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Abstract: Second-order linear hyperbolic equations are solved by using a new three level method based on non-

polynomial spline in the space direction and Taylor expansion in the time direction. Numerical results reveal that

three level method based on non-polynomial spline is implemented and effective.
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1. Introduction

We consider the second-order linear hyperbolic equa-

tion:

utt(x, t) + 2αut(x, t) + β2u(x, t) =

uxx(x, t) + f(x, t), x ∈ (a, b), t > 0 (1)

with initial conditions

u(x, 0) = Φ(x), ut(x, 0) = Ψ(x)

and boundary conditions

u(a, t) = g1(t), u(b, 0) = g2(t)

where α and β are constants.

Above one can find representations of the damped

wave and telegraph equations respectively. See [1] for
the existence and approximations of the solutions in-

vestigated.

There have been many prominent work regard-

ing the development and implementation of the high

resolution methods for the numerical solution of the

second – order linear hyperbolic equation in (1), see
[1 − 3]. Mohanty and Jain [4 − 6] developed three-
level implicit schemes for linear hyperbolic equations.

Also, Huan-Wen Liu and Li-Bin Liu solved [8] lin-
ear hyperbolic equation, where their solution based on

quartic spline interpolation our solution based on non-

polynomial spline method. In this paper, we propose a

spline difference scheme to solve the linear hyperbolic

equation (1).
We proceed this paper as follows; Section 2 briefly

describes the non-polynomial spline function. Section

3 describes the methods used to solve and analyze the

solution of problem (1). Section 4 contains the numer-
ical results and illustrations obtained byMATLAB 6.5

before the overall conclusion in Section 5.

2. SplineMethod

We divide the interval [a, b] into n equal subintervals

using the grid points

xi = a+ ih, i = 0, 1, 2, ..., n,

with

x0 = a, xn = b, h = (b− a)/n

where n is defined as an arbitrary positive integer.

Let u(x) be the exact solution and ui approxima-
tion of u(xi)which is obtained by the non-polynomial
cubic Si(x) defined as passing through the points

(xi, ui) and (xi+1, ui+1). Here we do not only re-

quire that Si(x) satisfies interpolatory conditions at
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xi and xi+1, but also the continuity of first derivative

at the common nodes (xi, ui) are fulfilled. We write

Si(x) in the form:

Si(x) = ai + bi(x− xi) + cisinτ(x− xi)+

dicosτ(x− xi), i = 0, 1, ..., n− 1 (2)

where ai, bi, ci and di are constants and τ is a free

parameter.

The non-polynomial function S(x) which belongs
to the classC2[a, b] interpolates u(x) at the grid points
xi, where i = 0, 1, 2, ..., n, and reduces to an ordinary
cubic spline S(x) in [a, b] depending on a parameter τ
when τ → 0.

To derive expression for the coefficients of Eq. (2)
in term of ui, ui+1,Mi andMi+1, we first define:

Si(xi) = ui, Si(xi+1) = ui+1, S
′′
(xi) =

Mi, S
′′
(xi+1) =Mi+1. (3)

After manipulating through algebra we get the fol-

lowing expression:

ai = ui +
Mi

τ2
,

bi =
ui+1 − ui

h
+
Mi+1 −Mi

τθ
,

ci =
Micosθ −Mi+1

τ2sinθ
,

di = −Mi

τ2
,

(4)

where θ=τh and i=0,1,2,...,n-1.

Using the continuity of the first derivative at

(xi, ui), that is S
′

i−1(xi) = S
′

i(xi) we obtain the fol-
lowing relations for i=1, ..., n− 1.

aMi+1 + bMi + aMi−1 =

(1/h2)(ui+1 − 2ui + ui−1, (5)

where a = (−1/θ2 + 1/θ sin θ), b = (1/θ2 −
cos θ/θ sin θ) and θ = τh. If b = 5/12 and a = 1/12
the method is fourth-order convergent [9].

3.The Spline Difference Scheme

By using the Taylor expansion in the time direction

for every xi where i = 1, 2, ..., n − 1, we have the
following difference schemes

u(xi, tj) =

u(xi, tj+1) + 2u(xi, t) + u(xi, tj−1)

4
+O(k2), (6)

uxx(xi, tj) =

uxx(xi, tj+1) + uxx(xi, tj−1)

2
+O(k2), (7)

uxx(xi, tj) =

u(xi, tj+1)− u(xi, tj−1)

2k
+O(k2), (8)

uxx(xi, tj) =

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

k2
+O(k2).

