
 

With the advent of smart grids, intelligent homes and 
increasing micro-grid penetration, accuracy in Short-Term 
Load Forecasting (STLF) for building or industrial loads is 
gaining importance like never before. It becomes all the 
more important in the energy-insufficient countries so that 
the demand side response can be more efficiently managed. 
With the advent of deregulated electricity market scenario 
also in most countries, accurate prediction of load results in 
substantial saving for the utilities as well as the consumers. 
A lot of researchers are therefore scrambling to find out the 
best model which predicts the load with greater accuracy. 

Household energy consumption forecasting is a much 
more difficult problem than area, bus or aggregated load 
forecasting due to many fluctuating variables which have to 
be taken into account such as performance of thermal 
systems, occupancy patterns etc. Their load profiles have 
high volatility and uncertainty. Classical approaches are no 
longer providing the desired accuracy and Machine 
Learning models are taking over [1].  

From last few decades, Artificial Neural Network (ANN) 
models have started to be proposed for STLF. In [2] the 
authors explored the ANNs with back-propagation 
algorithm with one or two hidden layers with comparable 
accuracy with respect to classical methods. Guoqiang Zhang 
et al. presented a state of the art survey on ANN 
applications for STLF where it was summarized that ANNs 
were better than Regression, Auto Regressive Integrated 
Moving Average (ARIMA), Exponential Smoothing & 
other classical methods [3]. Tao Hong et al. [4] presented a 
tutorial review of probabilistic load forecasting with a 
comprehensive study of some representative papers in this 
field. In [5] the authors presented a practical neural network-

based ensemble model for day-ahead building-level 
electricity load forecasting and showed that it outperformed 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) by almost 50%. 

In [6] the authors reviewed a number of AI techniques 
applied for load demand forecasting for smart grids and 
buildings and concluded that the hybrid methods perform 
better. 

It was shown that the over-fitting issue which is a 
problem when deep learning is applied, can be addressed by 
increasing data diversity and volume, as was shown in smart 
metered dataset from Ireland by batching a group of 
customers’ load profiles into a pool of inputs [7]. Enzo 
Busseti et al. [8] explored deep learning (DL) for Time 
Series modeling and found out that feed-forward recurrent 
neural networks gave promising results. 

A probability density forecasting method based on deep 
learning, quantile regression and kernel density estimation 
was proposed and the results were compared with random 
forest and gradient boosting machine models. The proposed 
deep learning approach exhibited better forecasting accuracy 
than others [9]. Stochastic models like Conditional 
Restricted Boltzmann Machine and Factored Conditional 
Restricted Boltzmann Machine were shown to outperform 
ANN, Support Vector Machine (SVM) and Recurrent 
Neural Networks (RNN) [10].  

Deep learning was used in an unsupervised manner to 
extract meaningful features from raw data as model inputs 
to supervised learning and the results show that this 
methodology enhances the performance of building cooling 
load prediction [11].  

To handle the variability and uncertainty of future load 
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profiles, traditional Long Short-Term Memory (LSTM) 
based point forecasting was extended to probabilistic 
forecasting in the form of quantiles and was used to model 
both long and short-term dependencies within load profiles. 
Pinball loss instead of Mean Square Error (MSE) was used 
in training the data and forecasting results for both 
residential and commercial customers were tested and were 
found to have superior performance [12]. Mahmoud 
Shepero et al. [13] compared an especially designed log-
normal process with the conventional Gaussian Processes 
for probabilistic load forecasting for residential customers 
and showed that log-normal process produced sharper 
forecasts. In [14], a combination of generalized extreme 
learning machine (GELM), wavelet processing and 
bootstrapping was used to forecast the electricity demand.  

