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Abstract : In this paper, we have considered a recently reported 2-layer non-DHT-based structured P2P network. 

Residue Class based on modular arithmetic has been used to realize the overlay topology. At the heart of the 

architecture (layer-1), there exists a tree like structure, known as pyramid tree. It is not a conventional tree. A node 

i in this tree represents the cluster-head of a cluster of peers which are interested in a particular resource of type Ri

 (i.e. peers with a common interest). The cluster-head is the first among these peers to join the system. Root of the 

tree is assumed to be at level 1. Such a tree is a complete one if at each level j, there are j number of nodes. It is an 

incomplete one if only at its leaf level, say k, there are less than k number of nodes. Layer 2 consists of the 

different clusters. The network has some unique structural properties, e.g. each cluster has a diameter of only 1 

overlay hop and the diameter of the network is just (2+2d); d being the number of levels of the layer-1 pyramid 

tree and d depends only on the number of distinct resources. Therefore, the diameter of the network is independent 

of the number of peers in the whole network.  In the present work, we have used some such properties to design low 

latency intra and inter cluster data lookup protocols. Our choice of considering non-DHT and interest-based 

overlay networks is justified by the following facts: 1) intra-cluster data lookup protocol has constant complexity 

and complexity of inter-cluster data lookup is O(d) if tree traversal is used and 2) search latency is independent of 

the total number of peers present in the overlay network unlike any structured DHT- based network (as a matter 

fact unlike any existing P2P network, structured or unstructured). Experimental results as well show superiority of 

the proposed protocols to some noted structured networks from the viewpoints of search latency and complexity 

involved in it. In addition, we have presented in detail the process of handling churns and proposed a simple yet 

very effective technique related to cluster partitioning, which, in turn, helps in reducing the number of messages 

required to be exchanged to handle churns.  
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1. Introduction      
Peer-to-Peer (P2P) overlay networks are widely used 

in distributed systems due to their ability to provide 

computational and data resource sharing capability in 

a scalable, self-organizing, distributed manner. There 

are two classes of P2P networks: unstructured and 

structured ones. In unstructured systems [2] peers are 

organized into arbitrary topology. It takes help of 

flooding for data look up. Problem arising due to 

frequent peer joining and leaving the system, also 

known as churn, is handled effectively in 

unstructured systems. However, it compromises with 

the efficiency of data query and the much-needed 

flexibility. Besides, in unstructured networks, 

lookups are not guaranteed. On the other hand, 

structured overlay networks provide deterministic 

bounds on data discovery. They provide scalable 

network overlays based on a distributed data 
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structure which actually supports the deterministic 

behavior for data lookup. Recent trend in designing 

structured overlay architectures is the use of 

distributed hash tables (DHTs) [3] - [5]. Such overlay 

architectures can offer efficient, flexible, and robust 

service [3] - [5], [7], [8]. However, maintaining 

DHT-based structures in presence of churn is a 

complex task and needs substantial amount of effort 

to handle the problem of churn. So, the major 

challenge facing such architectures is how to reduce 

this amount of effort while still providing an efficient 

data query service. In this direction, there exist 

several important works, which have considered 

designing DHT-based hybrid systems [1], [6], [9] - 

[11]; these works attempt to include the advantages 

of both structured and unstructured architectures. 

However, these works have their own pros and cons. 

Another design approach has attracted much 

attention; it is non-DHT based structured approach 

[12], [14]-[18], [26]. It offers advantages of DHT-

based systems, while it attempts to reduce the 

complexity involved in churn handling. Authors in 

[16], [17] have considered one such approach and 

have used an already existing architecture, known as 

Pyramid tree architecture, originally applied to the 

research area of ‘VLSI design for testability’ [13]. In 

the present work, we have considered such an 

architecture as a part of the overlay network to design 

efficient communication protocols. 

 

1.1 Our contribution 

Our main objective is to show the superiority of our 

non-DHT and interest-based architecture over DHT-

based architectures from the viewpoints of search 

latency and data look up complexity.  We have 

considered a number theoretic approach to build the 

architecture. Our choice of considering such an 

architecture is justified by the following facts: 1) 

intra-cluster data lookup protocol has constant 

complexity and complexity of inter-cluster data 

lookup is O(d) if tree traversal is used, d is the 

number of levels of the tree and number of distinct 

resource types, n ≈ 2d and 2) search latency is 

independent of the total number of peers present in 

the overlay network unlike any structured DHT-

based network (as a matter fact unlike any P2P 

network, structured or unstructured). Experimental 

results obtained as well show superiority of the 

proposed protocols to some noted structured 

networks from the viewpoints of search latency and 

complexity involved in it. In addition, we have 

presented in detail the process of handling churns 

and proposed a simple yet very effective technique 

related to cluster partitioning, which, in turn, helps 

in reducing the number of messages required to be 

exchanged to handle churns. Most of the existing 

interest-based architectures [19]-[25] are built on an 

ad-hoc basis without having any solid mathematical 

foundation. Hence, we have highlighted the main 

differences of our interest-based architecture with 

some such existing ones using architectural aspects 

only and the related pros and cons of those 

architectures. 

     The organization of the paper is as follows. In 

Section 2, we talk about some related preliminaries 

from our recently reported works. In Section 3, we 

present the data lookup protocols and a comparison 

of their performance with some noted DHT-based 

systems. In Section 4, we have presented our works 

on churn handling; we have presented an effective 

way of cluster partitioning in order to reduce the 

number of messages needed to restructure the 

network after peers join and leave. In Section 5, to 

we have compared our proposed work with some 

existing interest-based works from the viewpoint of 

the main features of the different architectures 

considered in these works. Section 6 draws the 

conclusion. 

 

2. Preliminaries 

In this section, we present some relevant results 

from our recent work on the Pyramid tree based P2P 

architecture [16], [17] for interest-based peer-to-

peer system.  

Definition 1. We define a resource as a tuple ˂Ri, 

V˃, where Ri denotes the type of a resource and V is 

the value of the resource.  

     Note that a resource can have many values. For 

example, let Ri denote the resource type ‘songs’ and 

V' denote a particular singer. Thus ˂Ri, V'˃ 

represents songs (some or all) sung by a particular 

singer V'.  

 

Definition 2. Let S be the set of all peers in a peer-

to-peer system with n distinct resource types (i.e. n 

distinct common interests). Then S = {Ci}, 0 ≤ i ≤ n-

1, where Ci denotes the subset consisting of all peers 

with the same resource type Ri. In this work, we call 

this subset Ci as cluster i.  Also, for each cluster Ci, 

we assume that Ci
h is the first peer among the peers 

in Ci to join the system. We call Ci
h as the cluster-

head of cluster Ci.   

 

2.1 Pyramid Tree  

The following overlay architecture has been 

proposed in [16].  

1) The tree consists of n nodes (n resource 

types). The ith node is the ith cluster head Ci
h. 

The tree forms the layer-1 and the clusters 

corresponding to the cluster-heads form the 
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layer-2 of the architecture. Also, n ≈ 2d where 

d is the number of levels of the tree. 

2) Root of the tree is at level 1.  

3) Edges of the tree denote the logical link 

connections among the n cluster-heads. Note 

that edges are formed according to the pyramid 

tree structure [13]. 

4) A cluster-head Ci
h represents the cluster Ci. Each 

cluster Ci is a completely connected network of 

peers possessing a common resource type Ri, 

resulting in the cluster diameter of 1. 

5) The tree is a complete one if at each level j, there 

are j number of nodes (i.e. j number of cluster-

heads). It is an incomplete one if only at its leaf 

level, say k, there are less than k number of 

nodes. 

