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1. Introduction  

The use of effective methods for studying of 
energy systems is associated with a complete 
analytical description of the family of 
characteristics (this is especially true for optimizing 
energy facilities).  

Due to the structural and functional complexity 
and as a result of many connections, energy 
systems are considered to be comprehensive 
systems. External operational characteristics of 
such systems are determined by complex physical 
models using a numerical method based on 
computer programs in the form of data array. 

The task is to replace a computationally 
complex physical model with a quickly calculated 
mathematical model, which is called a surrogate 
model [1]. This problem is associated with 
multidimensional approximation technology. 

Currently, there are many practical methods for 
multidimensional approximation, which are 
conceptually based on polynomial expressions, for 
example, in the form of a multidimensional power 
polynomial [2], or in a superposition form of 
simple functions of one variable and their linear 
combination [3]. In this case, many common 
approaches to implementation of multidimensional 
surrogate models are being utilized, which may 
include the following common methods: (linear 
regression, dictionary expansion of nonlinear 

parametric functions,  splines) [4]; Gaussian 
processes [1].  

But the aforementioned methods are not always 
convenient for describing the characteristics due to 
the following good reasons. 

First of all, power multidimensional 
polynomials cannot satisfy the saturation condition 
for large values of the independent variable (with 
x→∞, lim y(x, η) there is a finite number for any 
parameter η in the range of its definition). 

Secondly, the methods for implementing such 
approximations lack the ability to attach additional 
information to approximation expressions, for 
example, of a heuristic nature. 

Thirdly, the existing approximation methods 
define a rigid structure of an approximation 
expression in the form of regular basic functions 
(polynomials, splines, linear and nonlinear 
regressions), which have low adaptability when 
transitioning onto new modes and operational states 
of the simulated technical system, which narrows 
the application scope of such approximation 
models. 

The noted drawbacks can be eliminated on the 
basis of the method described in [5], according to 
which many hysteresis cycles of ferromagnetic 
elements are modeled by integral curves of some 
homogeneous ordinary linear differential equation 
with constant coefficients (OLDE). This approach 
allowed to present branches of hysteresis loops in 
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the form of a finite sum of exponential functions 
with unregulated poles, which increase adequacy of 
the model and reduce its dimension. This method 
made it possible to describe any background of 
magnetization of a simulated magnetic substance. 
Moreover, the structure and parameters of the 
differential operator were determined directly from 
corresponding conditions of the problem being 
solved. 

But the aforementioned method, based on 
homogeneous OLDEs, has serious drawbacks, viz.: 
speculative approaches were used; there was no 
general methodology for determining integration 
constants; there was a contradiction between the 
degrees of freedom of the model and the simulated 
family of characteristics. 

The aim of this work is to develop a 
methodology for creating surrogate mathematical 
models of families of characteristics related to 
quality of magnetic treatment of circulating water 
based on heterogeneous linear differential 
equations. 

The aim of this work is to develop a 
methodology for creating surrogate mathematical 
models of families of characteristics on based 
ordinary differential equations. 

 
2. The Theoretical Basis of the 
Methodology 

Ordinary differential equations (ODEs) 
represent on the x, y plane a family of curves 𝑦 =
𝑓(𝑥, 𝐶1, … , 𝐶𝑛). In [6], a classical strict derivation 
of the n-th order ODEs directly from a recorded 
expression of a family of curves is being presented. 
Let us present this derivation here. To do this, it is 
required to define a family of curves in implicit 
form Ф(𝑥, 𝑦, 𝐶1, … , 𝐶𝑛) = 0 and to carry out a 
sequential differentiation n-number of times, 
resulting in n-1 equations: 

𝜕Ф
𝜕𝑥

+
𝜕Ф
𝜕𝑦

𝑦 ′ = 0; 

𝜕2Ф
𝜕𝑥2

+ 2
𝜕2Ф
𝜕𝑥𝜕𝑦

𝑦 ′ +
𝜕2Ф
𝜕𝑦2

𝑦 ′2 +
𝜕Ф
𝜕𝑦

𝑦 ′′ = 0; 

𝜕𝑛Ф
𝜕𝑥𝑛

+⋯+
𝜕Ф
𝜕𝑦

𝑦(𝑛) = 0. 

