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Abstract: - The recent implementations of Industry 4.0 and allied mathematical applications such as machine 
learning and big data analytics are conditioned by mathematizing the basic features of the observed system. For 
example, the key phenomena in a number of man-made processes are controlled by an orifice, an opening 
through which is passing a medium of interest. When the observed process is recursive, the related records 
indicate the possibility of extracting from the accumulating observations knowledge useful for the system 
optimisation. Many of the process variables such as chemical composition, velocities, temperatures, and forces, 
are recorded in a convenient digital format. This, however, is not always the case with the orifice geometry. 
Mathematical transforms presented hereby demonstrate how a broad variety of the orifice geometries can be 
defined in a generic mathematical format that allows for analysing them within the same observation space.   
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1 Introduction 
The efforts to optimize the man-made systems, 
especially the recursive industrial processes such as 
agricultural, transportation and metalworking 
operations, contribute significantly to advancements 
in information sciences. A typical example is Big 
Data Analytics that is widely recognized as a 
paradigm useful for further developments in 
information theory. [1,2] 

While the volumes of records apparently present 
no issues, when it comes to knowledge extraction, 
the format of records can significantly limit the 
range of the observation (sample) space. Digitized 
observations, the most convenient sets for statistical 
analyses, can fall within incompatible groups 
despite the need for analyzing them within the same 
observation space. There is the risk of wasting all 
the value and wealth of information contained on 
these databases unless there are used the adequate 
techniques to ensure data completeness. [3-5] 

For example, the effect of orifice geometry is of 
much interest in numerous industrial systems. 
However, the presently published analyses are 
limited to examining the cases of simple geometries 
such as square, rectangular, round, and oval. The 
present metrics makes it impossible to take into 
account the broader diversity of orifice geometries.  

The studies including such simple geometries are 
carried out to analyse the effect of orifice geometry 
on the pressure profile of a passing fluid [6,7]. The 
published findings fell short of addressing the 

possible effects of the refined modifications in the 
contour elements indicated in Fig. 1. 

 
 
 

Fig. 1: Examples of possible modifications of the 
orifice geometry, not explored in [6, 7] 

 
The authors in [8] explored the effect of the 

orifice geometry on the acoustic impedance. 
Exploring the influence of each of the different 
geometries presented in Fig. 2 is affected by the 
format of how these geometries were defined.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: The variety of orifices used to examine the 
effect of geometry on the acoustic impedance [8] 
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However, the authors in [8] could not correlate 
the investigated effect to the geometry other than to 
point which one out of 5 options is most or least 
influential. If the input data were prepared by 
introducing a common generic vector, the gradual 
modifications between these geometries could be 
expressed by means of changing the values of such 
generic vectors. The authors do not know whether 
the optimum impedance is in fact some halfway 
between the two or three investigated options. 

The analogous drawback is observed in the 
propulsion system analyses carried out to investigate 
the effect of the plainest nozzle geometries (circular, 
elliptical, square, and triangular) on the patterns of 
the standing waves. [9]   

The examples in Figures 3 to 6 illustrate even 
more diverse geometries that can be found in the 
tool assemblies used to manufacture long solids of a 
wide range of cross-sectional shapes by applying 
plastic deformation by means of drawing and 
extrusion [10, 11, 12]. The products shown in Fig. 3 
are manufactured by squeezing a sold material 
through an orifice thus forcing the plastic 
deformation and changing the initial cross-section 
(usually rectangular or round) into the newly formed 
cross-section of the product. The orifice contour is 
identical to the newly produced cross-section 
(except for a minor effect of the elastic recovery). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Selected examples of cross-sections 
manufactured by extrusion or drawing 

 
 
 
 
 
 
 
 
 
 

Fig. 4: More complex extrusion geometries [13] 

The variety of geometries that are used in rolling 
technology is even wider due to the nature of the 
forming process: the final product is obtained after 
shaping the product cross-section in a number of 
successive passes, Figures 5 to 8. 

