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Abstract: - Stochastic Moore automata have in opposition to stochastic Mealy automata the same capabilities
as general stochastic automata, but have the advantage that they are easier to access than their pure stochastic
counterparts. Cascade decomposition of automata leads to a loop-free partitioning and in this way contributes
to the analysis of automata. This paper shows that stochastic Moore automata can be decomposed into cascade
products of stochastic Moore automata under mild conditions.
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1 Introduction
The theory of discrete stochastic systems has been
initiated by the work of Shannon [1] and von Neu-
mann [2]. While Shannon has considered memory-
less communication channels and their generalization
by introducing states, von Neumann has studied the
synthesis of reliable systems from unreliable compo-
nents. The fundamental work of Rabin and Scott [3]
about deterministic finite-state automata has led to
two generalizations. First, the generalization of tran-
sition functions to conditional distributions studied by
Carlyle [4] and Starke [5]. This in turn yields a gen-
eralization of discrete-time Markov chains in which
the chains are governed by more than one transition
probability matrix [6]. Second, the generalization of
regular sets by introducing stochastic automata as de-
scribed by Rabin [7].

By the work of Turakainen [8], stochastic accep-
tors can be equivalently viewed as generalized au-
tomata in which the ”probability” is neglected. This
leads to a more accessible approach of stochastic ac-
ceptors [9, 10]. On the other hand, the class of
nondeterministic automata [11] can be generalized
to monoidal automata, where the input alphabet cor-
responds to an arbitrary monoid instead of a free
monoid [12, 13, 14]. This leads to socalled monoidal
automata whose corresponding class of monoidal lan-
guages is closed under a smaller set of operations
when compared with the class of regular languages.

The famous result of Krohn-Rhodes states that de-
terministic finite-state automata can be decomposed
into elementary components which correspond to per-
mutation and reset automata connected by cascade

products [13, 15, 16]. In the following, the cas-
cade product defined for deterministic finite-state au-
tomata will be adapted to stochastic automata.

Mealy and Moore automata form a class of de-
terministic finite-state input-output automata which
are of theoretical interest but also utilized in hard-
ware design [17, 18, 19]. There are stochastic variants
of Mealy and Moore automata, where its known that
the class of stochastic Mealy automata forms a sub-
class of the stochastic Moore automata and the class
of stochastic Moore automata already corresponds to
the full class of stochastic automata [9, 10, 20]. Due
to their structure, stochastic Moore automata are eas-
ier accessible than general stochastic automata.

In this paper, stochastic automata are considered in
section 2 and stochastic variants of Mealy and Moore
automata in section 3. In the main section 4, a general
notion of cascade product of stochastic automata fol-
lowing the lines of deterministic finite-state automata
in the Krohn-Rhodes theory is introduced. It will be
shown that the cascade product of a stochastic Moore
automaton yields a stochastic Moore automaton and
each stochastic Moore automaton has a cascade de-
composition into stochastic Moore automata under
mild conditions.

2 Stochastic Automata
Stochastic automata are abstract finite-state machines
with input and output behavior [9, 10, 12, 21]. A
stochastic automaton can be viewed as an extension of
a nondeterministic finite-state automaton with proba-
bilistic transitions.

Formally, a stochastic automaton (SA) is a
quadruple A = (S,Σ,Ω, p), where S is a nonempty
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finite set of states, Σ is an alphabet of input symbols,
Ω is an alphabet of output symbols, and for each pair
(a, s) ∈ Σ× S, p(·, · | a, s) is a conditional probabil-
ity distribution on Ω× S.

Given a conditional probability distribution p(·, · |
a, s) on Ω × S, we define a conditional probability
distribution p̂(·, · | x, s) with x ∈ Σ∗ and s ∈ S on
Ω∗ × S recursively as follows.