In the deregulated electricity market scenario, the energy 
imbalance, i.e. the online gap between contracted supply 
and actual demand need to be minimized and the market 
interactions based on accurate power load forecasts need to 
be performed. Smart meters, when fully employed, would 
continuously stream data and in order to take informed 
decisions about grid operations we need to process this data 
online. Petra Vrablecova et al. developed an online Support 
Vector Regression (SVR) and demonstrated its capability in 
accurate forecasting by comparing it with other state-of-the-
art online methods [15].  

Learning long-range dependencies with RNNs is difficult 
due to the problem of vanishing and exploding gradients. 
Long Short Term Memory (LSTM) was thus developed, to 
overcome these issues where information of the current time 
step could be stored and maintained to affect the LSTM 
output of future time steps. Weicong Kong et al. applied 
LSTM to forecast short-term residential load forecasting on 
a set of publicly available real smart meter data set with 
great improvement in results [16]. In [17] a comprehensive 
review of smart meter data analytics in electricity retail 
markets was done.  

In [18] the authors reviewed the application of Deep 
Learning and Reinforcement Learning (RL) in Smart Grids. 
It was concluded that various DL algorithms e.g. Boltzmann 
Machine, Feed-forward Deep Networks, Convolutional 
Neural Networks (CNN), Recurrent Neural Networks, Long 
Short-Term Memory Networks & Generative Adversarial 
Networks (GAN) can be used for more accurate load 
forecasting than traditional methods.  

Another aspect of building load forecasting using smart 
meter data, is to detect data integrity attacks where the 
hackers access supposedly protected data and inject false 
information. Jian Luo et al. [19] conducted an empirical 
study to test and benchmark the robustness of four 
representative forecasting models under various simulated 
data integrity attacks and found that Support Vector 
Regression (SVR) model is most robust. 

Bert J. Claessens et al. [20] proposed a novel approach 
using CNN to extract hidden state-time features to mitigate 
the curse of partial observability. They combined CNN and 
a multilayer perceptron to approximate Q-values in the 
batch Fitted Q-Iteration using RL.  

A number of approaches are hence being experimented 

with, so that an accurate STLF model can be found.  Deep 
Learning methods such as RNN, LSTM, CNN [22] have 
gained a lot of importance in recent times [21] due its ability 
to solve complex problems such as computer vision, image 
classification etc. ANNs (nowadays also referred to as 
shallow networks) learn the mapping from input to output 
by adjusting the weights but have limited learning 
capability. Deep Neural Networks (DNNs) have more 
number of layers than ANN but they frequently encounter 
the problem of over-fitting and vanishing gradients which 
result in poor error performance, even when compared with 
shallow networks. 

 In this paper, we have hence proposed a deep learning 
CNN model named Aggregated Convolutional Neural 
Network (ACNN) model to predict the household energy 
consumption which results in better performance with 
reduction in RMSE error. To prove the efficacy of the 
proposed model, it has been compared with a classical 
method, ARIMA and a basic 1-D CNN model. Section II of 
the paper describes the methodology and the CNN 
architecture used and section III describes the experimental 
set-up and section IV and V present the results and 
conclusions respectively. 

STLF for individual buildings, households, industries etc. 
is a challenging problem due to the various unpredictable 
influencing factors such as environmental, economic and 
geographical. Thus, a deeper NN with multiple hidden 
layers and different architectures are better suited to model 
the STLF problem for a household than a shallow ANN. We 
have proposed a novel CNN architecture named ACNN to 
forecast week-ahead load for a single household.  

ANNs receive an input and transform it through a series 
of hidden layers. Each hidden layer is made up of a set of 
neurons, where each neuron is fully connected to all the 
neurons in the previous layer and where neurons in a single 
layer function completely independently and do not share 
any connections. The last fully-connected layer is called the 
“output layer”. In Convolutional Neural Networks, on the 
contrary, the parameters are shared i.e. weights are shared 
by some/all neurons in a particular feature map. There is 
‘local connectivity’ in CNNs, where each neuron is 
connected only to a subset of the input, unlike ANNs where 
all the neurons are fully connected. This helps to reduce the 
number of parameters in the whole system and makes the 
computation faster and more efficient. This feature of CNNs 
helps to build deeper networks and makes them suitable for 
solving computer vision, image classification, object 
recognition and various other problems.  

