), 

   𝐼 ←  𝐼 + 1; 

                                 Go to Step 4. 

    End if. 

 End 𝑖𝑓. 

 𝐶 =  𝐶 + 1 

Step 6:End while. 

Step 7:𝐼𝑓 (𝐷[𝑋 ] == 1) 𝑓𝑜𝑟 0 ≤ 𝑋 < 𝐶𝑁𝑇1,go to Step 8. 

 Else 𝐼 ← 𝐼 + 1, go to Step 4. 

Step 8: Initialize 𝐾 ← 0, 𝐸[ ] ← 0 

Step 9: Assign 𝑆𝑈𝑀2 ← 0, 𝐿 ← 0, 𝐹 ← 0 

Step 10:While(𝐹 < 𝐶𝑁𝑇2) 

 𝐼𝑓 (𝐸 [𝐹]  = 0   & ((𝑆𝑈𝑀2 +  𝐵[𝐹])  ≤  𝑁)), 

𝑆𝑈𝑀2 ←  𝑆𝑈𝑀2 +  𝐵[𝐹], 𝐻[𝐾][𝐿] ← 𝐵[𝐹], 𝐿 ← 𝐿 + 1, 𝐸[𝐹] ← 1. 

  𝐼𝑓 (𝑆𝑈𝑀2 == 𝑁), 
   𝐾 ← 𝐾 + 1; 
                                 Go to Step 4. 
    End if. 
 End if. 
 𝐹 =  𝐹 + 1 
Step 11:End while. 

Step 12:If (𝐸[𝑋 ] == 1) 𝑓𝑜𝑟 0 ≤ 𝑋 < 𝐶𝑁𝑇2,the algorithm is terminated. 

 Else 𝐾 ← 𝐾 + 1, go to Step 9. 

Fig. 3 Pseudo code of the stage 1 algorithm for ring with 3-length extension  
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Fig. 4 Flowchart of stage 2 algorithm for ring with 3-length extension (cont..) 
 
 

Input the last group elements of  𝐺𝑖 / 𝐻𝑗 of stage 1 Algorithm 

Generate power set using all elements of  𝐺𝑖 / 𝐻𝑗 input 
list 

For each subset, divide Nby its subset-sum and determine the quotient 

Select a subset whose quotient has lowest value in fractional part. If 2 or more 
subset has same value in fractional part, select the subset which has more 
number of elements count. If number of elements count is also same, then 

select a subset which occurs initialin the power set 
 

If (x > y) 

If(Input list empty) 

If (Element count of 
input 𝐺𝑖 / 𝐻𝑗 > 1) 

Determine the total wavelength requirement (x), if connections of length equal to values of 
each of the elements in the subset are routed separately 

x= ⌈ 𝑁

3⌊
𝑁

𝐹𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡
⌋
⌉ + ⌈

𝑁

3⌊
𝑁

𝑆𝑒𝑐𝑜𝑛𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡
⌋
⌉+. . . + ⌈

𝑁

3⌊
𝑁

𝐿𝑎𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑒𝑡
⌋
⌉ 

 
 
 
 

Store all the elements of subset as a 
new group. Delete the subset 

elements from input list 
 

Store each subset elements in 
separate group; Delete the subset 

elements from input list 
 

Store the input 
element as a new 

group 

Determine the total wavelength requirement (y), if connections of length equal to values 

of each element in the subset are joined and routed together 𝑦 =  ⌈ 𝑁

3⌊
𝑁

∑𝑠𝑢𝑏𝑠𝑒𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
⌋
⌉ 

START 
 

Compute subset sum for each subsets. Neglect null set 

A 

A 
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N →Total No. of nodes available in the network. 

S[ ] → An array containing the last group elements of G[ ][ ]obtained in stage 1 of the algorithm (sorted in  

           descending order) 

T[ ] → An array containing the elements of last group of H[ ][ ]obtained in stage 1 of the algorithm (sorted  

in descending order)             

U[ ][ ] →An array U (outputs). 

V[ ][ ] →An array V (outputs). 

BUF [ ] →An array BUF. 

K ← 0, L ← 0, Q ← 1, Z ← 0, BUF[ ] ← 0. 

Step 1: Power set of S[ ] / T[ ]is generated and sorted in descending order based on the number of elements 

and subset_sum. For each and every subset of S[ ] / T[ ],N is divided by its subset sum. Let F be 

the fractional part of the result. For each subset, If Q > F, Q ← F, BUF[J] ← 0 for 1 ≤ J ≤ Z, Z ← 

Number of elements of the corresponding subset, BUF[J] ←Corresponding Subset whose quotient 

has lowest value in fractional part. (If two or more subset has same value in fractional part, select 

the subset which has more number of elements count) 

Step 2: If  

(

 
 
(⌈

N

3 ⌊
N

BUF1
⌋
⌉ + ⌈

N

3 ⌊
N

BUF2
⌋
⌉ + ⋯+ ⌈

N

3 ⌊
N

BUFZ
⌋
⌉) > ⌈

N

3 ⌊
N

∑BUFJfor 0≤J≤Z
⌋
⌉

)

 
 
, 

             remove elements of BUF[ ]from S[ ] and store it in U[L][K], 

K ← K + 1, go to Step 4. 

Step 3: J ← 0 Repeat  U[L][K] ← BUF[ J ] 

   J ← J + 1 

   K ← K + 1 

 Until BUF[J ] = 0.  Then, the elements of BUF[ ] are deleted from S[ ] / T[ ]. 

Step 4: If S[ ] / T[ ] is not empty, L = L + 1, Q ← 1, go to Step 1. Else, the algorithm  

             is terminated. 

 

Fig. 5 Pseudo code of stage 2 algorithm for ring with 3-length extension 
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