The exclusion of 𝐶𝑘 parameters from n 
equations leads to the following ODE: 

𝐹(𝑥, 𝑦, 𝑦 ′, … , 𝑦(𝑛)) = 0. 
Conclusion. On the plane, the family of integral 

curves correspond to both homogeneous and 
heterogeneous ODEs. 

To formalize the simulation method based on 
DEs, let’s select a class of linear ordinary DEs with 

constant coefficients, that are completely studied, 
determined, with their general theory being 
completed, and where a general solution consists of 
the sum of exponential functions with complex 
exponents [7]. 

Assertion 1. To construct a homogeneous DE 
with constant coefficients, it suffices to 
approximate the characteristic by the sum of 
exponential functions. 

Proof. Let ∀𝑡 ∈  [0, 𝑡𝑚] by defined by the 
following exponential expression:  

𝑆(𝑡) = ∑𝐶𝑘𝑒
−𝑝𝑘𝑡,                      (1)

𝑛

𝑘=1

 

where the numbers 𝐶𝑘and 𝑝𝑘are known. 
By virtue of the existence and uniqueness 

theorem, S(t) corresponds to a definite 
homogeneous OLDE with constant coefficients 

𝐿𝑛𝑆(𝑡) = 0                          (2) 
and a specific numerical set of initial conditions 
s(0), s'(0), … , 𝑠(𝑛−1)(0)  for the Cauchy problem. 
Since the parameters of the differential operator are 

𝐿𝑛 = (
𝑑

𝑑𝑡
− 𝑝1) (

𝑑

𝑑𝑡
− 𝑝2)… (

𝑑

𝑑𝑡
− 𝑝𝑛), 

then the desired OLDE are expressed in terms of 
the known exponential indexes, which proves the 
statement. 

Statement 1 implies two important corollaries. 
Corollary 1.1. The differential operator 𝐿𝑛 is a 

differential model of the original exponential 
expression S (t). 

Corollary 1.2. To model a continuous family of 
characteristics, it is necessary to determine 
mathematical models simulating variation of a 
certain set of initial conditions s(0), s'(0), 
…, 𝑠(𝑛−1)(0), the substitution of which in the 
exponential expression S(t), results in dependences 
that coincide with each characteristic of the 
simulated family. 

To formalize the process of constructing 
differential mathematical models, it is proposed to 
use the method of interpolating the characteristics 
with the sum of exponential functions and 
unregulated poles described in [8], which provides 
smaller dimensionality with better adequacy and 
determines the structure of the mathematical model 
based on the conditions of the problem being 
solved. 

The interpolation technique from [8] used in the 
developed technique ensures high reproduction 
accuracy of individual characteristics. However, 
increasing the accuracy of interpolation of 
individual characteristics increases the number of 
exponential functions and, accordingly, the order of 
the OLDE, which leads to the excess 
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dimensionality of the general solution of the 
differential mathematical model. 

The concept of dimensionality is closely related 
to the concept of degree of freedom. The 
generalized number of degrees of freedom is the 
minimum number of independent variables 
(generalized coordinates) required for a complete 
description of a dynamical system. From this 
definition it follows that the number of degrees of 
freedom in the differential mathematical model of a 
technical system corresponds to the number of 
integration constants of its general solution. 

It is obvious that one of the conditions for the 
adequacy of the differential model and the family 
of characteristics of the simulated object (process) 
is the equality of their number of degrees of 
freedom.  

Assertion 2. To ensure the adequacy of the 
differential mathematical model with the family of 
characteristics of the modeled object (process), it is 
necessary to reduce the order of the differential 
model (the number of degrees of freedom of the 
model) to the number of degrees of freedom of the 
modeled object (process). 