6)  Any communication between a peer pi ϵ Ci and 

a peer pj ϵ Cj takes place only via the respective 

cluster-heads Ci
h and Cj

h and with the help of 

tree traversal wherever applicable. 

7) Joining of a new cluster always takes place at      

the leaf level. 

8) A node that does not reside either on the left  

branch or on the right branch of the root node is 

an internal node. 

9) Degree of an internal non-leaf node is 4. 

10) Degree of an internal leaf node is 2.  

11) Diameter of the network is (2+2d); d is the 

number of levels of the pyramid tree at layer 1.  

   

2.2  Residue Class 

     Modular arithmetic has been used to define the 

pyramid tree architecture of the P2P system.  

Consider the set Sn of nonnegative integers less than 

n, given as Sn = {0, 1, 2,.…  (n – 1)}. This is referred 

to as the set of residues, or residue classes (mod n). 

That is, each integer in Sn represents a residue class 

(RC). These residue classes can be labelled as [0], 

[1], [2], …, [n – 1], where [r] = {a: a is an integer, a 

≡ r (mod n)}. 

        For example, for n = 3, the classes are: 

        [0] = {…., ─ 6, ─ 3, 0, 3, 6, …} 

        [1] = {…., ─ 5, ─ 2, 1, 4, 7, …} 

        [2] = {…., ─ 4, ─ 1, 2, 5, 8, …} 

     In the P2P architecture, we use the numbers 

belonging to different classes as the logical (overlay) 

addresses of the peers with a common interest (i.e. 

peers in the same cluster) and the number of residue 

classes is the number of distinct resource types; for 

the sake of simplicity we shall use only the positive 

integer values.  

 

Before we present the mechanism of logical address 

assignments, we state the following relevant 

property of residue class. 

  

Lemma 1. Any two numbers of any class r of Sn are 

mutually congruent. 

       

Proof.  Let us consider any two numbers N' and N" of 

class r. these numbers can be written as  

N' ≡ r (mod n); therefore, (N' – r) / n = an integer, say 

I' (1) and 

N" ≡ r (mod n); therefore, (N" – r) / n = an integer, say 

I" (2) 

Using (1) and (2) we get the following, (N' – N") / n 

=((N' – r) – (N" – r)) / n = I' – I" = an integer.   

Therefore, N' is congruent to N"; that is, N' ≡ N" (mod 

n); also, N" ≡ N' (mod n) because congruence 

relation (≡) is symmetric. Hence, the proof. □  

 

2.3 Assignments of Overlay (Logical) Addresses  

     Assume that in an interest-based P2P system 

there are n distinct resource types. Note that n can be 

set to an extremely large value a priori to 

accommodate large number of distinct resource 

types. Consider the set of all peers in the system 

given as S = {Ci}, 0 ≤ i ≤ n-1. Also, as mentioned 

earlier, for each subset Ci (i.e. cluster Ci) peer Ci
h is 

the first peer with resource type Ri to join the system 

and hence, it is the cluster-head of cluster Ci.  

The assignment of overlay addresses to the peers in 

the clusters and the resources happens as follows: 

1) The first cluster-head to join the system is 

assigned with the logical (overlay) address 0 and is  

denoted as C0
h. It is also the root of the tree formed 

by newly arriving cluster-heads (see the example in 

Fig. 1). 

2) The (i+1)th newly arriving cluster-head 

possessing the resource type Ri is denoted as Ci
h and 

is assigned with the minimum nonnegative number 

(i) of residue class i (mod n) of the residue system 

Sn as its overlay address. 

3)  In this architecture, cluster-head Ci
h is assumed 

to join the system before the cluster-head Ci+1
h. 

4) All peers having the same resource type Ri (i.e. 

'common interest' defined by Ri) will form the 

cluster Ci. Each new peer joining cluster Ci is given 

the cluster membership address (i + j.n), for i = 0, 1, 

2, … 

5) Resource type Ri possessed by peers in Ci is 

assigned the code i which is also the logical address 

of the cluster-head Ci
h of cluster Ci. 

 

Definition 3. Two peers of a cluster Cr are logically 

linked together if their assigned logical addresses 

are mutually congruent.  

 

Lemma 2.  Each cluster Cr forms a complete graph. 
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Proof. According to Definition 3, two peers of any 

cluster Cr are logically linked together if their 

assigned logical addresses are mutually congruent. 

Also, from Lemma 1, we note that any two numbers 

of any class r of Sn are mutually congruent. 

Therefore, every peer has direct logical connection 

with every other peer in the same cluster Cr. Hence, 

the proof. □   

 

Observation 1.  Any intra-cluster data look up 

communication needs only one overlay hop. 

Observation 2.  Search latency for inter-cluster data 

lookup algorithm is bounded by the diameter of the 

tree. 

 

2.4 Scalability 

 It may be noted that number of distinct resource 

types is very small compared to the number of peers 

in any overlay network [28]. To avoid the possibility 

of redesigning the architecture as new clusters are 

formed, a very large value of n can be selected at the 

design phase to accommodate very large number of 

possible resource types (if needed in future). It 

means that if at the beginning number of resource 

types present is small, only the first few of the 

residue classes will be used initially for addressing; 

and as new clusters are formed in future with new 

resource types in the system, more residue classes in 

sequence will be available for their addressing. For 

example, say initially n is set at 1000; so, there are 

1000 possible residue classes, starting from [0], [1], 

[2], [4], [5], …., [999]. If initially there are only 

three clusters of peers present with three distinct 

resource types, the residue classes [0], [1], [2] will 

be used for addressing the peers in the three 

respective clusters. If later two new clusters are 

formed with two new resource types, the residue 

classes [3] and [4] will be used for addressing the 

pears in the two new clusters in sequence of their 

joining the system. Moreover, as we see, there is no 

limit on the size of any cluster because any residue 

class can be used to address logically up to infinite 

number of peers with a common interest. Therefore, 

the proposed architecture does not have any negative 

issue with scalability.  

 

2.5 Virtual Neighbors [17] 

     An example of a complete pyramid tree of 5 

levels is shown in Fig. 1.  It means that it has 15 

nodes/clusters (clusters 0 to 14, corresponding to 15 

distinct resource types owned by the 15 distinct 

clusters). It also means that residue class with mod 

15 has been used to build the tree. The nodes’ 

respective logical addresses are from 0 to 14 based 

on their sequence of joining the P2P system. 

     Each link that connects directly two nodes on a 

branch of the tree is termed as a segment. In Fig. 1, 

a bracketed integer on a segment denotes the 

difference of the logical addresses of the two nodes 

on the segment. It is termed as increment and is 

denoted as Inc This increment can be used to get the 

logical address of a node from its immediate 

predecessor node along a branch. For example, let X 

and Y be two such nodes connected via a segment 

with increment Inc, such that node X is the 

immediate predecessor of node Y along a branch of 

a tree which is created using residue class with mod 

n. Then, logical address of Y = (logical address of X 

+ Inc) mod n.  

 

Thus, in the example of Fig. 1,  

Logical address of the leftmost leaf node = (logical 

address of its immediate predecessor along the left 

branch of the root + Inc) mod 15 = (6 + 4) mod 15 

= 10. 

    Also, note that a left branch originating at node 2 

on the right branch of the root node is 2 → 4 → 7 → 

11. Similarly, we can identify all other left branches 

originating at the respective nodes on the right 

branch of the root node. In a similar way, we can 

identify as well all right branches originating at the 

respective nodes on the left branch of the root node 

as well. 