 
 
 
 
 
 
 

Fig. 5: Variety of geometries in rolling technology 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Variety of the orifices in rolling 

technology 
 
 
 
 
 
 

 
 
 
 

Fig. 7: Examples of double symmetrical orifices 
used in rolling passes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8: Example of asymmetrical orifice used in 

rolling process 
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In the case of rolling the orifice is not embedded 
in a static tool; the orifice contour is delimited by 
the surfaces of two, three, or four solids of 
revolution – the rollers (in rolling practice the term 
‘rolls’ is in frequent use). The grooves embedded in 
the roll surface create the orifice contour. The rolls 
are rotating around axes that are kept in a specific 
position thus forming the required orifice. [14] 

In this manuscript, an algorithm for transforming 
the otherwise ‘incompatible’ 2D contours, into 
generic mathematical form is described. The 
proposed mathematical approach is applicable for 
data structuring and preparation for each of the 
different orifice applications. The resulting generic 
vectors allow for applications of advanced methods 
such as machine learning and data mining within 
each of the separated technological domains. 

Developing this transform is not motivated by 
searching for correlations between the orifices used 
in plastic forming and those used in the fluid 
dispersion. The motive is to present a practical 
mathematical transform useful for discovering new 
knowledge that is specific within the boundaries of 
each of these different technologies. 
 

 

2 Problem Formulation 
From the technological point of view, the 

problem is how to create more comprehensive 
knowledge about the effect of the orifice (tool) 
geometry on the key performance indicators, as well 
as the knowledge about the interactions between the 
geometry and other technological data (such as 
temperature, velocity, chemical composition, etc.). 
These orifices enable the ultimate function of the 
surrounding complex system. Designers can 
increase the complexity and costs of the jet engine 
propulsion system controls and frames, 
nevertheless, it is the reliability of the exhaust 
nozzle that warrants the aircraft trust and the control 
valve function. Technologists in a hot rolling mill 
can introduce the most expensive high-temperature-
resistant high-speed steels as the forming tools, yet, 
if the grooves that are exposed to the rolling-sliding 
contact with the processed materials wear too fast 
due to poor design of the orifice geometry, the 
product will fall out of the tolerance limits 

From the Data Science points of view, the 
existing metrics used to define the orifice geometry 
are not well adjusted for analyses and optimisation 
of the interactions with other variables of processes 
utilising orifices. In particular, the precise data 
about the geometric intricacies are not prepared, 
structured, and digitized in a format that embraces 
sufficiently broad variety. Therefore, the advanced 

mathematical methods cannot be applied to discover 
the important patterns and correlations and cannot 
use that knowledge to further optimise the orifice 
geometry. 

From the mathematical point of view, the 
problem can be presented as follows: there is a need 
to transform the curve geometry so it can be defined 
as a generic vector. The values of the vector 
components must be real numbers. The range and 
the order of the magnitude of these numbers must 
allow for numerical and statistical analyses of the 
sufficiently broad variety of curves of the practical 
interest. This variety presents a set of closed curves 
defined in 2D space and satisfying the following 
limitations: 

- the curve can be broken into a sub-set of 
osculating arcs, 

- the curve does not compromise knots, 
- the curve length is a real number. 
Also, the procedure for a reverse one-to-one 

translation from the orifice-contour-vector to the 
initial curve must be defined. 

Depending on the practical application, the 
vector dimension is to be minimized while 
embracing the broadest possible variety of 
geometries of significance. Nonetheless, this final 
limitation is released dramatically by the 
contemporary development in the Big Data 
acquisition and processing systems that enable 
analysing within real-time extremely large data sets. 

 
 

3 Solution 
 
3.1 Prelude 
The solution requires the positioning of each curve 
in the same coordinate system. The positioning of 
the double symmetrical closed curves has a 
straightforward solution as long as one-to-one 
mapping of the x and y coordinates can be realized 
for each point. For the double symmetrical cases 
shown in Figures 1, 2 (except for the star-shaped 
orifice), 3 (except for the Z and T bars), 6, and 7, the 
contour centre of the gravity coincides with the 
coordinate origin (0; 0) and hence, it is sufficient to 
define the contour segment falling in the first 
quadrant only.  