(9)

The given eq.(1) can be discretized as

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

k2
+

2α
u(xi, tj+1)− u(xi, tj−1)

2k
+

β2
u(xi, tj+1) + 2u(xi, t) + u(xi, tj−1)

4
+

=
uxx(xi, tj+1) + uxx(xi, tj−1)

2
+

f(xi, tj) +O(k2),

(10)

We can rewrite (5) in a new form:
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(1 +
1

12
δ2x)M(xi, tj) =

1

h2
δ2xu(xi, tj), i = 1, ..., n− 1

(11)

where

δxM(xi, tj) =M(xi+ 1

2
, tj)−M(xi− 1

2
, tj),

δ2xM(xi, tj) = δx(δxM(xi, tj)) = M(xi+1, tj) −
2M(xi, tj) +M(xi−1, tj),
for i = 1, ..., n−1. Putting (6) and (11),it follows that;

(1 +
1

12
δ2x)[uxx(xi, tj+1) + uxx(xi, tj−1)] =

(1 +
1

12
δ2x)[M(xi, tj+1) +M(xi, tj−1) +O(h4)]

=
1

h2
δ2x[u(xi, tj+1) + u(xi, tj−1)] +O(h4)

(12)

Applying the operator (1 + 1
12δ

2
x) to two sides of

Eq. (10) and using Eq. (12),then it is obtained as fol-

lows

1

k2
(1 +

1

12
δ2x)u(xi, tj) +

α

k
(1 +

1

12
δ2x)δtu(xi, tj)+

β2

4
(1 +

1

12
δ2x)[u(xi, tj+1 + 2u(xi, tj) + u(xi, tj−1)] =

(1 +
1

12
δ2x)f(xi, tj) +O(k2 + h4)

i = 1(1)n− 1, j = 1, 2, ...

(13)

The proposed scheme (13) is an implicit three level

scheme. Before starting on any computation it is found

necassary to know the value of u(x,t) at the nodal

points of the first time level expressed as when t=k.

Following the work in [2], a taylor series expansion

at [2],a taylor series expansion at t=kmay be written as

u(x, k) = u(x, 0) + kut(x, 0) +
k2

2
utt(x, 0)+

k3

6
uttt(x, 0) +O(k4)

(14)

Using the initial values, from (1) we can calculate

utt(x, 0) = φxx(x, 0)+

f(x, 0)− 2αut(x, 0)− β2u(x, 0),
(15)

uttt(x, 0) = ψxx(x, 0)+

ft(x, 0)− 2αutt(x, 0)− β2ut(x, 0).
(16)

We can obtain the numerical solution of u by using

initial values in (15) and (16) for t=k.

4.Numerical Examples

Here we provide the evidance of illustrations byMAT-

LAB 6.5 of our method to two second-order linear

hyperbolic equations.

Example 1.

Consider the following equation

utt(x, t) + 4ut(x, t) + 2u(x, t) = uxx(x, t), x ∈
(a, b), t > 0

with initial conditions

u(x, 0) = sinx, ut(x, 0) = −sinx

and boundary conditions

u(0, t) = 0, u(π, 0) = 0.

The exact solution of the above problem is

u(x, t) = e−tsinx which could be found by solv-

ing the equation using the scheme (13) provided in

this paper. The absolute errors given of the scheme

(16) in [7], (23) in [8] and by the present scheme in
(13) are listed in Tables 1-8, respectively. It can be

seen from the tables that when h = π
300 and k = 0.1,

the accuracy of solutions obtained by using scheme

(16) in [7] provides more accurate results than the

present scheme (13). The reason is that the error or-
ders of the scheme (16) in [7] is approximately O(k5)
in addition to the step length “h” being quite small.

As k respectively decreases to k = 0.1 and k = 0.01,
since k is now quite small in comparison with h, the

errors of numerical solutions mainly come from the

approximation in the space direction, therefore the ab-

solute errors obtained from the present scheme (13)
is much better than those by using the scheme (16)
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in [7]. Finally, we believe it is crucial to mention that
the absolute errors of scheme (23) in [8] are similar to
those by using the present scheme (13) where scheme
(23) in [8] using quartic spline functions, we use non-
polynomial spline functions. The numerical results

are illustrated in Fig 1.