 

Fig. 1 A complete pyramid tree with root 0 

Remark 1. The sequence of increments on the 

segments along the left branch of the root, appears 

to form an AP series with 1st term as 1 and common 

difference as 1. 

Remark 2. The sequence of increments on the 

segments along the right branch of the root, appears 

to form an AP series with 1st term as 2 and common 

difference as 1. 

Remark 3. Along the 1st left branch originating at 

node 2, the sequence of increments appears to form 

an AP series with 1st term as 2 and common 
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difference as 1. Note that the 1st term is the 

increment on the segment 0 → 2. 

Remark 4.  Along the 2nd left branch originating at 

node 5, the sequence of increments is an AP series 

with 1st term as 3 and common difference as 1. Note 

that the 1st term is the increment on the segment 2 → 

5. 

 
 

Fig. 2 A complete pyramid tree with root 13 

     Authors [17] have presented some important 

structural properties of the pyramid tree P2P system. 

According to the authors, no existing structured P2P 

system, either DHT or non-DHT based, possesses 

these properties. These are stated below. 

     Let SY be the set of logical links that connect a 

node Y to its neighbors in a complete pyramid tree 

TR with root R. Assume that the tree has n nodes (i.e. 

n cluster heads / n clusters). Let another tree T'R be 

created with the same n nodes but with a different 

root R'. Let S'Y be the set of logical links connecting 

Y to its neighbors in the tree T'R. 

Property 1.     SY ≠ S'Y 

Property 2.  Diameter of TR = Diameter of T'R 

Property 3.  Number of levels of TR = Number of 

levels of T'R  

Property 4.  Complexity of broadcasting in TR with 

root R as the source of broadcast is the same for T'R 

with root R'  

Property 5. Both TR and T'
R are complete pyramid 

trees. 

An example: Consider the complete pyramid tree of 

5 levels as shown in Fig. 2. Note that root of this tree 

is node 13, whereas root of the tree of Fig. 1 is 0.  

It is seen that S'4 = {1,8,9} and S4 = {1,2,7,8}. 

Therefore, Property 1 holds. 

     Diameters of both trees are same; it is 8 in terms 

of number of overlay hops. Besides, both trees use 

the same 15 nodes and have the same total number 

of levels. Complexity of broadcasting from either 

root 0 in the tree of Fig. 1 or from root 13 in the tree 

of Fig. 2 is bounded by the number of levels of each 

of the trees (here it is 4 in each). Finally, both trees 

are complete pyramid trees. Thus, all properties as 

mentioned above hold. These properties have been 

used to design very high bandwidth efficient inter-

cluster broadcast protocols for the overlay network 

with both complete and incomplete pyramid trees at 

layer-1 of the architecture [27]. 

Remark 5.  Set of the neighbors of a given node Z 

may vary as the root of the tree varies. Hence, it is 

termed ‘virtual’. However, time complexity of 

broadcasting remains same, i.e. it is O(d) where d 

denotes the number of levels of the tree [27].  

 

3.  Data Look-up 

     Data lookup can be either intra-cluster or inter-

cluster. The former one means that a peer pi' (ϵ Ci) 

requests for some resource ˂Ri,V"˃ which it does 

not possess. Note that only some peer(s) pi" (ϵ Ci) 

can possess ˂Ri,V"˃ if at all; no other peer in any 

other cluster Ck can possess it since it is an interest 

based architecture. 

     The inter-cluster data lookup is invoked when a 

peer pi' (ϵ Ci) requests for resource ˂ Rj,V*˃, that can 

only be possessed, if at all, by some peer pj' in cluster 

Cj. 

     The following data structures will be used for 

efficient data lookup. Every cluster-head Ci
h will 

maintain its table of information (TOI) in the 

following way. We assume that when a new cluster-

head joins an existing tree, it contacts cluster-head 

0, i.e. C0
h which, in turn, assigns the newly joined 

one with the next logical address available for 

assignment (i.e. the next integer in the set Sn = {0, 1, 

2,.…  (n – 1)}, not yet assigned to any cluster-head). 

Therefore, this logical address becomes the largest 

address assigned so far in the tree. C0
h broadcasts 

this information to all other cluster-heads in the tree 

[27]. Each receiving node, Ci
h then updates its table 

of information (TOI) that contains a tuple for each 

node Ck
h (cluster-head h). The tuple for Ck

h appears 

as  

< logical address, IP address, resource code of the 

resource owned by Ck
h >. Recall that C0

h is the first 

one to arrive and it forms the tree with only one 

node. It is seen that the table remains sorted after 

addition of any latest entry based on the logical 

addresses. Also, note that the code of a resource type 

Ri is the same as the logical address of the 

corresponding cluster-head Ci
h. 

     In addition, each member peer in a cluster Ci 

maintains a list of all its neighbors present in the 

cluster. Each entry is a tuple consisting of a peer’s 

logical and IP addresses. This list remains sorted 

w.r.to the logical addresses of the peers joining Ci 

because any new peer joining this cluster will have 

the next highest available address from the residue 
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class [i] used for addressing the peers in the cluster 

Ci. This information helps to achieve fault tolerance 

in the event that Pi crashes or leaves (churn 

handling).  

 

3.1  Intra-Cluster Data Lookup 

     Without any loss of generality, let us consider a 

data lookup in cluster Ci by a peer p' possessing 

˂Ri,V'˃ and requesting for ˂Ri,V"˃. The protocol 

appears below.   

 

Protocol Intra-Data-Lookup 

1.  p' broadcasts its request in Ci for ˂Ri,V"˃ 

 / one hop communication since diameter of Ci is one     

2.  if ∃ p" with ˂Ri,V"˃   

                         p" unicasts ˂Ri,V"˃  to p'  

               else 

                         search for ˂Ri,V"˃  fails  

 / search latency is minimum, i.e. only two hops 

 

3.2  Inter-Cluster Data Lookup 

     In our proposed architecture, any communication 

between a node pi ϵ Ci and pj ϵ Cj takes place only 

via the respective cluster-heads Ci
h and Cj

h. Without 

any loss of generality let a peer pi' (ϵ Ci) request for 

˂Rj,V*˃. Note that Peer pi' knows that Rj ∉ Ci.  

 

Protocol Inter-Data-Lookup 

 

1. pi' sends a data lookup request for ˂ Rj,V*˃ to its 

cluster-head Ci
h  

      / one hop communication 

2.  Ci
h determines the cluster-head Cj

h 's IP address 

from its TOI using Cj
h 's resource code 

     / logical address of Cj
h = resource code of Rj = j  

      Ci
h unicasts the request to Cj

h 

3. if  Cj
h  possesses ˂Rj,V*˃   

      Cj
h unicasts ˂Rj,V*˃  to pi'  

      else  

      Cj
h broadcasts the request for ˂Rj,V*˃ in Cj

 

      / one hop communication 

4.  if  ∃  pj" (ϵ Cj) with ˂Rj,V*˃   

        pj" unicasts ˂Rj,V*˃ to pi'  

        else  

       Cj
h unicasts ‘search fails’ to pi'  

 

 3.3  Data Lookup Complexity  

     Analytical comparison with some noted DHT-

based P2P networks [3]-[5] etc. has appeared in 

Table 1. Observe that our non DHT-based system 

offers much better search latency than DHT-based 

systems. In addition, in the present work, intra-

cluster data lookup protocol has constant complexity 

and complexity of inter-cluster lookup is O(d) if tree 

traversal is used; otherwise a maximum of only four 

hops is required. Note that n ≈ 2d and hence d is even 

much smaller than n, the number of distinct resource 

types. Anyway, search latency is independent of the 

number of peers in the whole network unlike the 

works in [3]-[5]. Thus, we infer that the proposed 

structured interest-based overlay architecture can be 

the choice over the non-interest-based structured 

ones, mainly because of its much smaller search 

latency.  