However, the primary mathematical models of 
the processes of complex technical systems, as a 
rule, are described by systems of nonlinear ordinary 
DE or DE in partial derivatives. When constructing 
a surrogate mathematical model to ensure accuracy 
of a simulated process in the class of elementary 
functions (in particular, of exponential ones), it is 
necessary to increase the number of members of 
such functions, and hence the order of the 
differential model - OLDE, which can lead to an 
excess of its order relative to the nominal degree of 
freedom of the simulated process . Therefore, 
increasing accuracy of reproducing individual 
characteristics leads to an overestimation of the 
order of the model, which leads to a contradiction 
between the excessive number of model integration 
constants and the limited degree of freedom of the 
simulated family of characteristics. Therefore, there 
is a need to lower the order of the OLDE. 

When lowering the order of differential models, 
the requirements for preserving the class of 
differential operator (OLDE with constant 
coefficients) and the form of the dependent variable 
y(t) must be complied with. The known method of 
direct integration of an incomplete OLDE - 𝑦(𝑛) = 
𝑥(𝑡) meets these requirements. However, in the 
general case, the methods for reducing the order of 
the OLDE described in the classical theory [9–11] 
do not satisfy the stated requirements. Known 
methods for lowering the order of DEs, based on 
replacing the dependent variable, lead to a change 

both of the DEs class, and the type of function, as 
well as the sequence of calculation of the 
integration constants in the intermediate integrals. 

In [12], a technique was developed for 
converting the initial OLDE into an equivalent 
inhomogeneous lower-order LDE, which is absent 
in the classical theory of differential equations. The 
equivalence condition for the DE transformation 
implies the invariance of integral curves. This 
technique of reducing the order of LDEs compared 
with those presented in the classical theory does not 
lead to a change in the class of DEs, the form of the 
y(t) function, and the sequence of calculation of the 
integration constants in the intermediate integrals. 

Let us present this method of reducing the order 
of OLDE in a slightly different form, convenient 
for use in problems of mathematical modeling of a 
family of characteristics. 

Assertion 3. Equivalence of general solutions of 
the original 𝐿𝑛𝑦(𝑡) = 𝑥(𝑡) and reduced by unit 
𝐿𝑛−1𝑦(𝑡) = 𝑓1(𝑡) OLDE, where 𝐿𝑛, 𝐿𝑛−1 are linear 
differential operators with constant coefficients of n 
and n-1 orders, respectively, is determined by the 
differential transformation of the right side of x (t) 
in 𝑓1(𝑡): 𝑓1′(𝑡) + 𝑝𝑛 𝑓1(𝑡) =  𝑥(𝑡) and with the 
initial condition of 𝑓1(0) = 𝑦

(𝑛−1)(0) +

𝑎𝑛−2,𝑛−1𝑦
(𝑛−2)(0) + …+ 𝑎0,𝑛−1𝑦(0), where 𝑝𝑛 is 

a root of the characteristic equation of the original 
OLDE. 

In this case, the original OLDE 𝐿𝑛𝑦(𝑡) = 𝑥(𝑡) 
decomposes into the following LDE system: 

{

𝐿𝑛−1𝑦(𝑡) = 𝑓1(𝑡);                      (3)

(
𝑑

𝑑𝑡
+ 𝑝𝑛) 𝑓1(𝑡) = 𝑥(𝑡);           (4)

 

y(0), y′(0), … , 𝑦(𝑛−2)(0), 𝑓1(0). 
Initially, on the basis of the constructed 

exponential expressions (1), it is possible to 
determine a homogeneous OLDE only (2), 
therefore, as the initial OLDE we use the following 
DE: 𝐿𝑛𝑦(𝑡) = 0, and by integrating (4) with x (t) = 
0, we obtain the following expression for the 
Cauchy problem: 

𝑓1(𝑡) = С10𝑒−𝑝𝑛𝑡. 
By substituting (5) into the DE (3), we obtain 

the equivalent OLED with a reduced by one unit 
order, which is the first integral of the original 
OLDE. 