• For all s, s′ ∈ S,

p̂(ϵ, s′ | ϵ, s) =
{

1 if s = s′,
0 if s ̸= s′,

(1)

where ϵ denotes both the empty word in Σ∗ and
Ω∗.

• For all s, s′ ∈ S, x ∈ Σ∗, and y ∈ Ω∗ with
|x| ̸= |y|,

p̂(y, s′ | x, s) = 0. (2)

• For all s, s′ ∈ S, a ∈ Σ, x ∈ Σ∗, b ∈ Ω, and
y ∈ Ω∗,

p̂(yb, s′ | xa, s) =∑
t∈S

p̂(y, t | x, s) · p(b, s′ | a, t). (3)

Then for each pair (x, s) ∈ Σ∗ × S, p̂(·, · | x, s) is a
conditional probability distribution on Ω∗ × S.

Note that the measures p and p̂ coincide on the set
Ω×S×Σ×S if we put x = y = ϵ in (3). Therefore,
we will write p instead of p̂.

As a generalization of (3), for all x, x′ ∈ Σ∗,
y, y′ ∈ Ω∗, and s, s′ ∈ S with |x| = |y|,

p(yy′,s′ | xx′, s) =∑
t∈S

p(y, t | x, s) · p(y′, s′ | x′, t). (4)

A stochastic automaton works serially and syn-
chronously. It reads an input word symbol by sym-
bol and after reading an input symbol it emits an out-
put symbol and transits into another state. More pre-
cisely, if the automaton starts in state s and reads the
word x, then with probability p̂(y, s′ | x, s) it will end
in state s′ emitting the word y by taking all interme-
diate states into account.

The behavior of a stochastic automaton can be de-
scribed by probability matrices. To this end, letA be a
stochastic automaton with state set S = {s1, . . . , sn}.
For each pair of input and output symbols a ∈ Σ
and b ∈ Ω, put pij(b | a) = p(b, sj | a, si) for all
1 ≤ i, j ≤ n and define the real-valued n× n matrix

P (b | a) = (pij(b | a))1≤i,j≤n. (5)

Note that the matrix P (b | a) is substochastic, i.e., it
is a square matrix with nonnegative entries and each
row adds up to at most 1. The elements of P (b | a)
provide the transition probabilities between the states
if the symbol a is read and the symbol b is emitted.
This definition can be extended to strings of input and
output symbols. For this, note that by (1) we have

P (ϵ | ϵ) = In, (6)

where In is the n×n unit matrix. Moreover, if x ∈ Σ∗

and y ∈ Ω∗ with |x| ̸= |y|, then by (2) we have

P (x | y) = On, (7)

where On is the n × n zero matrix. Furthermore, if
a ∈ Σ, x ∈ Σ∗, b ∈ Ω, and y ∈ Ω∗, then by (3) we
have

P (yb | xa) = P (y | x) · P (b | a). (8)

More generally, by (4) and the associativity of matrix
multiplication, for all x, x′ ∈ Σ∗ and y, y′ ∈ Ω∗ with
|x| = |y|,

P (yy′ | xx′) = P (y | x) · P (y′ | x′). (9)

Summing up, each stochastic automaton A is
uniquely characterized by the collection of sub-
stochastic matrices {P (b | a) | a ∈ Σ, b ∈ Ω}.
For each input symbol a ∈ Σ, the matrix P (a) =∑

b∈Ω P (b | a) is stochastic. More generally, for each
input word x ∈ Σ∗, the matrix P (x) =

∑
y∈Ω∗ P (y |

x) is stochastic.

Example 1. Consider the stochastic automaton A =
({s1, s2}, {a}, {b}, p) with conditional probabilities

p(b, s1 | a, s1) =
2

3
, p(b, s2 | a, s1) =

1

3
,

and p(b, s2 | a, s2) = 1.

The automaton is given by the state diagram in Fig. 1.
The corresponding substochastic matrix is

P (a) = P (b | a) =
(

2
3

1
3

0 1

)
.