     The point to mention is that use of the same code 

to denote a resource type Ri and the corresponding 

cluster-head Ci has made the search process simple 

and efficient. Note that we do not need to save both 

logical address as well as the resource code in each 

entry of TOI. One of these two will denote the other 

one. Therefore, we save only one of the two in 

addition to the IP address of a cluster-head. It 

reduces the table size. Besides, only the number of 

distinct resource types limits the size of the TOI 

table. Fact is, total number of peers N is much larger 

than the number of distinct resource types n [28] and 

the size of the TOI is independent of the total number 

of peers present in the P2P system. Besides, TOI 

grows dynamically as new cluster-heads join; 

therefore, the newly joining one will always have the 

largest logical address. Hence, TOI always remains 

sorted with respect to the logical addresses of the 

cluster-heads; thereby any searching in TOI 

becomes very efficient.  

Observe that a cluster-head unicasts to another 

cluster-head in case of inter-cluster data look up. It 

makes the communication protocol simpler than 

following the idea of tree traversal to reach a 

destination cluster. However, even if tree traversal is 

followed, search latency is independent of the total 

number of peers present in the overlay system as is 

proven below in the following theorem.  

 

Theorem 1. Search latency for inter-cluster data 

lookup algorithm is bounded by the diameter of the 

tree and is independent of the total number of peers 

present in the system. 

 

Proof. Let us consider a peer ps in a cluster Cm as the 

source of unicast communication.  Let us consider a 

destination peer pd in a cluster Ck. To maximize 

latency, we assume that both ps and pd are not 

cluster-heads. So, it takes one overlay hop for the 

packet to arrive at the cluster-head Cm
h of cluster Cm. 

Thus, in a d level tree, it takes a maximum of 2(d-1) 

overlay hops to reach the cluster-head Ck
h from 
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cluster-head Cm
h. Finally, one more overlay hop is 

needed to reach the destination peer pd from the 

cluster-head Ck
h. Therefore, maximum latency is 

[2(d-1) + 2] = 2d hops. Hence, search latency is not 

a function of the total number of peers present in the 

system. It is a function of the number of cluster-

heads, i.e. the number of distinct resource types that 

defines the value of d. □ 

 

 

Table 1 Analytical Comparison of Data Lookup Complexity 

 

 

CAN Chord 

 

Pastry 

RC-Based Pyramid 

Tree 

Architecture 
DHT-based    

Structured P2P 

DHT-based     

Structured P2P 

 

   DHT – based 

    Structured P2P  

 

Non-DHT - based 

Structured P2P 

Parameters 

N-number of 

peers in network  

 d-number of 

dimensions. 

N-number of 

peers in network. 

N-number of 

peers in network, 

b-number of bits 

(B= 2b) used for 

the base of the 

chosen identifier. 

d - Number of levels of 

the tree 

N - number of peers in 

network. 

n – number of distinct 

resource types 

d << N & d< n 

 

Lookup 

Performance 

 

O(d N 1/d) 

 

O(log N ) 

 

O(log BN ) 

Inter-Cluster: tree 

traversal 

O(d) 

Intra-cluster: 

O(1) 

 

3.4 Experiments 

Earlier we have mentioned that the main objective 

of the present work is to show the superiority of our 

non-DHT and interest-based architecture over DHT-

based architectures from the viewpoints of search 

latency and data look up complexity.  Therefore, in 

addition to the analytical comparison, we have 

performed three experiments to compare the data 

lookup latency in terms of overlay hops of the 

Pyramid tree p2p architecture with those of the three 

prominent p2p architectures, viz., CAN [3], Pastry 

[4] and Chord [5], Results of the experiments with 

three different numbers of distinct resource types are 

shown in Figures 3,4, and 5.  

 

 

Fig. 3 Lookup latency with 15 resource types      
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Fig. 4 Lookup latency with 35 resource types 

     In Fig. 3 we have considered pyramid tree 

overlay networks with 15 distinct resource types; 

number of peers in each of the 15 clusters 

corresponding to the 15 unique resource types has 

been increased gradually resulting finally in a total 

of 1026 number of peers in the system. Fig. 4 and Fig. 

5 correspond to 35 and 65 distinct resource types 

respectively. Consider N as the total number of peers 

in the overlay network. Data lookup latency for 

CAN is known to be O(dN1/d); dimension of the co-

ordinate space, d is considered as 5 (according to the 

specification of CAN [3]). For CHORD [5] the data 

lookup latency is O(log2N), For PASTRY, the data 

lookup latency is O(logBN), where N is the total 

number of peers in the system and B = 2b. We have 

selected b = 4 as specified in [4].  

     It is observed in each figure that with the increase 

in the number of peers in the system, the data lookup 

latency each for CAN, CHORD, and PASTRY 

increases because this latency depends on the total 

number of peers N in the system. However, in the 

pyramid tree architecture, the inter-cluster data 

lookup latency is independent of both individual 

cluster sizes as well as the total number of peers N 

in the system. It varies only with the diameter of the 

tree measured in the number of overlay hops, which 

depends only on the number of distinct resource 

types present in the system. Effectively, on an 

average, the inter-cluster data lookup latency will be 

half the tree diameter.  

     Therefore, with the increase in the number of the 

peers in the system, the pyramid tree architecture 

will have a constant data lookup latency as is seen in 

each of the three figures as a straight line with zero 

gradient. Note that in the figures the respective 

diameters of the pyramid tree architectures 

considered are 8, 14, and 20. It may be noted that 

diameter of each cluster is 1 and so, for an inter 

cluster communication there will be a maximum of 

2 hops more in addition to the ‘half of the diameter’ 

(average number of hops travelled from a source 

cluster-head to a destination cluster-head) provided 

both sender and receiver are not cluster-heads. 

Therefore, we have ignored the extra possible 2 hops 

as it has no impact on our observations of the 

comparisons of the different latencies. 

 

 

Fig. 5 Lookup latency with 65 resource types 

     In each of the three figures, we observe 

significant improvement of inter-cluster data lookup 

latency which our proposed architecture offers 

compared to the three other prominent ones 

especially when the total number of peers N 

increases beyond 108, 1010, and 1011 as shown in the 

respective three figures. In fact, our architecture 

offers much smaller latency than CAN and Chord 

even for much lower number of peers than the 

above-mentioned numbers; differences with Pastry 

becomes significant when we consider much larger 

number of peers as mentioned above. 

4. Churn Handling 

     The process of joining and leaving of peers is 

known as churn. We first consider churn inside a 

cluster. After that we will consider the pyramid tree. 

 

4.1 Churn inside a cluster 

     Let us start with the joining of new peers in a 

cluster, say Ci. Let the new peer be p possessing an 

instance of the resource type Ri. We have mentioned 

earlier that each member peer in a cluster maintains 

locally a list of all its neighbors (i.e. all peers in this 

cluster) present in the cluster. We denote the list by 

Li for the cluster Ci. Each entry in Li is a tuple 

consisting of a peer’s IP and logical addresses. The 
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joining peer p is directed by the DNS or the cluster-

head C0
h to contact Ci

h because peer p has the same 

resource type Ri which is also owned by peers in the 

cluster Ci. Cluster-head Ci
h broadcasts the IP address 

and the logical address of peer p to all other peers in 

the cluster; each receiving peer updates its list. 