The second act of reducing the order leads to the 
following ДУ system: 

{
 
 

 
 
𝐿𝑛−2𝑦(𝑡) = 𝑓2(𝑡);                         (6)

(
𝑑

𝑑𝑡
+ 𝑝𝑛−1)𝑓2(𝑡) = 𝑓1(𝑡);         (7)

(
𝑑

𝑑𝑡
+ 𝑝𝑛) 𝑓1(𝑡) = 0;                     (8) 
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y(0), y′(0), … , 𝑦(𝑛−3)(0), 𝑓1(0), 𝑓2(0),               

where from (6) it follows that 𝑓2(0) = 𝑦(𝑛−2)(0) +
𝑎𝑛−3,𝑛−2𝑦

(𝑛−3)(0) + …+ 𝑎0,𝑛−2𝑦(0),  𝑝𝑛−1 is the 
root of the characteristic equation of the initial 
OLDE. By integrating (7) for the Cauchy problem, 
we obtain: 

𝑓2(𝑡) = 𝑒
−𝑝𝑛−1𝑡 [С20 +∫𝑒  𝑝𝑛−1𝑡𝑓1(𝑡)𝑑𝑡].    (9) 

By substituting (9) into the differential equation 
(6), we obtain the equivalent OLDE reduced by two 
orders, which is the second integral of the initial 
OLDE. 

The initial conditions y(0), y′(0), … , 𝑦(𝑛−2)(0), 
 𝑦(𝑛−1)(0) are expressed in terms of the solution 
parameters (1) of the OLDE for the case of 
negative roots of its characteristic equation: 

y(0) = ∑ 𝐶𝑘
𝑛
𝑘=1 ,  y′(0) = −∑ 𝑝𝑘𝐶𝑘

𝑛
𝑘=1 , …, 

                𝑦(𝑛−1)(0) = ∑ (−𝑝𝑘)
𝑛−1𝐶𝑘

𝑛
𝑘=1 .         (10) 

By substituting expressions (10) into 𝑓1(0), we 
get: 

𝑓1(0) = ∑𝐶𝑘[(−𝑝𝑘)
𝑛−1 + 𝑎𝑛−2,𝑛−1(−𝑝𝑘)

𝑛−2]

𝑛

𝑘=1

+ 

+ …+ 𝑎0,𝑛−1 = 𝐶𝑛𝐻𝑛−1(𝑝 = −𝑝𝑛),       (11) 
 

where 𝐻𝑛−1(𝑝) is the characteristic equation of the 
OLDE (3), which is related to the characteristic 
equation of the original OLDE (2) in a known 
manner: 

𝐻𝑛(𝑝) = (𝑝 + 𝑝𝑛)𝐻𝑛−1(𝑝) = 
= (𝑝 + 𝑝𝑛)(𝑝 + 𝑝𝑛−1)𝐻𝑛−2(𝑝).         (12) 

The integration constant С10 in (5) will take the 
following form: 

С10 = 𝑓1(0) = 𝐶𝑛𝐻𝑛−1(𝑝 = −𝑝𝑛).       (13) 
Similarly, for 𝑓2(0) we get: 

𝑓2(0) = ∑𝐶𝑘[(−𝑝𝑘)
𝑛−2 + 𝑎𝑛−3,𝑛−2(−𝑝𝑘)

𝑛−3 + 

𝑛

𝑘=1

 

…+ 𝑎0,𝑛−2] = 
= 𝐶𝑛−1𝐻𝑛−2(−𝑝𝑛−1)+𝐶𝑛𝐻𝑛−2(−𝑝𝑛), (14) 

 

where 𝐻𝑛−2(𝑝) is the characteristic equation of the 
OLDE (5), which is related to the characteristic 
equation of the original OLDE of 𝐻𝑛−1(𝑝) =
(𝑝 + 𝑝𝑛−1)𝐻𝑛−2(𝑝). 