The star-shaped orifice shown in Fig. 2 and the 
orifice shown in Fig. 4 do not satisfy the condition 
of one-to-one mapping in the y–x coordinate system.  
The contour centre coincides with the coordinate 
origin (0;0), nonetheless, the curve belonging to the 
first quadrant needs to be modified before finally 
transforming it into the generic vector A. 
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And, finally, in the case of the orifices with a 
single axis of symmetry, and for the asymmetrical 
orifices, a standardized method needs to be defined 
for positioning such curves in the coordinate system. 
The T and Z geometries shown in Fig. 3, and the 
shape in Fig. 8 belong to this category, along with a 
practically infinite variety of additional geometries. 

While the orifice cross-sections used in the 
processes of drawing and the extrusion are the 
closed curves, the orifices in rolling (so-called 
calibres) are formed with two, three or four separate 
curves. For the sake of simplicity, in this 
manuscript, only the case of two curves will be 
discussed. Examples of such orifices are illustrated 
in Figures 6, 7 and 8. It is apparent that the orifice 
curves are brought into a specific position and are 
separated by a certain narrow gap. The nature of the 
rolling pass is such that the major portion of the 
processed material cross-section will assume the 
shape following the ‘top’ and the ‘bottom’ curve. At 
the same time, the contour fragment of the small 
segment that fills in the gap portion is assuming the 
form governed by the plastic flow of the processed 
solid. With having this in mind, the imaginary 
closed orifice contour can be defined by the cross-
section contour of the rolled material.    

 
3.2 Double symmetrical case  simple shape 
This group of orifices includes the geometries that 
can be represented in the first quadrant by means of 
an analytic function that satisfies the condition of 
the one-to-one y–x mapping. 

It is required that varying the coefficients of the 
function y(x) results in a spectrum of curves of 
interest. The ordered tuples of the y(x) coefficients 
are the components of vector A thus representing 
the digitized format for the observed orifice contour. 

The curve fitting based on Chebyshev 
polynomials [15,16] provides a satisfactory method 
for digitizing such geometries, Eqn. (1) and (2): 

 

                      (1) 

             0                                 (2) 
 
The vector A is defined by the components an 

mapped from Eqn. (3): 
 

                                       (3) 
 
where:  
n = positive integer 

 = real number 
N = positive integer (the vector dimension).  
 
Additional transformation allows for further 

normalisation of the contour database. As long as 
the one-to-one mapping is preserved, the simple 
geometries can be translated in the y–α coordinate 
system, as defined by Equation (4) and Figure 9. 

 

                                                      (4) 

 
 
 
 
 

 
 
Fig. 9: Example of the y–x to y–α transform 
 
Some examples of the orifices suitable for the 

conversions using Eqn. (4) include rectangular, 
round, oval, the cases shown in Fig. 1, etc.  

The order of the Chebyshev polynomials should 
be selected to secure the sufficient precision of the 
contour derived backward from vector A. For 
example, the orifices presented in Fig. 7 were 
successfully analyzed by means of 12-dimensional 
vectors derived from the Chebyshev polynomials 
defined in Equations (3) and (4) with N = 11. [16] 

 
3.3 Double symmetrical complex shape 
This group consists of double-symmetric geometries 
(such as shown in Fig. 10) that cannot be simplified 
using Eqn. (4) and extends to the further complex 
double-symmetric shapes which cannot be 
represented in the first quadrant by means of 
analytic functions that satisfy the condition of the 
one-to-one y–x mapping (see Figures 4 and 11). 
  
 
 
 
 
 
 
 
 
 
 

Fig. 10: An example of the tool contour used in the 
intermediate passes for manufacturing structural 

sections by rolling 
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Fig. 11: Conversion of a double-symmetrical shape 
from y–x to x–L coordinates 

 
Figure 10 shows an orifice created by the 

grooves cut in two solids of revolution (so-called 
‘rollers’, or ‘rolls’ [14]) each. The rolls are 
positioned one above the other and their axes are 
mutually parallel. This configuration is defined by 
the cross-sections of the groove contours with the 
plane passing through both axes, as shown in Fig. 
10. It is obvious that a vector departing from the 
origin to point at the top-right corner (the fillet of a 
radius R10) would generate three points following 
the Eqn. (4). This violates the one-to-one mapping 
constraint, i.e. the orifice cannot be included in the 
group of interest. 

The positioning of the orifice contour in the 
coordinate system is resolved automatically at the 
intercept of the axes of symmetry. However, there is 
a need to introduce an additional translation step: 
conversion from the y–x coordinates into x–L 

coordinates, as demonstrated in Fig. 11. 
The contour length L values are measured 

backward, starting from the intercept of the contour 
with the x-axis (in the first quadrant of the y–x 
system). 