Thus for each integer k ≥ 1,

P (ak) =

(
2k

3k
3k−2k

3k

0 1

)
.

♢
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Figure 1: State diagram of A.

3 Stochastic Mealy and Moore
Automata

Mealy and Moore automata are prominent classes of
automata [17, 18, 19]. In a Mealy automaton the out-
put is determined both by the current state and the
current input, while in a Moore automaton the out-
put is defined by the next state. In the following,
stochastic versions of these automata types are pre-
sented [9, 10, 20].

A stochastic automaton A = (S,Σ,Ω, p) is called
stochastic Mealy automaton if there are conditional
probabilities p1(· | a, s) and p2(· | a, s) over Ω and
S, respectively, such that for all a ∈ Σ, b ∈ Ω and
s, s′ ∈ S,

p(b, s′ | a, s) = p1(b | a, s) · p2(s′ | a, s). (10)

Stochastic independence of state transition and out-
put emission makes stochastic Mealy automata a re-
stricted class of stochastic automata.

A stochastic automaton A is state-determined if
there is a mapping δ : Σ × S → S such that for all
a ∈ Σ and s ∈ S,∑

b∈Ω
p(b, δ(a, s) | a, s) = 1. (11)

Each state-determined stochastic automaton A is a
stochastic Mealy automaton.

A stochastic automaton A is output-determined if
there is a mapping λ : Σ × S → Ω such that for all
a ∈ Σ and s ∈ S,∑

s′∈S
p(λ(a, s), s′ | a, s) = 1. (12)

Each output-determined stochastic automaton A is a
stochastic Mealy automaton.

Example 2. Take the stochastic Mealy automaton

A = ({s1, s2}, {a}, {b, c}, p)

with probabilities

p1(b | a, ·) p1(c | a, ·)
s1

1
2

1
2

s2
1
4

3
4

p2(s1 | a, ·) p2(s2 | a, ·)
s1

1
3

2
3

s2
1
5

4
5

Then

P (b | a) =
(

1
6

1
3

1
20

1
5

)
and P (c | a) =

(
1
6

1
3

3
20

3
5

)
and therefore

P (a) =

(
1
3

2
3

1
5

4
5

)
.

♢

A stochastic automaton A = (S,Σ,Ω, p) is called
stochastic Moore automaton if there are conditional
probabilities µ(· | s) and p′(· | a, s) over Ω and S,
respectively, such that for all a ∈ Σ, b ∈ Ω and s, s′ ∈
S,

p(b, s′ | a, s) = µ(b | s′) · p′(s′ | a, s). (13)

In opposition to stochasticMealy automata, the output
emission inMoore automata depends only on the state
transition. The following result shows that stochas-
tic Moore automata already provide the most general
type of stochastic automata [9, 10].

Theorem 1. For each stochastic automaton A =
(SA,Σ,Ω, pA) there is a stochastic Moore automa-
ton B = (SB,Σ,Ω, pB) such that A and B are S-
equivalent.

Proof. First, put SB = Ω× SA and

pB(b2,(b1, s1) | a, (b0, s0)) ={
pA(b1, s1 | a, s0) if b1 = b2,
0 otherwise

for all a ∈ Σ, b2 ∈ Ω, and (b1, s1), (b0, s0) ∈ SB .
Moreover, for all a ∈ Σ and (b1, s1), (b0, s0) ∈

SB put

p′((b1, s1) | a, (b0, s0)) = pA(b1, s1 | a, s0)

and

µ(b2 | (b1, s1)) =
{

1 if b1 = b2,
0 otherwise.

Then we have for all a ∈ Σ, b2 ∈ Ω, and
(b1, s1), (b0, s0) ∈ SB ,

pB(b2,(b1, s1) | a, (b0, s0)) =
µ(b2 | (b1, s1)) · p′((b1, s1) | a, (b0, s0)).