Cluster head Ci
h also updates its list and unicasts the 

updated list to the joining peer p. Note that cluster Ci 

is a complete network (a complete graph), therefore, 

the cluster remains a complete network after the 

joining of any new peer. Hence, structurally the 

cluster remains a complete network with overlay 

diameter 1. Therefore, nothing else need to be done 

from the viewpoint of maintenance of the structure 

of the cluster after a join.  

     Next, we consider that a peer p' leaves cluster Ci. 

We assume graceful leaving, that is, prior to leave, 

it broadcasts a leave message in the cluster. After 

receiving this message each peer in Ci just deletes 

the address information of peer p' from its list. Note 

that cluster Ci remains a complete network after the 

leave. So, nothing else is needed to maintain the 

structure.   

 

     If the cluster-head Ci
h leaves, prior to leaving it 

takes the following sequence of three actions:  

 

1. It selects the peer with the next higher overlay 

address as the new cluster head, 

2. It assigns the new cluster-head with its own 

logical address i, It is done so in order to keep the 

cluster-head’s overlay address and the resource code 

of Ri identical,  

3. The leaving cluster-head broadcasts a leave 

message to all peers in the cluster and leaves the 

network.  

     The above sequence of actions is followed by the 

following sequence of three more actions to 

complete the process of reorganization of the cluster. 

4. The new cluster-head broadcasts the tuple < 

logical address, IP address of the new cluster-head, 

i > to all existing peers in Ci,  

5. Each peer in Ci after receiving these two broadcast 

messages deletes the entry corresponding to the old 

cluster-head in Li and updates the information 

received in the message about the new cluster-head,  
6. The new cluster-head unicasts its IP address and 

logical address to all other cluster-heads. Each 

receiving cluster-head on the pyramid tree replaces 

in its global table, i.e. TOI, the entry for the old tuple 

of Ci
h with the new one < logical address, IP 

address of the new cluster-head Ci
h, resource code i 

of the resource owned by Ci
h . 

 

We observe that there are two broadcasts involved 

(steps 3 and 4) above, one by the leaving cluster-

head (step 3), the other one by the new cluster-head 

(step 4). It can be reduced to only one broadcast in 

the following way. After the new cluster-head is 

selected (steps 1 and 2), the old cluster-head leaves 

(no need for step 3) and the new cluster-head 

broadcasts a message containing the tuple < IP 

address of the new cluster-head, i > to all existing 

peers in Ci. Each peer in Ci interprets this message 

as ‘leaving of the old cluster-head’ and so it deletes 

the entry corresponding to the old cluster-head in Li 

and updates the information received in the message 

about the new cluster-head. 

     From the above discussion we note the following: 

1) Let Numi be the number of peers in cluster Ci 

prior to the joining of a new peer. Number of 

messages used for the joining of a peer is ((Numi 

-1) + 1), i.e. Numi and number of overlay hops 

needed is simply (1+1=2); We use the fact that 

broadcast in a complete network (as in cluster 

Ci) is a one-overlay-hop process. 

2) Number of messages used to deal with the 

leaving of a peer is (Numi – 1) and number of 

overlay hops needed is just 1. 

3) Number of messages used in Ci when cluster-

head Ci
h leaves is (Numi – 2). It is the number of 

messages broadcasted by the new cluster-head 

to its peers in cluster Ci (only one broadcast is 

required). Number of messages to update the 

rest of the (n-1) cluster-heads is (n-1). So total 

number of messages used is  

[(Numi – 2) + (n-1)] = [Numi + n-3]. Number of 

overlay hops required is (1 + (n-1) = n). 

 

4.2 Churn in the pyramid tree at layer-1 

     Consider first joining of a new cluster head. We 

assume that there are already n distinct resource 

types present; so, the existing cluster-heads are C0
h, 

C1
h, …, Cn-1

h.  Hence the newly joining cluster-head 

will be Cn
h. It means that a new peer possessing an 

instance of a new resource type Rn wants to join. 

This joining peer contacts first the root cluster head 

C0
h of the tree. The root assigns a logical address n 

to this peer and this peer becomes the new cluster 

head Cn
h. The root will update its TOI with the IP 

and logical addresses of the new cluster head; it will 

then unicast this table to all cluster heads including 

the new one: thereby, requiring a total of n 

messages.  

     We now consider the case when an existing 

cluster head other than the root cluster-head leaves 

while this cluster does not have any other peer 

except the leaving cluster head itself. We assume 

graceful leaving. Therefore, right before leaving the 
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network, the leaving cluster head will send a ‘leave’ 

message to the root C0
h. The root will update its table 

(TOI) by deleting the entry corresponding to the 

leaving cluster head. It will assign new (secondary) 

logical addresses to some existing cluster heads as 

needed. For example, if the leaving one has logical 

address (primary) X, the root will assign the existing 

cluster head with primary address (X+1) an 

additional logical address X (secondary); similarly, 

the one with existing primary address (X+2) will 

have (X+1) as its secondary address, etc. However, 

addresses of cluster heads with addresses less than 

X will not have any secondary addresses. Therefore, 

only those cluster-heads with primary addresses 

larger than X will have both primary and secondary 

addresses. Also note that in the updated TOI primary 

address X does not exist. We observe that primary 

addresses till (X-1) along with secondary addresses 

starting from X maintain the sequencing of 

addresses (i.e. (X-1) is followed by X etc.), which is 

required for the broadcast protocol to work 

correctly, Effectively, secondary logical addresses 

as well as those primary addresses not having any 

corresponding secondary addresses are used by the 

broadcast protocol for forwarding a broadcast 

packet. However, only primary addresses will be 

used to look for resources, since they represent the 

unique codes for the resources. The root will unicast 

this updated TOI to all other cluster heads, i.e. (n-2) 

cluster-heads, thereby requiring (n-2) massages. 

Therefore, a total of ((n-2) + 1), i.e. (n-1) messages 

are needed to handle the leaving process. As stated 

above, note that in the updated table primary address 

X does not exist, i.e. there does not exist any cluster 

possessing the resource type X; therefore, any 

lookup request by a peer in a cluster Ci for resource 

X will eventually fail as the corresponding cluster 

head Ci
h will not find it appearing as a primary 

address in its TOI. However, note that any look up 

for a request with resource code (X+1) the cluster-

head Ci
h will unicast to the IP address corresponding 

to the cluster with primary address as (X+1) and 

secondary address as X.  

     If the root node leaves, it unicasts a leave 

message to the node with primary address 1 and the 

later becomes the new root and its new address 

(secondary) becomes 0. This new root now deletes 

the entry for the leaving node from its TOI. This new 

root keeps the existing primary addresses of all other 

cluster-heads as well as their new secondary logical 

addresses in its TOI; i.e. a cluster-head with existing 

primary address X will have a secondary logical 

address as (X-1) as well in the TOI. The new root 

unicasts to the (n-2) cluster-heads the updated TOI. 

It thus requires a total of ((n-2) + 1), i.e. (n-1) 

messages. 

     If two or more nodes want to leave 

simultaneously, they leave in the sequence of 

arrivals of their ‘leave request’ messages to the root 

node. Observe that whatever is required to maintain 

the structure after any join/leave is done centrally by 

the current root cluster-head just with the help of few 

unicasts of the updated TOI, approximately equal to 

the number of distinct resources. It makes the 

process of churn handling quite simple and efficient. 