The integration constant С20 in (9) is 
determined on the basis of (12) - (14): 

С20 = 𝑓2(0) −
С10

(𝑝𝑛−1 − 𝑝𝑛)
= 

= 𝐶𝑛−1𝐻𝑛−2(−𝑝𝑛−1).                   (15) 
 

Therefore, expression (9) takes the following form: 

𝑓2(𝑡) = 𝑒
−𝑝𝑛−1𝑡[𝐶𝑛−1𝐻𝑛−2(−𝑝𝑛−1) + 

+∫𝑒  𝑝𝑛−1𝑡𝑓1(𝑡)𝑑𝑡] = 

= 𝐶𝑛−1𝐻𝑛−2(−𝑝𝑛−1)𝑒
−𝑝𝑛−1𝑡 + 

+𝐶𝑛𝐻𝑛−2(−𝑝𝑛)𝑒
−𝑝𝑛𝑡.                 (16) 

The reduction procedure can be applied k-th 
number of times (k ≤n): 

𝑓𝑘(𝑡) =∑𝐶𝑛+1−𝑗𝐻𝑛−𝑘(−𝑝𝑛+1−𝑗)𝑒
−𝑝𝑛−𝑗𝑡

𝑘

𝑗=1

. (17) 

𝐿𝑛−𝑘𝑦(𝑡) = 𝑓𝑘(𝑡);                    (18) 
 

Based on the foregoing, we present the 
foundations of the methodology for constructing a 
surrogate model of a family of aperiodic 
characteristics. 

With an excessive number of exponential 
functions in approximating exponential expression 
(1), which are equal for all the curves of the family, 
when generating a differential mathematical model 
in the class of OLEDs with constant coefficients 
(CC), the order of the DE in this model can be 
reduced several times in accordance with (17)-(18). 
Such a model will describe each characteristic of a 
given family when specifying a certain set of initial 
conditions y(0), y'(0), …, 𝑦(𝑛−𝑘)(0). And in order 
to describe a continuous family of characteristics, it 
is required to define mathematical models that 
describe the variation of this set of initial 
conditions y(0), y'(0), …, 𝑦(𝑛−𝑘)(0), the 
substitution of which into the exponential 
expression y(t), results in dependencies that 
coincide with each characteristic of the simulated 
family. The LDE method allows to guarantee 
adequacy of the model not only at the points of 
approximation of the family, but also at all points 
located in the field of existence of the family 
(according to continuity theorems with respect to 
parameters and initial conditions of differential 
equations [7]). 

Accuracy of the approximations depends on the 
chosen method of interpolation of one-dimensional 
and two-dimensional dependences, and, in 
particular, interpolation by exponential polynomials 
is comprehensively described in corresponding 
literature, therefore this issue is not being presented 
here. 
 
3. Methodology Implementation 
Example 

Let the characteristics of energy objects be 
represented as dependencies y(x, η), where x is an 
independent variable, η is some dimensionless 
parameter. Let the array of source data presented in 
Fig. 1 by discrete values depicted by various 
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symbols corresponding to the values of the η 
parameter (0, 1, 2, 3.5). 

It is required to determine a surrogate 
mathematical model of this family in the variation 
range of independent variables: 0 ≤ 𝑥 < ∞; 0 ≤
η ≤ 3.5.  

First, by transforming the scales of the 
independent variable x using λ𝜈−1  scale factor , we 
compress the initial characteristics No. 2, No. 3, 
No. 4 to the basic characteristic No. 1 (affine 
transformation). The curve with the parameter 
value η = 0 was chosen as the basis characteristic. 
Each compressed characteristic of the initial family 
shall be compared with the basic characteristic, 
which are presented in Fig. 2. 

Denote the parameter change number in Fig. 1 
with the symbol ν = 1, 2, 3, 4,. 

Using the modified interpolation method (and 
the least squares method), the basis characteristic 
𝑦1(x) and the deviations of each curve 𝑦𝜈(λ𝜈−1x) 
from the base curve are approximated by 
exponential polynomials [8]. As a result, a given 
family of characteristics will be described by the 
following exponential polynomial with irregular 
exponents: 

𝑦𝜈(𝑥) = ∑𝐶𝑘𝑒
−𝑝𝑘𝜆𝜈𝑥,                  (19)

7

𝑘=1

 

the coefficients values of which 𝐶𝑘, 𝑝𝑘   are 
presented in Table 1, and in Fig. 1, the 
approximated dependences of the initial 
characteristics, where ν = 1, 2, 3, 4, are presented 
by continuous curves. 
 