It is clear that B is a stochastic Moore automaton. In
particular, µ is a mapping, i.e., the successor state de-
termines uniquely the output symbol.
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Second, define the mapping ϕ : SB → SA by
ϕ((b, s)) = s for all (b, s) ∈ SB . Then

pB(b2, ϕ
−1ϕ(b1, s1) | a, (b0, s0))

=
∑
b∈Ω

pB(b2, (b, s1) | a, (b0, s0))

= pB(b2, (b2, s1) | a, (b0, s0))
= pA(b2, s1 | a, s0)
= pA(b2, ϕ(b1, s1) | a, ϕ(b0, s0)),

where ϕ−1ϕ(b1, s1) = {(b, s) ∈ SB | ϕ(b, s) =
ϕ(b1, s1)} = {(b, s1) ∈ SB | b ∈ Ω}. It follows that
the mapping ϕ is an S-epimorphism. In this way, the
stochastic automata A and B are S-equivalent.

4 Cascade Products
The cascade product of deterministic finite-state au-
tomata plays an important role in Krohn-Rhodes the-
ory [22, 15, 13, 16]. In this section, a generalization
of the cascade product for stochastic automata will be
introduced. Note that a related notion of loop-free de-
composition of generalized finite-state semiautomata
has been studied [23, 24].

The cascade product of two stochastic automata
A = (SA,Σ,ΩA, pA) and B = (SB,ΣB,ΩB, pB)
with ΣB = Σ× SA is the stochastic automaton C =
(S,Σ,Ω, p), writtenC = A⋉B, whereS = SA×SB ,
Ω = ΩA × ΩB , and

p((b1, b2), (s
′
1, s

′
2) | a, (s1, s2)) =

pA(b1, s
′
1 | a, s1) · pB(b2, s′2 | (a, s1), s2) (14)

for all a ∈ Σ, (s1, s2), (s′1, s′2) ∈ S and (b1, b2) ∈ Ω.
Note that p(·, · | a, (s1, s2)) is a conditional

probability distribution, since for all a ∈ Σ,
(s1, s2), (s

′
1, s

′
2) ∈ S and (b1, b2) ∈ Ω,∑

b1,b2

∑
s′1,s

′
2

p((b1, b2), (s
′
1, s

′
2) | a, (s1, s2))

=
∑
b1,s′1

pA(b1, s
′
1 | a, s1)

∑
b2,s′2

pB(b2, s
′
2 | (a, s1), s2)

= 1.

The definition of cascade product can be generalized
by introducing a mapping ω : Σ × SA → ΣB such
that

p((b1, b2), (s
′
1, s

′
2) | a, (s1, s2)) =

pA(b1, s
′
1 | a, s1) · pB(b2, s′2 | ω(a, s1), s2) (15)

for all a ∈ Σ, (s1, s2), (s′1, s′2) ∈ S and (b1, b2) ∈ Ω.
Then the cascade product is written as C = A⋉ω B.

Proposition 2. Given stochastic Moore automata
A = (SA,Σ,ΩA, p

′
A, µA) and B = (SB,Σ ×

SA,ΩB, p
′
B, µB). The cascade product C = A ⋉ B

is a stochastic Moore automaton

C = (SA × SB,Σ,ΩA × ΩB, p
′
C , µC)

with transition probabilities

pC((b1, b2), (s
′
1, s

′
2) | a, (s1, s2)) = (16)