For the classes of the orifices where the reverse 
transform from x–L into y–x coordinates results in 
multiple solutions, such as shown in Fig. 12, 
additional components need to be introduced: the 
surface area of the orifice within the y–x coordinate 
system. 

 
  
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12: The stages of two-way translating the 
doble-symmetric contour between the y–x and x–L 

coordinate system 

The top-left graph in Fig 12 shows the contour of 
the double-symmetric orifice in the first quadrant of 
the y–x system. At the bottom is shown the same 
contour in the x–L coordinate system. The result of 
the reverse translation into the y–x coordinates is 
shown on the top right portion of Fig. 12 (the light-
blue curve is rejected since it failed the area test). 

The information about the orifice area allows for 
programming the criteria for eliminating incorrect 
options. Basically, the computer program calculates 
all possible contour paths and then selects the one 
that matches the correct area. 

The Chebyshev transforms are chosen because 
they provide the optimum solution for polynomial 
interpolations. The roots of Tn(x) (also called 
Chebyshev nodes) are used as matching points for 
generating the two-dimensional NURBS splines. 
NURBS (Non-Uniform Rational B-Splines), are 
mathematical representations of geometry that can 
accurately describe any shape from a simple 2D 
line, circle, arc, or other osculating curves. The 
Chebyshev polynomial-based method provides more 
appropriate curve fitting than the other curve fitting 
techniques such as the least squares method since it 
prevents extensive oscillations of the fitting function 
[15]. Moreover, the method provides the rule for 
selecting the sampling points—the Chebyshev 
nodes, as demonstrated in detail in [16]. 

The problem of capturing the curve regions with 
the delicate geometry is resolved by superimposing 
two, or even more polynomials on the same contour. 
The connect-the-dots process corresponds to the 
task of reconstructing the connectivity of a planar 
curve from a set of structured points sampled on that 
curve. 

A sparser sampling is beneficial for this leads to 
constructing the generic vectors with fewer 
components. Nonetheless, when is desirable to 
employ a method that covers a larger variety of 
curves, it is inevitable that some fragmenting of the 
contour becomes involved. 

Figure 13 illustrates a case when there is a need 
for capturing a local segment defined by the arc of 
radius R3. 

 
 

 
 
 
 
 
 
Fig. 13: The 1st quadrant presentation of the double-

symmetrical contour with intricate curvature 
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This class of geometries can be captured by 
defining the Chebyshev nodes in two stages, each 
employing the Chebyshev polynomials of the order 
20, as shown in Figures 14 and 15.  

 

 

 

 

 

Fig. 14: The first phase of curve fitting 

The first phase of the Chebyshev transform 
(polynomial order 20) that is shown in Fig. 14 
produces a sufficiently precise fit (the error is less 
than 0.03 mm) only beyond the green square. As 
discussed above, the robust procedure for defining 
the Chebyshev nodes provides a generic rule 
applicable for selecting the set of reference points 
on an arbitrary curve. The reverse calculations of 
these points using Eqn. (3) result in precisely 
reproducing the original points. However, the 
reverse reproduced curve, oscillates between the 
nodes thus resulting in some deviation from the 
original contour. The density of the Chebyshev 
nodes is decreasing with the distance from either of 
the contour ends (intercepts with the coordinates in 
the first quadrant). For a type of contour shown in 
Fig. 13, the scarce distribution of the nodes 
allocated to the segment at the radius R3 allows for 
increased oscillations between the nodes that are far 
apart. Consequently, the first phase is not sufficient, 
since the deviation between the reproduced and 
original curve is too large within the green frame in 
Fig. 14. 

Therefore, for capturing the curve segment 
within the green square, the 2nd stage is performed 
using again the Chebyshev polynomial of the order 
20, as shown in Figure 15. The coordinate origin is 
shifted to the point L which is, in this example, 
defined by the Chebyshev nodes 8 and 14. 

 

 

 

 

Fig. 15: The second phase of the curve fitting 

During the reverse translation, the segments of 
the curves obtained in Figures 14 and 15 are merged 
thus producing a fit with satisfactory precision. The 
corresponding vector has 42 components. 