 

4.3.  Partitioning of a Cluster into Sub-Clusters  

     Broadcasting by a cluster-head Ci
h is a key factor 

related to both data lookup algorithms and churn 

handling in our proposed overlay network. In order 

to reduce the load (in terms of the number of 

messages to broadcast in cluster Ci) by the cluster-

head Ci
h, we propose the following idea of dividing 

a cluster, say Ci in several small sub-clusters.  

   Let us consider that a cluster, say Ci be divided into 

sub-clusters of identical size each, say Z. Let there 

be k number of sub-clusters. So, Numi is equal to 

(k.Z). Of course, it is most likely that the last sub-

cluster will have less than Z number of peers; 

however, it has no effect on our explanation of the 

idea used for partitioning. Let the k sub-clusters be 

denoted as Ci1, Ci2, …, Cik. We assume that peers in 

these sub-clusters are in increasing order of their 

logical addresses. Therefore, the last peer to join will 

have the largest logical address among all in the 

parent cluster Ci. It means that any new join always 

occurs in the last sub-cluster. If the last one Cik 

already has Z peers, the new peer will form a new 

sub-cluster Ci(k+1) and it becomes its own sub-cluster 

head Ci(k+1)
h  as well; otherwise the new one will join 

as a member of the sub-cluster Cik.. Note that cluster-

head Ci
h is also the sub-cluster head Ci1

h of the first 

sub-cluster Ci1.  

 

An example: We illustrate the partitioning process 

using the following example. let us consider a 

cluster Ci with cluster-head Ci
h. Let Ci consist of 40 

peers. Assume that Ci is divided into four sub-

clusters Ci1, Ci2, Ci3, and Ci4 with 10 peers each. It is 

shown in Fig. 6. Observe that in general the last sub-

cluster not necessarily will have the same size as 

others; it depends on the number of peers initially 

present in the parent cluster Ci and the number of 

sub-clusters to be formed; however, as mentioned 

earlier that it has no effect on our explanation of the 

idea.  
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Fig. 6 Partitioning of cluster Ci into four sub-clusters Ci1, Ci2, Ci3, and Ci4

 

     Let the logical address of the cluster-head Ci
h be 

i based on the mod value of n used in designing the 

RC-based overlay architecture. Then, the other 39 

peers in Ci will have the respective overlay addresses 

as (i+n), (i+2n), …, (i+39n) based on their sequence 

of joining the cluster. Addresses of the four sub-

cluster heads are i, (i+10n), (i+20n), and (i+30n) 

respectively. Since Ci is completely connected, 

therefore, any two peers in the cluster have direct 

logical connections. However, in this partitioning 

method, we assume the presence of the logical links 

that connect the neighboring sub-cluster heads as 

well as the links that connect the first sub-cluster 

head, Ci
h (i.e. Ci1

h) and the other three cluster-heads.  

    Cluster-head Ci
h assigns the addresses (i+n) to 

(i+9n) to the first nine peers joining the cluster 

besides the cluster-head itself. It forms the sub-

cluster Ci1 with itself as the its sub-cluster head. 

Cluster-head Ci
h assigns the next 10 arriving peers 

with addresses (i+10n) to (i+19n) and imparts the 

responsibility of becoming the sub-cluster head of 

the sub-cluster Ci2 to the peer with address (i+10n). 

In this way, the other sub-clusters are also formed. 

As pointed out earlier, in general the last sub-cluster 

may have a smaller number of peers than the other 

clusters at the time of formation. It depends on the 

present number of peers in a given cluster and the 

number of sub-clusters. For example, if cluster Ci 

initially has 39 peers instead of 40, the last sub-

cluster Ci4 will have 9 peers, one less than the 

number of peers in the other sub-clusters of Ci.  

Note that sub-cluster size can be a choice of the 

designers and it can be dynamically changed based 

on the total current number of peers present in the 

cluster Ci. 

 

 

 

 

4.3.1 Reduction of the number of messages 

broadcasted by Ci
h due to partitioning 

     Cluster-head Ci
h keeps address information of the 

peers in its own sub-cluster Ci1 and the address 

information of all the other sub-cluster heads. It also 

knows the largest logical address used so far in this 

cluster Ci. Any other peer in this sub-cluster (Ci1) 

will keep the address information of all peers in this 

sub-cluster only. Therefore, when needed, the 

cluster-head Ci
h will broadcast only to peers in its 

own sub-cluster and to the other sub-cluster heads 

(in fact, only to the next sub-cluster head is needed).  

     A peer in any other sub-cluster Cij will just keep 

the address information of only the peers in this sub-

cluster; the corresponding sub-cluster-head Cij
h will 

keep the same information; in addition it will keep 

the address information of the cluster-head Ci
h and 

those of its two neighboring sub-cluster heads Ci(j-1)
h 

and Ci(j+1)
h. The sub-cluster head Cij

h will be 

responsible for broadcasting only inside this sub-

cluster. Therefore, whenever needed the load on Ci
h 

caused by broadcasting can be distributed among the 

sub-cluster heads. Below we assume that each sub-

cluster consists of Z peers. 

 

Lemma 3. Number of hops required to broadcast in 

cluster Ci is k. 

Proof. Broadcasting uses the idea of pipe lining in 

the following sense.  

Broadcasting in cluster Ci takes place as follows. 

Cluster head Ci
h starts broadcasting in the first sub-

cluster Ci1 followed by unicasting of the message to 

its neighbor sub-cluster head Ci2
h. Broadcasting in 

Ci1 takes only 1 hop as Ci1 is a complete network. 

Also, the unicast transmission takes only 1 hop.   
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Therefore, broadcasting is completed in Ci1 when the 

message arrives at Ci2
h. In this way, at the time the 

broadcast message arrives at Ci(j+1)
h from Cij

h,  

broadcasting is already completed in the later sub-

cluster (hence the pipe lining idea). Thus, after the 

last sub-cluster head Cik
h receives the message from 

sub-cluster head Ci(k-1)
h, broadcasting takes place in 

the last sub-cluster, which takes 1 hop and there are 

(k-1) hops needed for the message to travel from the 

first sub-cluster head to the last one; hence the total 

number of hops is (1 + (k-1)), i.e. k.  □ 

 

Observation 3. Size of the list Lij maintained by each 

peer in any cluster Cij reduces approximately from 

(k.Z) to Z.  

 

Observation 4. Number of messages to be 

broadcasted by cluster-head Ci
h of cluster Ci is ((Z-

1) +1), i.e. Z; The 1st term is due to broadcast inside 

the first sub-cluster Ci1 and the 2nd term for 

communication from Ci
h to C(i+1)

h. 

 

Observation 5. Number of messages to be 

broadcasted by any sub cluster-head Cij
h other than 

the first and the last ones is ((Z-1) +1), i.e Z; The 1st 

term is due to broadcast inside the sub-cluster Cij 

and the 2nd term for communication from Cij
h to 

Ci(j+1)
h. 

Observe that for the last sub-cluster head it will be 

at most (Z-1). 

 

4.3.2 Churn handling in a partitioned cluster 

     In dealing with churn, we mainly focus on the 

number of messages required to handle different 

situations, e.g. peer joining, peer leaving etc. 

because it is directly related to bandwidth utilization. 

     Let us consider the k sub-clusters Ci1, Ci2, …, Cik. 

Peers in these sub-clusters are in their increasing 

order of their logical addresses. Therefore, the last 

peer to join will have the largest logical address 

among all in the parent cluster Ci. It means that any 

new join always occurs in the last sub-cluster. 