µC((b1, b2) | (s′1, s′2)) · p′C((s′1, s′2) | a, (s1, s2)),
where

µC((b1, b2) | (s′1, s′2)) = µA(b1 | s′1) · µB(b2 | s′2) (17)
and

p′C((s
′
1, s

′
2) | a, (s1, s2)) =

p′A(s
′
1 | a, s1) · p′B(s′2 | (a, s1), s2) (18)

for all a ∈ Σ and (s1, s2), (s
′
1, s

′
2) ∈ SC , and

(b1, b2) ∈ ΩC .
Proof. The cascade product C = A⋉B has the tran-
sition probabilities

pC((b1, b2), (s
′
1, s

′
2) | a, (s1, s2)) =

pA(b1, s
′
1 | a, s1) · pB(b2, s′2 | (a, s1), s2),

where a ∈ Σ, (s1, s2), (s′1, s′2) ∈ SC , and (b1, b2) ∈
ΩC . Since A and B are stochastic Moore automata,

pA(b1, s
′
1 | a, s1) = µA(b1 | s′1) · p′A(s′1 | a, s1)

and

pB(b2, s
′
2 | (a, s1), s2) =

µB(b2 | s′2) · p′B(s′2 | (a, s1), s2).
In this way, eqns. (16)-(18) are established.

Moreover, for each pair (s1, s2) ∈ SC , µC(· |
(s1, s2)) is a conditional probability distribution,
since for all s1, s2 ∈ S,∑

b1,b2

µC((b1, b2) | (s1, s2))

=
∑
b1

µA(b1 | s1) ·
∑
b2

µB(b2 | s2)

= 1.

Furthermore, for all (s1, s2) ∈ SC and a ∈ Σ,
p′C(· | a, (s1, s2)) is a conditional probability distri-
bution, since for all a ∈ Σ and s1, s2 ∈ S,∑
s′1,s

′
2

p′C((s
′
1, s

′
2) | a, (s1, s2))

=
∑
s′1

p′A(s
′
1 | a, s1) ·

∑
s′2

p′B(s
′
2 | (a, s1), s2)

= 1.
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Finally, pC(·, · | a, (s1, s2)) is a conditional proba-
bility distribution, since for all a ∈ Σ and s1, s2 ∈ S,∑
b1,b2

∑
s′1,s

′
2

pC((b1, b2), (s
′
1, s

′
2) | a, (s1, s2))

=
∑
b2,s′2

∑
b1,s′1

pA(b1, s
′
1 | a, s1)pB(b2, s′2 | (a, s1), s2)

= 1.

Example 3. Consider the stochastic Moore automa-
ton

A = ({s1, s2}, {a}, {b, c}, p′A, µA)

with probabilities specified by

µA(b | ·) µA(c | ·) p′A(s1 | a, ·) p′A(s2 | a, ·)
s1 1 0 1

3
2
3

s2 0 1 1
5

4
5

and the stochastic Moore automaton

B = ({t1, t2}, {(a, s1), (a, s2)}, {b, c}, p′B, µB)

with probabilities defined by

µB(b | ·) µB(c | ·)
t1

1
2

1
2

t2
1
3

2
3

and

p′B(t1 | (a, s1), ·) p′B(t2 | (a, s1), ·)
t1

1
2

1
2

t2
1
3

2
3

p′B(t1 | (a, s2), ·) p′B(t2 | (a, s2), ·)
t1

1
2

1
2

t2 0 1

The cascade product C = A ⋉ B is the stochastic
Moore automaton

C = ({s1, s2} × {t1, t2}, {a}, {b, c}2, p′C , µC)

with probabilities given by

µC((b, b) | ·) µC((b, c) | ·)
(s1, t1)

1
2

1
2

(s1, t2)
1
3

2
3

(s2, t1) 0 0
(s2, t2) 0 0

µC((c, b) | ·) µC((c, c) | ·)
(s1, t1) 0 0
(s1, t2) 0 0
(s2, t1)

1
2

1
2

(s2, t2)
1
3

2
3

and

p′C((s1, t1) | a, ·) p′C((s1, t2) | a, ·)
(s1, t1)

1
6

1
6

(s1, t2)
1
9

2
9

(s2, t1)
1
10

1
10

(s2, t2) 0 1
5

p′C((s2, t1) | a, ·) p′C((s2, t2) | a, ·)
(s1, t1)