CNNs are comprised of various layers such as 
convolutional layer, pooling layer and fully connected 
layers. Convolution is a specialized linear operation on two 
functions namely input function and weighting function. 
The weighting function is called a “kernel” which is also a 
multidimensional array of weights that is updated as the 
algorithm learns through the iterations or epochs. The output 

2. Proposed Work 

2.1 Convolutional Neural Networks 
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(s) of the convolution operation is called a feature map (s). 
Subsequent feature map values are calculated according to 
the following formula, where the input function is denoted 
by f and kernel by h. The indexes of rows and columns of 
the resultant matrix are marked with m and n respectively as 
shown in (1). 

 
There are mainly two different pooling mechanisms used 

in practice namely max-pooling and average-pooling. More 
precisely, the max-pooling operation, at a given position, 
outputs the maximum value of the input that falls within 
the kernel. So mathematically it can be represented as in (2). 

 

 
  

Then, the elements of the feature map are run through a 
nonlinear activation function (ReLU). Pooling function is 
then used to further modify and smoothen the feature map. 
Pooling layers are commonly inserted in-between successive 
Convolutional layers. This reduces the spatial size 
representation by reducing the number of parameters, 
reduces computation and hence controls the over-fitting. 
Once the convolutional layers produce their outputs, the 
output is sent to one or more fully connected layers which is 
similar to the output layer of a regular NN. Learning process 
of the CNN is carried out using back propagation. 

CNNs thus have fewer weights to learn than fully 
connected layers and they automatically learn and 
generalize features from the input. They are thus able to 
learn highly specific features in this process. 

CNNs are designed to process data that are in the form of 
multiple arrays [21] e.g. 1-Dimensional (D) arrays for 
signals and sequences, 2-D for images or audio 
spectrograms and 3-D for video or volumetric images. Time 
Series data such as energy consumption data are 1-D array. 

The 1-D convolutional and pooling layers are as shown in 
Fig.1. X1, X2, X3, X4, X5, X6, X7 are the inputs which after 
convolution with the filter of size 3, as shown in Fig.1, form 
the feature maps (C1, C2, C3, C4, C5) which form the first 
convolutional layer. Then comes the pooling layer, which 
samples the feature maps and reduces the dimension (P1, P2). 
Pooling layer extracts the important features from the input. 

 

 
Fig. 1.  1-D CNN structure 

 

 
In this work, we have used 1-D CNN for the univariate 

data for the basic CNN model. We have also used a separate 
1-D CNN model for the multivariate data for ACNN, the 
proposed model. We found out that the proposed model 
having separate CNN sub-models for different variables 
outperformed the Basic CNN and ARIMA models. 

The household power consumption dataset is a 
multivariate dataset which has the electricity consumption 
data from 16th December 2006 (17:24:00) till 26th 
November, 2010 (21:02:00) at regular intervals of 1 minute 
[23]. The data has 2075259 entries and 7 columns which 
represent global active power, global reactive power, 
voltage, global current intensity and 3 active energy sub-
metering columns. So, the dataset provides the total active 
power consumption of the household as well as the active 
power consumptions of different utility areas of the house 
such as kitchen, laundry, climate controlled systems and the 
rest of the house. We shall be forecasting the global active 
power consumed in the household in this paper.  

The data has some missing values, so before proceeding 
we fill in the missing values with the value at the same time, 
one day ago.  We shall be using global active power as input 
and convert the time series multivariate data into a 
supervised learning problem. This can be done by using a 
‘sliding window’ approach on the entire dataset. Firstly, we 
resample this minute-wise data into 24 hr data. Thus, we 
have a day-wise data now with 1442 no. of days. Secondly, 
we collate the data into standard weeks (which begins on 
Sunday and ends on Saturday) and split the weeks into 
training and test data. This gives us 159 standard weeks of 
data for training and 46 weeks of test data. These 159 weeks 
is a small number for the model to be trained on. So we have 
applied a ‘sliding window’ approach to augment training 
data as shown in Fig.2. Applying this technique, we have 
1113 (159*7) weeks of training data.  