 

4.3.2.1 Peer joining 

     The joining peer p is directed by the DNS or the 

cluster-head C0
h to contact Ci

h because peer p has the 

same resource type Ri which is also owned by peers 

in cluster Ci. Cluster-head Ci
h assigns the largest 

logical address to the peer and gives the IP address 

of the current last sub-cluster head Cik
h to the joining 

peer p and the joining peer p contacts the last sub-

cluster head.  

     If the last one Cik already has Z peers, the new 

peer will form a new sub-cluster Ci(k+1) and it 

becomes its own sub-cluster head Ci(k+1)
h; otherwise 

the new one will join the sub-cluster Cik.. In the 

second case, sub-cluster head Cik
h broadcasts the IP 

address and the logical address of peer p to all other 

peers in its sub-cluster; number of such messages is 

(Z-1) and the broadcast will take 1 hop. Each 

receiving peer in sub-cluster Cik updates its list Lik. 

Cluster head Cik
h also updates its list and unicasts the 

updated list to the joining peer p. Therefore, total 

number of messages needed to handle the join 

process is (Z-1+1), i.e. Z and the required number of 

hops is only 2. It may be noted that if the joining peer 

becomes a new sub-cluster head Ci(k+1)
h, it will 

unicast this information to the first sub-cluster head 

Ci1
h (i.e. Ci

h) and the last sub-cluster head Cik, 

requiring only two message transmissions. 

     Note that initially there are couple other 

messages used for contacting the last sub-cluster 

head and it is the same for any join. So, we have 

ignored it. We basically focus on two parameters, 

viz., number of partitions and size of a cluster for 

determining the number of messages because values 

of these two related parameters can be of interest to 

the network designers from the viewpoint of 

reasonably efficient bandwidth utilization.  

 

Observation 6. Number of messages to handle a 

joining process is at most Z, where as it is (k.Z) if 

partitioning is not used.  

 

4.3.2.2  Peer leaving 

     When a non-cluster head peer in a cluster Cij 

leaves, it only broadcasts (Z-1)) leave messages in 

its sub-cluster. So, the number of such leave 

messages reduces to (Z-1) from (k.Z).  

     If sub-cluster head Cij
h leaves, the number of 

messages broadcasted by the new cluster-head to its 

peers in cluster Cij that has now (Z-1) peers is (Z-2) 

(only one broadcast is required). Number of 

messages required to update the two neighboring 

sub-cluster heads and the first one about this new 

sub-cluster head is 3. If this sub-cluster is eventually 

the last one, number of messages is just 2, one to the 

first sub-cluster head and the other to the previous 

sub-cluster head. So total number of messages used 

is at most (Z+1) compared to (K.Z-1) if partitioning 

is not used and when sub-cluster head is not the 

cluster head. 

     If the cluster-head Ci
h leaves, the number of 

messages broadcasted by the new cluster-head to 

peers in the first sub-cluster Ci1 is (Z-2) (only one 

broadcast is required); number of messages required 

to update the (k-1) other sub-cluster heads in Ci 

about this new sub-cluster head is (k-1); and number 

of messages required to update the rest of the (n-1) 

cluster-heads at level 1 is (n-1). Hence, total number 
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of messages used is ((Z-2) + (k-1) + (n-1)), i.e. (Z + 

k + n - 4). 

 

Observation 7. Without partitioning, when a cluster-

head Ci
h leaves, total number of messages required 

to handle a leaving process is at least k.Z compared 

to a maximum of (Z + k + n - 4) when partitioning is 

used. 

 

To achieve substantial reduction in the number of 

messages to handle churn caused by the above 

leaving process, a designer’s objective should be to 

consider those values of Z and k for a given Numi 

that will maximize [k.Z – (Z + k + n – 4)]. Since the 

number of clusters, i.e. the number of distinct 

resources denoted as n is not a designer’s choice, 

therefore, the revised objective should be to 

maximize [k.Z – (Z + k)]. Also, care should be taken 

to select the value of Z because Z is also the number 

of messages required to handle a joining process.   

 

4.3.3 Churn handling in Pyramid tree at layer-1 

     There is no effect on churn handling at layer-1 

due to partitioning of clusters; it is the same as 

appeared in Section 4.2. 

  

4.3.4 Churn Handling under Capacity 

Constrained Situation 

     Restricted capacity of a peer does not change the 

number of messages required to handle churn in the 

network. However, it may take more time (i.e. larger 

number of hops) to reorganize the network after 

joining and leaving of peers.  For example, even if a 

cluster is divided logically into sub-clusters of 

diameters 1 each, the number of hops required to 

broadcast in a sub-cluster is logc
Z [18] instead of 1 

hop, given that average capacity of a peer is c. It 

delays reorganization. 

 

Experiments 

     In the following experiments, we have compared 

performance of the proposed partitioned architecture 

with the performance of Chord, arguably the most 

noted DHT-based structured overlay architecture. 

Performance has been measured using the number 

of messages required to maintain the overlay 

architecture after a peer joins or leaves the system. 

Results of our observations in the four experiments 

have appeared in Figs. 7, 8, 9, and 10 with respective 

cluster sizes as 500, 1000, 2000, 3000 peers. In the 

experiments cluster sizes have been kept constant; 

the number of distinct resources n in the system has 

been varied from 20 to a maximum of 40; it also 

means that number of clusters of a given size varies 

from 20 to a maximum of 40. 

     We have considered partitioning of a cluster Ci 

into k sub-clusters each with Z number of peers to 

achieve reduction in the number of messages to 

handle churn when a cluster-head Ci
h or any other 

peer in the cluster leaves. As mentioned earlier that 

this reduction due to a cluster-head leaving can be 

maximum when for a cluster-size of k.Z, values of Z 

and k are so selected that maximizes [k.Z – (Z + k + 

n – 4)] for a given n. For example, in Fig. 7, we 

found the respective values of Z and k as 25 and 20 

for the cluster size of 500. In the other three figures 

we have mentioned values of Z and k corresponding 

to the respective cluster sizes used in the three other 

experiments. 

     In addition, in Fig. 7, when Numi is 102, the 

corresponding number of clusters is 20 which is 

written right below 104 in the figure. This number 20 

also represents the number of distinct resource types 

n. Similarly, when Numi is 2x104, number of 

corresponding clusters is 40, which is also the 

number of resource types. It means that for a given 

cluster size, say 500 peers, we increase the total 

number of peers in the system by increasing the 

number resource types n. This is true for the other 

three experiments as well. 

     Note that the graphs showing the effects of new 

cluster-head join / existing cluster-head leaves with 

no more peer left in the cluster, are overlapped; for 

example, it is the second one from the bottom in Fig. 

7. Since the number of messages required to handle 

such a join / leave is directly proportional to n, hence 

the variable used here along the horizontal axis is n 

which is specified as (n) below each Numi. 

Similarly, the variable n is used to draw the graph 

when a cluster-head leaves and the cluster still 

exists; it is the second one from the top in Fig. 7. 

     Besides, the graphs for a peer joining or leaving 

a sub-cluster are overlapped, for example in Fig. 7 it 

is the bottom most graph. The reason is that for such 

a joining the number of messages is at most Z and 

for leaving it is either at most (Z+1) or (Z-1) 

depending on if the leaving peer is a sub-cluster-

head or not. So, we have considered just the value Z 

for both joining and leaving.  