1
3

1
3

(s1, t2)
2
9

4
9

(s2, t1)
2
5

2
5

(s2, t2) 0 4
5

♢

A special case of the cascade product is the di-
rect composition of two stochastic automata A =
(SA,ΣA,ΩA, pA) and B = (SB,ΣB,ΩB, pB),
which is given by the cascade product C =
(S,Σ,Ω, p), where S = SA × SB , Σ = ΣA × ΣB ,
Ω = ΩA × ΩB , and the conditional probabilities

p((b1, b2), (s
′
1, s

′
2) | a, (s1, s2))

= pA(b1, s
′
1 | a, s1) · pB(b2, s′2 | a, s2) (19)

for all a ∈ Σ, (s1, s2), (s′1, s′2) ∈ S and (b1, b2) ∈ Ω.
A partition R of a state set S is a collection

R = {Ri | i ∈ T} of non-empty subsets Ri of
S such that each element of S belongs to exactly
one subset. The elements of a partition are called
blocks. For instance, partitions of the set {1, . . . , 5}
are {{1, 2}, {3, 4}, {5}} and {{1, 2, 3}, {4}, {5}}.

The set of partitions of a non-empty set S can be
partially ordered such that for any partitions R1, R2

of S, R1 ≤ R2 if each block of R2 is the union
of one or more blocks of R1. The smallest parti-
tion is 0 = {{s} | s ∈ S} and the largest par-
tition is 1 = {S}. Thus for each partition R of
S, we have 0 ≤ R ≤ 1. More specifically, the
partitions of a non-empty set S form a lattice, i.e.,
any two partitions have a least upper bound and a
greatest lower bound denoted by inf and sup, respec-
tively. For instance, 0 ≤ {{1, 2}, {3}, {4}, {5}} ≤
{{1, 2}, {3, 4}, {5}} ≤ {{1, 2, 5}, {3, 4}} ≤ 1.

In view of a stochastic Moore automaton A, a
partition Q of the state set SA has the substitution
property for A if for each input a ∈ Σ, all blocks
Qi, Qj ∈ Q, and states s1, s2 ∈ Qi, marginal proba-
bilities fulfill∑

s′∈Qj

p′A(s
′ | a, s1) =

∑
s′∈Qj

p′A(s
′ | a, s2). (20)

Two partitionsQ andR of the state set SA aremu-
tually independent if for all a ∈ Σ, s ∈ SA and each
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pair of blocks Qi and Rj ,∑
s′∈Qi∩Rj

p′A(s
′ | a, s)

=
∑
s′∈Qi

p′A(s
′ | a, s) ·

∑
s′∈Rj

p′A(s
′ | a, s). (21)

Theorem 3. A stochastic Moore automaton C =
(S,Σ,Ω, p, µ) admits a decomposition into a cascade
product C = A⋉B of stochastic Moore automata A
and B if there are partitions Q and R of the state set
S such that Q has the substitution property for C, Q
and R are mutually independent, Q and R are output
compatible (see proof), and inf(Q,R) = 0.

Proof. Let Q = {Q1, . . . , Qm} and R =
{R1, . . . , Rn}. In view of the condition inf(Q,R) =
0, the cartesian productQ×R = {(Qi, Rj) | 1 ≤ i ≤
m, 1 ≤ j ≤ n} corresponds one-to-one with the state
set S, where the pair (Qj , Ri) with Qi ∩ Rj = {sij}
is associated with the state sij . Thus SC = {sij | 1 ≤
i ≤ m, 1 ≤ j ≤ n}.

Define the stochastic Moore automaton A =
(Q,Σ,ΩQ, p, µ), where

p′A(Qj | a,Qi) =
∑
s′∈Qj

p′C(s
′ | a, s), s ∈ Qi. (22)

By the substitution property, the conditional distribu-
tion p′A is well-defined.