 

 
Fig. 2.  Sliding Window approach 

 
 

We are using the previous week’s values to forecast next 
week’s values. So, it is a week-ahead forecast for the 
household energy consumption. We are using keras wrapper 

2.2 1-D Convolutional Neural Networks 

3. Experimental Set-up  

3.1 Dataset 

3.2 Data Processing 

3.3 Basic CNN Model Architecture 
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library with Tensorflow backend in python on Google Colab 
notebook. 

The basic CNN 1-D model has 1 convolutional layer with 
16 filters of size 3 as the first layer. It is followed by one 
max-pool layer with pool-size 2. Then, we have a fully 
connected layer with 10 neurons where activation function 
ReLU with ‘Adam’ optimizer is used. The output layer 
predicts the next seven days in the sequence. After a lot of 
trial and error, it was found out that a batch size of 4 gave 
good results. 

In our proposed model, we use all the variables provided 
in the dataset and configure a separate CNN model for them. 
Later, we aggregate or concatenate all the models and 
forecast week-ahead total active energy consumption for the 
household. The aggregated CNN model has more no. of 
feature learning layers. The proposed ACNN model 
comprises of 2 feature learning layers. For each of the CNN 
models, we use two nos. of convolutional layers with 16 
filters of size 3 and further we used ReLU activation 
function. A batch size of 8 gave good results with a max 
pool layer of pool size 2. The different sub-models are then 
concatenated to be fed into 2 nos. of fully connected layers 
which are then connected to the output layer. The output 
layer predicts the week-ahead values of load. The proposed 
ACNN architecture is shown in Fig. 3. 

 
 

 
 

Fig. 3.  Proposed ACNN architecture of one sub-model of the dataset 
 

Looking at the Autocorrelation and Partial 
Autocorrelation plots of the dataset it can be concluded that 
there is a strong autocorrelation and that an auto regression 
model with 7 lag inputs can be used. So, an ARIMA model 
was used to get the week-ahead forecast and was compared 
to the basic CNN model and ACNN, proposed model. 

 

  We have used Root Mean Square Error (RMSE) to 
evaluate the forecasting accuracy between the forecasted 
load for the test data and the actual observed data. RMSE 
scores are more punishing of forecast errors than some other 
metrics. RMSE equation is as follows: 

 

           (3) 
 

where N is the total number of samples of the test data, yn is 
the actual observed value and ŷn is the predicted value. 

The following results were obtained for the Basic CNN, 
ACNN and ARIMA models.  

In Fig.4 line plot of the overall RMSE scores is shown for 

all 7 days of the week for the entire test set for Basic CNN 

model. The plot shows that perhaps Tuesdays and Fridays 

are easier to forecast than other days and probably Saturday 

is the hardest day to forecast. 

 

 
Fig. 4.  Line Plot of overall RMSE scores for Basic CNN model for a week 

 
 
A graph of accuracy and loss for the training data, as 300 

total nos. of epochs progress is shown in the Fig.5 & Fig.6 
respectively for Basic CNN model. The graphs show that 
training for more number of epochs enhances the accuracy 
and reduces the loss. A graph of real and predicted values of 
load for the test data is shown in Fig.7. 