The cutting points in Figure 14 that are used to 
produce contour in Figure 15 are nodes No. 8 and 
No. 14. The intercept of the line passing through 
point 8 and is parallel to the ordinate and the line 
passing through point 14 and is parallel to the 
abscissa defines the new coordinate origin (0,0).  

In the case that there is a need to cover even 
more complicated cases the order of the Chebyshev 
polynomials or the number of the superimposed 
segments needs to be increased and the cutting 
points re-defined. 

 
3.4 Asymmetric cases 
The solution requires the positioning of each curve 
in the same coordinate system by applying an 
appropriate standardized procedure. In other words, 
a uniform procedure is required for deciding where 
exactly is the position of the orifice contour in the 
coordinate system, including the orientation (angle) 
relative to the ordinates. 

In an overwhelming majority of the extrusion 
and drawing processes, the starting cross-section is 
double-symmetric, i.e. a rectangle or a circle. When 
the starting geometry is rectangular, the resulting 
asymmetric contour will position itself (translate 
and rotate) following the lowest resistance to the 
solid flow. The location in the coordinate system of 
such translated and rotated orifice contour is found 
by superimposing it over the axes of the entering 
rectangular section. When the entry contour is a 
circle, the rotation is omitted—the exiting contour is 
kept at the technologically defined position. 

  The rolling process is conducted through a 
series of subsequent passes, each being realized in a 
different orifice. The correlation between the 
orifices in the sequence of passes is of much interest 
in rolling technology. 

 The contour in Fig. 8 shows a technical drawing 
of an asymmetric orifice used in the rolling process. 
It is apparent that all dimensions are related to the 
so-called pitch line (P.L.), which is the line in the 
middle of and parallel to the roll axes. 

Although positioning the pitch line on the 
horizontal coordinate seems a straightforward 
solution, more information will be captured if the 
‘imaginary orifice’ from the antecedent pass is used 
as the frame for orienting the observed contour. 

By going backward along with the series of 
passes, a double-symmetrical contour is to be found 
at the initial stage of the process, as shown in the 
example in Figure 16. 
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Fig. 16: The three-pass sequence starting with the 
double symmetric contour to obtain the red-coloured 

contour identical to the example shown in Fig. 8 
 
The breakdown for each step of the sequence in 

Fig. 16 is presented in Figures 17 to 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17:  The double-symmetric entry contour 
(right) and the first calibre (left) 

 
The centre of gravity of the initial double-

symmetric contour is positioned in the coordinate 
origin. In the next step, a two-dimensional overlay is 
developed in which the entering contour is 
superimposed on the groove contours at the instant 
of the first contact, Fig. 18. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 18: The instant of the first contact (left), and the 
position of the 1st calibre after rotating the entry 

contour about the point P 
 

The locations of the initial contact points are 
based on mathematical idealisation of gripping the 
entering contour by two groove contours that are 
separated by vertical translation from the calibre 
neutral line. The entering «rigid» cross-section 
assumes the position that allows for minimising the 
distance between the grooves under the condition 
that no part of the involved contours is deformed. 

The entering contour is rotated clockwise about 
the point P, as shown on the left side in Fig 18. It is 
apparent that this step in positioning the contour is 
related to the natural tendency of the entering solid 
to assume the position of the minimum resistance to 
deformation—i.e., the rolled solid rotates about its 
longitudinal axis. 

On the right side of Fig. 18 the complete overlay 
is rotated back (counterclockwise). Finally, in Fig. 
19 the groove contours are brought back close to 
each other, still creating the gap at the orifice 
openings equal to the dimension shown in Fig. 17 
(one millimeter in this example).  

 
 
 
 
 
 
 
 
 
 
 

Fig. 19: The resulting position of the orifice (the 1st 

calibre specified in Fig. 17) in the coordinate system 
 
The coordinate system in which the orifice is 

positioned is defined relative to the contour of the 
entering solid. It is apparent in Fig. 19 that the 
orifice contour is divided by the coordinates into 
four portions. 

 The additional translation step, the conversion 
from the y–x to x–L coordinates, is applied to each 
of the four portions as discussed in Section 3.3 and 
demonstrated in Figures 11 and 12. 