Define the stochastic Moore automaton B =
(R,Σ×Q,ΩR, p, µ), where

p′B(Rl | (a,Qi), Rk) =
∑
s′∈Rl

p′C(s
′ | a, s), (23)

Qi ∩Rk = {s}.

Then by the mutual independence of Q and R,

p′C((Qj , Rl) | a, (Qi, Rk))

= p′C(sjl | a, sik) (24)

=
∑
s′∈Qj

p′C(s
′ | a, sik) ·

∑
s′∈Rl

p′C(s
′ | a, sik)

= p′A(Qj | a,Qi) · p′B(Rl | (a,Qi), Rk).

Furthermore, the partitions Q and R of the state
set S are output compatible, i.e., the output set of C
can be written as Ω = ΩQ × ΩR such that for each
b1 ∈ ΩQ, b2 ∈ ΩR and Qi ∈ Q, Rj ∈ R,

µC((b1, b2) | (Qi, Rj)) =

µA(b1 | Qi) · µB(b2 | Rj), (25)

where µA and µB are conditional probabilities on Q
and R, respectively. Hence, C is the cascade product
of A and B.

Example 4. Consider the stochastic Moore automa-
ton

C = ({s1, . . . , s4},{a}, {(b1, c1),
(b1, c2), (b2, c1), (b2, c2)}, p′, µ)

with probabilities given by

µC((b1, c1) | ·) µC((b1, c2) | ·)
s1

1
4

1
4

s2
1
8

3
8

s3
1
6

1
6

s4
1
12

1
4

µC((b2, c1) | ·) µC((b2, c2) | ·)
s1

1
4

1
4

s2
1
8

3
8

s3
1
3

1
3

s4
1
6

1
2

and
p′C(s1 | a, ·) p′C(s2 | a, ·)

s1
1
8

3
8

s2
1
8

3
8

s3
1
5

1
5

s4
1
10

3
10

p′C(s3 | a, ·) p′C(s4 | a, ·)
s1

1
8

3
8

s2
1
8

3
8

s3
1
5

2
5

s4
2
5

1
5

The partitions

Q = {Q1 = {s1, s2}, Q2 = {s3, s4}}
and R = {R1 = {s1, s3}, R2 = {s2, s4}}

satisfy inf(Q,R) = 0.
Define the stochastic Moore automaton

A = ({Q1, Q2}, {a}, {b1, b2)}, p′, µ)

with probabilities given by

µA(b1 | ·) µA(b2 | ·)
Q1

1
2

1
2

Q2
1
3

2
3

and

p′A(Q1 | a, ·) p′A(Q2 | a, ·)
Q1

1
2

1
2

Q2
1
4

3
4

Moreover, define the stochastic Moore automaton

B = ({R1, R2}, {(a,Q1), (a,Q2)}, {c1, c2)}, p′, µ)

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.17

Merve Nur Cakir, Mehwish Saleemi, 
Karl-Heinz Zimmermann

E-ISSN: 2224-2872 173 Volume 20, 2021



with probabilities given by

µB(c1 | ·) µB(c2 | ·)
R1

1
2

1
2

R2
1
4

3
4

and
p′B(R1 | (a,Q1), ·) p′B(R1 | (a,Q2), ·)

R1
1
6

1
6

R2
1
6

1
6

p′B(R2 | (a,Q1), ·) p′B(R2 | (a,Q2), ·)
R1

1
3

1
3

R2
1
3

1
3

♢

5 Conclusion
The classes of stochastic Moore automata and
stochastic automata have the same functionality, but
stochastic Moore automata have the advantage that
they are easier to access than their pure stochastic
counterparts. Cascade decomposition of automata
plays an important role for their analysis. This paper
has shown that stochastic Moore automata can be de-
composed into a cascade product of stochastic Moore
automata under mild conditions. Iterated cascade de-
composition might lead to a loop-free partitioning of
stochasticMoore automata and in this waymight con-
tribute to the exploration of complex systems.
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