 

 
 

 
Fig.5. Accuracy Plot of Basic CNN 

3.4 Aggregated Cnn Model Architecture
 (Proposed)

 

3.5 ARIMA Model 

3.6 Evaluation Metrics 

4. Results 

4.1 Basic CNN Model 
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Fig.6. Loss Plot of Basic CNN 

 

 
Fig. 7.  Overall Real vs. Predicted Load Profile for test data for Basic 
CNN  

 

In Fig.8 the line plot of overall RMSE scores for the test 
data is shown for all 7 days of the week for ACNN model. It 
can be seen that the RMSE scores improve from the basic 
CNN model and give better forecasting results. The use of 
multivariate data and deeper architecture results in better 
performance of the model. It creates a feature hierarchy, 
reduces under-fitting and increases feature learnability. An 
accuracy and loss plots of the training data is shown in Fig.9 
& Fig.10 respectively which demonstrate that accuracy 
improves and loss decreases if the model is trained for 
longer duration but only for a certain number of epochs. In 
Fig.11 a graph between the real and predicted values of the 
load is shown for the test data. 

 

 
Fig. 8.  Line Plot of overall RMSE scores of ACNN for a week 

 
 
  

 
Fig.9. Accuracy Plot of ACNN 

 

 
Fig. 10.  Loss Plot of ACNN 

 
 

The week-ahead forecast was done for all the 46 test 
samples and the graphs were plotted. In Fig.12 the 
comparison of week-ahead forecast with the real and 
predicted values for few sample weeks of the test data are 
given. 

 
 

 
Fig. 11. Overall Real vs. Predicted Load Profile for test data for ACNN 

 
 

A comparison between the graphs of the real and 
predicted values for both Basic CNN and proposed ACNN 
model shows the better RMSE scores for the proposed 
model. 

A comparison of overall RMSE scores for basic CNN and 
ACNN models was done with a classical ARIMA model. It 

4.2 Aggregated Cnn Model 
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was found out that the proposed ACNN model gave the 
most promising results as shown in the Table I, which 
shows the overall RMSE scores on the testing data for 
various models. ACNN is thus able to follow the trend of 
the data showing capabilities of generalization. In Table II, a 
comparison of the various parameters used in Basic CNN 
and ACNN are shown. ACNN uses sub-models and 
concatenates them to get the desired results whereas Basic 
CNN uses univariate data. Thus the ACNN with a different 
architecture from Basic CNN is able to perform much better 
and gives very promising results for week-ahead forecast. 

 

 

 

 

 
 

Fig. 12.  Line Plots of RMSE scores for ACNN test models for few 
samples   for a week 
 

 

TABLE I 
OVERALL RMSE SCORES COMPARISON OF DIFFERENT MODELS 

 
RMSE SCORES ARIMA BASIC CNN ACNN 

SUN 411.7 434.8 436.5 
MON 443.4 394.5 403.4 
TUE 371.5 365.7 341.8 

WED 405.3 397.2 381.5 

THURS 417.2 401.1 380.5 
FRI 309.1 312.8 297.5 
SAT 462.5 475.4 434.0 

OVERALL 405.655 400.145 384.939 

 
TABLE II 

PARAMETERS USED  
 

PARAMETERS BASIC CNN 
ACNN 

(FOR A SUB-
MODEL) 

NO. OF CONVOLUTIONAL 
LAYERS 1 2 

NO. OF FILTERS  16 16 
MAX. POOL SIZE 2 2 

BATCH SIZE 4 8 

NO. OF NEURONS IN THE 
FULLY CONNECTED LAYER 10 200 

This paper proposes an ACNN model to predict the 
household energy consumption. The model uses the 
multivariate data input and forms sub-models which are 
concatenated to forecast the week-ahead data. The dataset 
used, is of a single household which is split into training 
weekly data and testing weekly data. Previous week data is 
used to forecast next week’s data. RMSE scores are used to 
measure the accuracy and it is found out that the ACNN 
proposed model is best suited to forecast the household 
energy consumption. To validate the model’s effectiveness, 
it is compared with a basic CNN model and an ARIMA 
model. 

Thus it is evident that, deep learning with deeper 
networks is a powerful tool to forecast when the data 
volume is quite large. In future, more efficient and different 
deeper networks with regularization approaches on different 
datasets may be developed for better forecast accuracy. 
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