The digitizing procedure based on Chebyshev 
polynomials is applied to each of the four portions 
separately. The resulting vector is composed of the 
ordered tuple of the Chebyshev coefficients defining 
all four curves. The Chebyshev transforms are based 
on deterministic mathematics, i.e. it is only the 
matter of the finding (by means of increasing) the 
order N of the Chebyshev polynomials that will 
satisfy the required precision. The fit at, and only at, 
the Chebyshev nodes is ideal, and the digital 
information about the nodes constitutes the vector 
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components. Once the group of the orifice 
geometries of interest is defined, finding the value 
of N in Eqn. (3) such that all intricacies along the 
contour are embraced is resolved by increasing the 
vector dimension.  

The orifice design in rolling technology (so-
called roll pass design) requires defining the 
position of the roll gaps as indicated by the blue-
coloured details in Fig. 19. These details need to be 
added to the main contour that was inferred from the 
analyses of the orifice vectors. However, the related 
construction technicalities such as the clearance 
between the rolls and the transition fillet between 
the roll collar and the groove contour at the roll gap, 
are matters of well-established roll design routines. 

The above procedure is applied to the remaining 
two passes illustrated in Fig. 16. In this manner, 
each of the three orifices is positioned in the same 
coordinate system. 
 

 

4 Conclusions 
 
For most of man-made systems it is impossible to 
raise the level of sustainability beyond a certain 
threshold (however unsatisfactory that threshold 
might be) unless collecting, structuring, digitizing, 
and analysing the actual observations. 

In this manuscript, a new method for digitizing 
and structuring the morphometric (i.e., pertaining to 
the geometry and the dimensions) data is presented 
to address an important aspect of the man-made 
physical components that comprise orifices enabling 
various functions of the process. The resulting 
digitised metrics is better than the existing metrics, 
since it is better adjusted for analyses and 
optimisation of the orifice geometry. 

The proposed application of Chebyshev 
polynomials for the preparation the morphometric 
data has the advantage over the use of one, or a 
combination of the metaheuristic methods such as 
Neural Networks, Genetic Algorithms and Fuzzy 
Logic. This is because the use of the Chebyshev 
polynomials is based on deterministic formulas and, 
consequently, leads to the programming and 
computational simplicity since the digitizing 
algorithms are based on derivative information. The 
examples of computational steps are presented more 
in detail in reference [16]. Moreover, the nowadays 
availability of computer graphic platforms and big 
data analytic software allows for combining the data 
preparation and analytic stages via programming 
languages such as Python and Java. 

 Nonetheless, due to the nature of the industrial 
applications of the orifices, the resulting structured 
database falls in the category of Big Data because of 
the quantity of the original unstructured records, and 
the count of the variables (the database width). Once 
the geometric data are prepared, the Genetic 
Algorithms and Fuzzy logic are indispensable in 
knowledge extraction from the high-velocity Big 
Data. Moreover, when the patterns, trends and 
correlations are extracted, each of these methods can 
be employed for translating the inferences back into 
the formats of technological documentation such as 
illustrated in Figures 4, 6, 7, 8, 10, 13 and 17. For 
example, the inferred correlations are associated 
with the standard error of estimate, confidence 
limits etc., and the inferred orifice contour will need 
to be smoothed or meaningfully repositioned 
(slightly shifted off the mean position). Here the 
Machine Learning, where the GA and Fuzzy Logic 
can be employed is necessary for processing high-
velocity Big Data.  

The new comprehensive digitized definition of 
the orifice morphometry allows for unraveling the 
hidden interrelations and patterns between the 
orifice entry and exit morphometry along with the 
interactions and correlations with other factors of 
the analysed process. 

The discussed mathematical definition of the 
morphometry of critical physical components is an 
aspect of fundamental importance in the design of 
Digital Twins. The contemporary concepts of 
Industry 4.0 and 5.0 have given significant impetus 
to the development of Digital Twins that will close 
the loop between the input controls and optimized 
output by employing artificial intelligence systems. 
While attracting strong interest from the industry 
(the market is anticipated to reach over $15 billion 
by 2023) Digital Twin related engineering research 
is still in its infancy [17]. This provides the 
additional supporting arguments for the need of the 
contributions such as presented in this manuscript.  
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