     Each diagram shows reasonable improvement in 

terms of requiring a smaller number of messages to 

handle different kinds of joins and leaves of our 

design with partitioned clusters when compared to 

Chord. 
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Fig. 7 Cluster size (k.z) = 500, k =25, z = 20 

 

Fig. 8 Cluster size (k.z) = 1000, k = 40, z = 25 
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Fig. 9 Cluster size (k.z) = 2000, k = 50, z = 40 

 

Fig. 10 Cluster size (k.z) = 3000, k =60, z = 50 

5. Discussion on some Existing  

Interest Based P2P Architectures 

In this section, we have considered several 

noteworthy interest-based P2P systems [19]-[25] 

and briefly state their main features from the 

viewpoint of their proposed architecture. Then we 

state the same of our work and justify why our 

design is superior to these works. 

     All these works have incorporated the idea of 

peer heterogeneity in their design. In doing so the 

work in [19] has used the existing idea of super peer. 

Besides, gossiping has been used for cluster 

formation with peers of common interest.  

     The work in [20] uses the idea of popular peer 

which is quite similar to the idea of super peer. The 

base architecture is an unstructured network. 
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     In [21], authors have considered super peer. It is 

a hybrid architecture that uses both chord and 

unstructured network. 

     In [22], gossiping has been used for cluster 

formation. Besides, at the time of joining a new peer 

searches from a list of known peers for a particular 

peer which has most links among all in the list and 

then gets connected to it. 

     In [23], authors have considered DHT-based 

structured P2P system considering both proximity -

aware and interest-based cluster formation. Aim is 

to improve file location efficiency considering 

physically close peers with common interest. The 

work starts with the formation of a cluster consisting 

of physically close peers; it then forms sub-clusters 

with peers having common interest. Reasonable 

improvement of file location efficiency has been 

achieved.  However, they have not considered the 

following highly probable situation: assume that 

there are q number of such clusters scattered around; 

each of them has a sub-cluster formed with 

physically close peers with the same interest, say i. 

Then what will be the inter-sub-cluster lookup 

efficiency? This problem has not been addressed in 

this research. Therefore, the work remains 

incomplete, even though the basic idea is good. 

     In [24], a pastry-based P2P e-commerce model 

based on interest community has been proposed. 

Users with similar interest form an interest 

community and the users in such a community are 

not necessarily physically close. Authors have 

assumed that all such users are directly connected, 

i.e. such a cluster has the overlay diameter of one 

hop. However, there is no mathematical basis for 

such an assumption. 

     In [25], Authors have considered the adaptation 

of P2P architecture to support social network 

characteristics. This P2P architecture is based on the 

idea of Chord. Peers with similar interest are linked 

and these links are created dynamically based on 

previous communication messages among the peers. 

These links are called interest links. Authors have 

proposed an efficient routing algorithm based on 

such links. 

     In our proposed work, we do not use gossiping 

for cluster formation; we do not consider either 

super peer or popular peer or even a joining peer 

does not look for the best peer to be connected to as 

in [22]. We now justify why it is so in our work. First 

the existing idea of gossiping is not at all an efficient 

way to form clusters of peers of common interests. 

Second, when new peers join, there is always some 

probability that the new one will be better than an 

existing super peer or a popular peer. So, again a 

new one may have to be selected. It wastes time, 

particularly when several peers join at the same time 

or peers join frequently. The joining of a new peer 

[22] incurs unnecessary waste of time to search for 

the best peer to connect to. In addition, some of the 

above works have considered unstructured network. 

So, it may involve the typical searching problem 

inherent to unstructured networks. Work in [23] is 

quite important because it has considered both 

physical closeness of peers and peers with common 

interest. However, inter-cluster communication 

among clusters of peers with similar interest has not 

been addressed. Works in [23]-25] are all DHT 

based approaches. So, they cannot avoid the 

problems of maintaining the architecture in presence 

of churn.  

     We have used modular arithmetic (residue class) 

to build the clusters with peers of common interests. 

It is a non-DHT based approach. This mathematical 

tool helps in assigning overlay addresses to peers in 

a way that any cluster with peers of common interest 

becomes a complete network (i.e. from graph 

theoretic viewpoint, a complete graph). Therefore, 

the overlay diameter of a cluster is just 1 and hence 

search latency for intra-cluster communication is 

O(1). Diameter of the whole architecture is just (2d 

+ 2) where d is the number of levels of the pyramid 

tree. Therefore, search latency for inter-cluster 

communication is O(d). Note that nodes on the tree 

are only the cluster-heads which represent the 

different distinct resources and value of d only 

depends on the number of such nodes; therefore, d is 

negligibly small compared to the total number of 

peers in the system; note that a cluster may contain 

any number of peers and we do not put any 

restriction on the size of a cluster.   

     Finally, during design phase we have not 

specifically focused on peer heterogeneity; it has 

made our design process very simple. So, there is no 

need to select any super or a popular peer. We do not 

need to consider any capacity constrained 

communication between cluster-heads, because on 

the pyramid tree no cluster-head (a node on the tree) 

can have more than four overlay links and in fact, 

we use a maximum of three links of a cluster-head 

in the proposed broadcast protocol and realistically 

any node usually has these many number of links or 

more. We have earlier mentioned that work is under 

progress for designing capacity constrained 

communication protocols (broadcast and multicast) 

inside a cluster; fact is, our objective is to 

incorporate peer heterogeneity only during 

broadcast and multicast inside a cluster.  

     Finally, our process of churn handling is one of 

the simplest known ones. Since a cluster is a 

complete network, any new join or a leave does not 
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change its diameter; thereby restructuring of a 

cluster is very simple. Besides, location of a new 

cluster-head with a new resource type is always at 

the leaf level. Realistically, we believe that our work 

is a challenge to any existing DHT based 

architecture from the viewpoints of overlay search 

latency and churn handling. Churn handling has 

been discussed in detail in the next section. 

 

6. Conclusion 

     In this paper, we have considered a 2-layer non-

DHT and interest based structured P2P architecture, 

also known as pyramid tree architecture. Residue 

Class based on modular arithmetic has been used to 

realize the overlay topology. Use of such 

mathematical tool has helped in obtaining some very 

important structural properties of the network. Our 

main objective has been to show the superiority of 

our non-DHT and interest-based architecture over 

DHT-based architectures from the viewpoints of 

search latency and data look up complexity.  In 

designing the data lookup protocols, we have used 

some of the structural properties of our architecture, 

e.g. each cluster has a diameter of only 1 overlay hop 

and the diameter of the network is just (2+2d); d is 

the number of levels of the layer-1 pyramid tree and 

d depends only on the number of distinct resources. 

Therefore, the diameter of the network is 

independent of the number of peers in the whole 

network.  As a result, the proposed intra-cluster data 

lookup protocol has constant complexity and 

complexity of inter-cluster data lookup is O(d) if tree 

traversal is used; note that n ≈ 2d and hence d is even 

much smaller than n, the number of distinct resource 

types. The noteworthy point is that search latency is 

independent of the total number of peers present in 

the overlay network unlike any structured DHT-

based network (as a matter fact unlike any P2P 

network, structured or unstructured). We have 

presented both analytical and experimental results 

comparing the proposed ones with some of the most 

noted DHT-based structured overlay networks. 

     We have presented in detail the process of 

handling churns and proposed a simple yet very 

effective technique related to cluster partitioning, 

which, in turn, helps in reducing the number of 

messages required to be exchanged to handle churns. 

Most of the existing interest-based architectures are 

built on an ad-hoc basis without having any solid 

mathematical foundation. Hence, we have 

highlighted the main differences of our interest-

based architecture with some such existing ones 

using architectural aspects only and the related pros 

and cons of these architectures.  

     The present work is part of an ongoing research 

project; currently we are working on designing P2P 

Federation using our model architecture as the basic 

architectural component of the Federation. 
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