 
 

Fig. 1: The family of characteristics y (x). Discrete 
dependencies correspond to the source data; continuous 
dependences are calculated characteristics according to 
a surrogate mathematical model - with the values of the 
η parameter: No.1- 𝜂 = 0; No.2- 𝜂 = 1; No.3- 𝜂 =2; 
No.4- 𝜂 =3.5 
 

All the characteristics described by the 
exponential polynomial (19) can be presented as 
solutions of a homogeneous OLDE with constant 
coefficients in the following form: 

𝐿7𝑦 = 0. 
Its characteristic equation has the following 

form: 
𝐻7(𝑝) = (𝑝

2 + 𝜆𝜈𝑝 + 0.75𝜆𝜈2)(𝑝 + 1.6𝜆𝜈) × 
× (𝑝 + 2𝜆𝜈)(𝑝 + 0.95𝜆𝜈)(𝑝 + 0.82𝜆𝜈) × 

× (𝑝 + 0.47𝜆𝜈). 

 
         a) 

 
         b) 

 
       c) 

Fig. 2: Functional dependences of each reduced 
𝑦𝜈(𝜆𝜈−1𝑥)- characteristics of the family to the basis 
characteristic  𝑦1(𝑥): a - 𝜈 = 2; b -  𝜈 = 3; c -  𝜈 = 4 
 

Since the scale coefficients 𝜆𝜈 are different for 
different values of η, the coefficients of the OLDE 
will depend on a corresponding parameter. 

The polynomial (19) contains three identical 
terms for all characteristics (with k = 5, 6, and 7 in 
Table 1); therefore, let’s transfer these summands 
by the method of reducing the order of the OLDE 
to the right side of the differential equation.An 
OLDE of reduced order will take the following 
form: 
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𝑦(4) + 𝑎34𝑦
′′′ + 𝑎24𝑦

′′ + 𝑎14𝑦
′ + 𝑎04𝑦 = 

= 𝑓(𝑥);                                 (20) 
𝑓(𝑥) = 2.9𝐻4(−0.47𝜆𝜈)𝑒

−0.47𝜆𝜈𝑥 − 

−2.9𝐻4(−0.82𝜆𝜈)𝑒
−0.82𝜆𝜈𝑥 + 

+𝐶5𝐻4(−0.95𝜆𝜈)𝑒
−0.95𝜆𝜈𝑥,

Table 1: The values of the coefficients of the polynomial (19) 

𝜈 𝜆𝜈 k 1 2 3 4 5 6 7 
1 1 𝑝𝑘

𝐶𝑘
 0 

0 
0 
0 

0 
0 

0 
0 

0.95
−2.9 

0.82
2.9  

0.47
1  

2 0.36 𝑝𝑘
𝐶𝑘

 0.5 − 𝑗0.71 
0.072-j0.072 

0.5 + 𝑗0.71 
  0.072+j0.072 

1.6
0.05 

2
0.05 

0.95
−2.9 

0.82
2.9  

0.47
1  

3 0.23 𝑝𝑘
𝐶𝑘

 0.5 − 𝑗0.71 
0.025-j0.025 

0.5 + 𝑗0.71 
0.025+j0.025 

1.6
−0.1 

2
0.1 

0.95
−2.9 

0.82
2.9  

0.47
1  

4 0.14 𝑝𝑘
𝐶𝑘

 0.5 − 𝑗0.71 
0.225-j0.225 

0.5 + 𝑗0.71 
0.225+j0.225 

1.6
−0.99 

2
0.99 

0.95
−2.9 

0.82
2.9  

0.47
1  

                                                                                            
where the fourth-order characteristic equation of 
the OLDE has the following form: 

𝐻4(𝑝) = 𝑝
4 + 4.6𝜆𝜈𝑝3 + 7.55𝜆𝜈2𝑝2 + 5.9𝜆𝜈3𝑝

+ 2.4𝜆𝜈4 . 