Example 2. We consider the following equations

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) +
(4− 4α+ β2 + h2)e−2tsinhx,
α > β ≥ 0

, x ∈ (a, b), t > 0

with initial conditions

u(x, 0) = sinhx, ut(x, 0) = −2sinhx

and boundary conditions

u(0, t) = 0, u(1, 0) = e−2tsinh

The exact solution of the above problem is

u(x, t) = e−2tsinhx.The absolute errors given by

the scheme (16) in [7],by the scheme (23) in [8]

and by present scheme (13) are listed in Tables 9-

14,respectively. Similar discussion to example 1 is

valid for example 2. Only difference that here we use

the term λ = k
h to simplify the calculation. The nu-

merical results are illustrated in Fig. 2.

5. Conclusion

This paper presents a new non-polynomial spline

method to solve the linear hyperbolic equation. The

distinctness of this method as against the previous

study in [10] is it using the taylor expansion in time
direction. Using the method described in this study

gives acceptable results. We have concluded that nu-

merical results converge to the exact solution when

k goes to zero and for smaller h we have seen that

the maximum absolute error decreases. Finally, we

believe it is crucial to mention that the new proposed

method for solving linear hyperbolic equation gives

better numerical results than those produced by a fi-

nite difference method [11].
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Table 1: Absolute errors of the scheme (16) in [7] (h = π
300 ,k=0.1).

t x= π
30 x=8π

30 x=15π
30 x=22π

30 x=29π
30

0.5 0.0577e-06 0.4102e-06 0.5519e-06 0.4102e-06 0.0577e-06

1.0 0.0105e-05 0.0747e-05 0.1005e-05 0.0747e-05 0.0105e-05

1.5 0.0114e-05 0.0811e-05 0.1091e-05 0.0811e-05 0.0114e-05

2.0 0.1015e-06 0.7215e-06 0.9709e-06 0.7215e-06 0.1015e-06

Table 2: Absolute errors of scheme (23) in [8] (h = π
300 ,k=0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0181e-03 0.1418e-03 0.1926e-03 0.1445e-03 0.0221e-03

1.0 0.0379e-03 0.2969e-03 0.4033e-03 0.3026e-03 0.0463e-03

1.5 0.0429e-03 0.3355e-03 0.4558e-03 0.3419e-03 0.0523e-03

2.0 0.0389e-03 0.3039e-03 0.4128e-03 0.3096e-03 0.0475e-03

Table 3: Absolute errors of the present scheme (13)(h= π
300 ,k=0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0211e-03 0.1502e-03 0.2021e-03 0.1502e-03 0.0211e-03

1.0 0.0429e-03 0.3056e-03 0.4112e-03 0.3056e-03 0.0429e-03

1.5 0.0482e-03 0.3427e-03 0.4611e-03 0.3427e-03 0.0482e-03

2.0 0.0435e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0435e-03

Table 4: Absolute errors of the scheme (16) in [7] (h= π
30 ,k=0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0483e-04 0.3462e-04 0.4771e-04 0.3777e-04 0.1430e-04

1.0 0.0904e-04 0.6479e-04 0.8928e-04 0.7069e-04 0.0904e-04

1.5 0.0990e-04 0.7095e-04 0.9776e-04 0.7740e-04 0.0990e-04

2.0 0.0884e-04 0.6337e-04 0.8731e-04 0.6913e-04 0.0884e-04

Table 5: Absolute errors of the scheme (23) in [8] (h= π
30 ,k=0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0101e-03 0.1032e-03 0.1826e-03 0.1032e-03 0.0301e-03

1.0 0.0321e-03 0.6995e-03 0.2033e-03 0.6995e-03 0.0412e-03

1.5 0.0375e-03 0.4386e-03 0.5356e-03 0.4386e-03 0.0475e-03

2.0 0.0532e-03 0.5065e-03 0.3128e-03 0.5065e-03 0.0331e-03

Table 6: Absolute errors of the present scheme(13) (h= π
30 ,k=0.1).

t x = π
30 x = 8π

30 x = 15π
30 x = 22π

30 x = 29π
30

0.5 0.0211e-03 0.1502e-03 0.2021e-03 0.1502e-03 0.0420e-03

1.0 0.0298e-03 0.3055e-03 0.4111e-03 0.3055e-03 0.0429e-03

1.5 0.0819e-03 0.3426e-03 0.4610e-03 0.3426e-03 0.0481e-03

2.0 0.0349e-03 0.3092e-03 0.4161e-03 0.3092e-03 0.0865e-03

Table 7: Absolute errors of the present scheme (13),scheme(16) in[7] and scheme (23) in [8] (h= π
30 ,k=0.01).
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t x = π
10 x = 3π