For all OLDEs (20), the value is y(0) = 1, and 
the initial conditions are 𝑦′(0, η); 𝑦′′(0, η); 
 𝑦′′′(0, η), continuously depend on the η 
parameter; therefore, the power polynomials are 
first approximated by the varying integration 
coefficients of expression (19) and the scale factor 
𝜆𝜈  as a function from η, since, according to the 
condition of the problem, the working range of 
variation of the η parameter is limited: 

𝐵(η) = 2𝐶1(η) = 0.444η − 0.061η
2 + 

+ 0.0066η3;                         (21) 
𝐶3(η) = 0.13η − 0.093η

2 + 0.013η4      (22) 
λ(η) = 1 − 1.01η

0.5 + 0.424η − 0.061η2 + 
+ 0.0066η3.                        (23) 

The correspondence results of approximation 
dependences (21) - (23) with the data in Table 1 are 
presented in Fig. 3. 

 
 

Fig. 3: Approximation dependencies: 1- 𝐵(𝜂);  2- 𝜆(𝜂);  
3- 𝐶3(𝜂)  
 

For completeness of the differential 
mathematical model based on expressions (20), the 
mathematical model of variation is determined with 
the following initial conditions: 

𝑦(0) = 1;                           (24) 
𝑦′ (0, η) = λ(η)[−0.078 + 0.262η− 0.006η2 + 

+0.0047η3 − 0.0052η4]; 

𝑦′′ (0, η) = [λ(η)]2[0.47 − 0.127η− 0.019η2 − 
−0.0066η3 + 0.0187η4]; 

𝑦′′′(0, η) = [λ(η)]3[0.819 − 0.428η+ 0.352η2 + 
+0.0017η3 − 0.0508η4]. 

Since there are theorems on the continuity of 
solution of ordinary linear DEs from the initial 
values and parameters [7], with the continuity of 
the functions (23) and (24) in the range of existence 
of these approximations, the differential 
mathematical model (20) and (24) guarantees 
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continuity of the mathematical model ( 19) from a 
change in the η parameter. 

Thus, these theorems guarantee, through the 
differential mathematical model (20) and (24), 
constructed on the basis of its particular solutions 
𝑦𝜈(𝑥) (expression (19) with ν = 1,2,3,4), the 
adequacy of a more general model:  

𝑦(𝑥, η) = ∑𝐶𝑘(η)𝑒−𝑝𝑘(
η)𝜆(η)𝑥,           (25)

7

𝑘=1

 

Model (25) describes a continuous family of 
characteristics on the initial segment of the change 
of parameter 0 ≤ η ≤ 3.5 and on the positive semi-
axis 0 ≤ x < ∞ of the change of the independent 
variable. Fig. 4 shows an example of a description 
by a mathematical model (25) of inverse 
characteristics ε(𝑥, η) = 1 − 𝑦(𝑥, η) of such that 
correspond to arbitrary parameter values (with 
values of η = 0.4; 1.5; 2.7). 

 
Fig. 4: The calculated characteristics (η) of the degree of 
purification for the following η: No.1- 0; No.2- 0,4; 
No.3- 1; No.4- 1.5; No.5- 2;  No.6- 2.7; No.7- 3.5 
 
4. Conclusion 

 A method for constructing a surrogate 
mathematical model of a family of aperiodic 
characteristics by integral curves of an 
inhomogeneous ordinary linear differential 
equation with constant coefficients has been 
developed. The methodology involves construction 
of a two-level mathematical model of a family of 
characteristics, which consists of a differential 
operator with constant coefficients and a 
mathematical model of variation with initial 
conditions. 

 The advantage of this approach is that in the 
class of exponential polynomials it is possible to 

achieve adequacy without any strict regulation of 
the structure of these polynomials by fewer 
approximating summands and a possibility of 
including into the model through initial or 
boundary conditions of additional systemic 
information about the technical object 
(technological process) being studied. 

The method includes stages of standard 
interpolation (or approximation based on the least 
square method) and matching the degrees of 
freedom of the model and the simulated object 
based on the equivalent method of reducing the 
order of a differential equation. 

The developed methodology for constructing 
the aforementioned model and its implementation  

 
 
 
 

using a specific example makes it possible to 
directly use it in scientific research and engineering 
developments. 
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