10 x = 5π
10 x = 7π

10 x = 9π
10

The present s. 1.0 0.13203e-05 0.34565e-04 0.42725e-05 0.34565e-05 0.13203e-05

[7] 1.0 0.29477e-04 0.77174e-04 0.95392e-04 0.77174e-04 0.29477e-04

[8] 1.0 0.08869e-05 0.31701e-05 0.42424e-05 0.31701e-05 0.08869e-05

The present s. 2.0 0.12957e-05 0.31161e-05 0.41931e-05 0.33923e-05 0.12957e-05

[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-04

[8] 2.0 0.08712e-05 0.31140e-05 0.41673e-05 0.31140e-05 0.08712e-05

Table 8: Absolute errors of the present scheme(13),scheme(16) in[7] and scheme (23) in [8](h= π
30 ,k=0.001).

t x = π
10 x = 3π

10 x = 5π
10 x = 7π

10 x = 9π
10

The present s. 1.0 0.10965e-08 0.71347e-08 0.88195e-08 0.71347e-08 0.10965e-08

[7] 1.0 0.29477e-04 0.77174e-04 0.95392e-04 0.77174e-04 0.29477e-04

[8] 1.0 0.18390e-08 0.65744e-08 0.87995e-08 0.65744e-08 0.18390e-08

The present s. 2.0 0.19920e-08 0.70295e-08 0.83985e-08 0.70295e-08 0.19920e-08

[7] 2.0 0.28834e-04 0.75489e-04 0.93309e-04 0.75489e-04 0.28834e-04

[8] 2.0 0.17996e-08 0.64330e-08 0.86095e-08 0.64330e-08 0.17996e-08

Table 9:RMS errors of schemes in [6] when λ=3.2.

α=50,β=5,σ=0.25,γ=0.75 α=50,β=2,σ=10,γ=5
h t = 1.0 t = 2.0 t = 1.0 t=2.0
1
16 0.6386e-02 0.5937e-02 0.8998e-02 0.8827e-02
1
32 0.2229e-02 0.1800e-02 0.2850e-02 0.2652e-02
1
64 0.6002e-03 0.4826e-03 0.7676e-03 0.7276e-03

Table 10:RMS errors of schemes in [8] when λ=3.2.

α=50,β=5 α=50,β=2
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.1368e-02 0.1005e-02 0.0853e-02 0.1076e-02
1
32 0.2159e-03 0.1368e-03 0.3015e-03 0.3915e-03
1
64 0.1507e-04 0.4015e-04 0.6059e-04 0.5252e-04

Table 11:RMS errors of present schemes when λ =3.2.

α =50,β =5 α =50,β =2
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.0253e-02 0.2643e-02 0.0258e-02 0.2839e-02
1
32 0.1659e-03 0.3804e-03 0.3872e-03 0.3648e-02
1
64 0.1002e-04 0.4984e-04 0.6754e-04 0.4563e-03

Table 12: RMS errors of schemes in [6] when λ =1.6.

α =10,β =5,σ =0.5,γ =1.0 α =20,β =10,σ =γ =1.0
h t = 1.0 t = 2.0 t = 1.0 t=2.0
1
16 0.6752e-03 0.1938e-03 0.4496e-02 0.7960e-03
1
32 0.2644e-03 0.7548e-04 0.1406e-03 0.2606e-04
1
64 0.7236e-04 0.2054e-04 0.2478e-04 0.4585e-05
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Table 13: RMS errors of schemes [8] when λ=1.6.

α=10,β=5 α=20,β=10
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.1651e-07 0.2648e-08 0.3382e-05 0.1285e-05
1
32 0.5269e-08 0.1508e-08 0.2567e-06 0.2618e-07
1
64 0.9686e-09 0.1756e-09 0.3447e-07 0.4172e-08

Table 14: RMS errors of present schemes when λ=1.6.

α=10,β=5 α=20,β=10
h t = 1.0 t = 2.0 t = 1.0 t = 2.0
1
16 0.2361e-07 0.1243e-08 0.4365e-05 0.8268e-06
1
32 0.1243e-08 0.8776e-09 0.3553e-06 0.7981e-08
1
64 0.8810e-09 0.0756e-09 0.2021e-07 0.0738e-08
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Fig. 1: Results for first example with h = π
40 and k = 0.01
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Fig. 2: Results for second example with h = 1
40 ,k = 0.01,α = 50 and β = 2
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