
ABricklayer-Tech Report

Department of Computer Science

University of Nebraska-Omaha

PKI 174C, 1110 South 67th Street
Omaha Nebraska, USA

Topy Creek Ventures, LLC

Omaha Nebraska, USA

Winter Code School

Omaha Nebraska, USA

Abstract: Technology is playing an increasingly prominent role in all human endeavors, including education.
Tech enables the realization of educational environments that are adaptive, interactive, and immersive. Such
environments are well-suited for appropriately engaging student populations comprised of digital natives.
Bricklayer is an educational ecosystem whose focus is on the development of visuospatial, mathematical, and
computational abilities foundational to computer science. This article gives an updated report on the core (Ed)Tech
elements comprising the Bricklayer educational ecosystem.

Key-Words: computational thinking, mathematical thinking, visual thinking, spatial reasoning, functional
programming

1 Introduction

In a 2015 Wall Street Journal article, Christopher
Mims wrote “in the future, no profession is untouched
bymachines”. Since then, advances in computer tech-
nology have increasingly impacted markets to align
with this prediction in ever broadening terms. The im-
balance in labor markets between jobs requiring tech
skills and personnel qualified to fill those jobs contin-
ues to grow.

This article presents evolutionary developments in
Bricklayer, an educational tech-based ecosystem cre-
ated to positively contribute to the solution of the ed-
ucational challenges articulated in the previous para-
graph. Bricklayer is a low-threshold infinite-ceiling
system designed to teach math and computer science
in ways that are engaging as well as technically mean-
ingful. This is accomplished through the integration
of a variety of web apps and tools that facilitate a
thoughtful and systematic exploration of construction
techniques underlying 2- and 3-dimensional block-
based art (e.g., pixel art).

As a domain, the visual arts are extremely well
suited for the study of foundational ideas underlying
both computer science and certain forms of mathe-
matics. Stated in its simplest terms, to leverage the
power of the machine, one must be able to create
a small program (measured in lines of source code)
whose execution yields a large number of computa-
tional steps. In order for this to occur, there must
exist a pattern in the computational sequence that is
captured in the program. Thus, it can be argued that
the study of patterns is an integral part of both com-

puter science and mathematics. Visual domains are
extremely suitable for both the informal and formal
study of patterns. Furthermore, the richness of the vi-
sual domain makes it possible for such study to be ap-
propriately tailored to a wide range of audiences (e.g.,
across the K-16 spectrum).

The rest of this paper is organized as follows. Sec-
tion 2 outlines Bricklayer’s educational goals. Sec-
tion 4 takes a look at some educational systems that
share attributes (e.g., computer science, math, inter-
active web apps, gamification) with Bricklayer. Sec-
tion 5 describes advancements to the web apps that lie
on the periphery of Bricklayer’s educational ecosys-
tem. Section 6 describes advancements to Brick-
layer’s core. Section 8 gives an overview of efforts to
create high-end 3D digital experiences and games in-
tegrated with Bricklayer’s educational goals. Section
9 describes how Bricklayer’s extended library can be
used in modeling and simulation. Section 10 con-
cludes.

2 Educational Goals
At the core of the Bricklayer educational ecosystem
is a graphical library implemented in the functional
programming language SML. This library provides a
set of primitives suitable for the construction of 2D
and 3D block-based artifacts within a discrete Carte-
sian coordinate system. The primitives provided in-
clude functions to create a variety of geometric ob-
jects such as lines, rectangles, rings, circles, spheres,
cones, rectangular prisms, and cylinders. Iterators
are also provided supporting the property-based con-

VICTOR WINTER HUBERT HICKMAN ISABELLA WINTER

Received: February 10, 2021. Revised: July 1, 2021. Accepted: July 13, 2021. Published: July 23, 2021.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 92 Volume 20, 2021

struction of artifacts. For example, an 8× 8 checker-
board pattern can be created by using an iterator to
traverse an 8×8 square, placing a black brick in cells
whose coordinates sum to an even number and plac-
ing a white brick otherwise. It should be noted that
property-based construction of artifacts is extremely
powerful and can require non-trivial use of logic.

The rich visual domain accessible through the
combination of the Bricklayer library combined with
the general-purpose computing capabilities of SML
allows for the creation of educational content suitable
for a wide range of audiences. The result (by design)
is a low threshold infinite ceiling system.

2.1 Low Threshold

One of Bricklayer’s primary goals (the low threshold
part of the system) is to provide novices with a gen-
tle introduction to computational thinking, spatial rea-
soning, and coding. This objective was the basis for
choosing a functional programming language in gen-
eral, and SML, in particular, as the language in which
Bricklayer programs would be written. As a language
paradigm, functional programming languages have a
clean and clear semantics. Functional code is well-
suited to algebraic manipulation and other forms of
equational reasoning (e.g., program transformation).
Novices are not confronted with the need to resolve
the mathematical paradox of x = x + 1 allowing
their mathematical background to be more compre-
hensively leveraged. In addition, an orthogonal as-
pect of central importance is that the discussion and
exploration of algorithms for creating visual patterns
(e.g., tessellations) can oftentimes be easily under-
stood in non-verbal terms. This separates the explo-
ration and understanding of algorithms from the chal-
lenges associated with their expression in code. In
this way, the cognitive load associated with the inter-
section of these two activities is reduced.

The Bricklayer ecosystem provides extensive
scaffolding specifically targeting novice program-
mers. For novices, Bricklayer programs are written
in a subset of SML. Level 1 Bricklayer programs are
flat programs in which artifacts are created via a se-
quence of put-function calls. The Level 1 Bricklayer
library provides put-functions capable of creating a
limited set of rectangle shapes (e.g., 4×2, 2×3, etc.)
and position them at locations within a grid. By de-
sign, the shapes and colors provided in Level 1 align
with standard LEGO bricks. This aligns with tactile
(pseudo-code like) activities where students create a
physical artifact on a LEGO baseplate and then recre-
ate the artifact in code. For elementary school stu-
dents, this may be the extent of their engagement with
Bricklayer coding. That being said, it should be noted
that pixel art can be created using Bricklayer’s Level
1 library, and pixel art spans a wide range of com-

plexity. The creation of complex pixel art should be
approached in a systematic and disciplined manner,
and the difficulty of its construction should not be un-
derestimated.

At present, Bricklayer provides 5 levels of pro-
gramming with the first programming level (Level
1) described in the previous paragraph. The sub-
set of SML in these levels collectively includes,
val-declarations, user-defined curried function dec-
larations, let-blocks, conditional expressions, integer
expressions, boolean expressions, relational expres-
sions, tuples, and lists. Using these language con-
structs, most (but not all) of the artifacts described in
section 2.2 can be created.

2.1.1 Scaffolding

Bricklayer’s scaffolding technology consists of 6 in-
teractive web apps: Vitruvia, Quill, Lynx, Mystique,
the Grid, and BLite. All apps were created in response
to observed coding difficulties exhibited by novices
spanning the K16 spectrum. Each app develops and
strengthens a particular set of skills related to the con-
struction of (text-based) SML programs that create
Bricklayer artifacts. Vitruvia introduces Cartesian co-
ordinates and SML language constructs aligned with
Bricklayer’s programming levels. Vitruvia exercises
involve code comprehension. In contrast, Quill ex-
ercises involve code creation, in particular (1) writ-
ing code in general, (2) writing code that adheres
to specific artifact construction algorithms (e.g., a
row-major algorithm for creating pixel art), and (3)
code optimization (e.g., creating an artifact using the
fewest number of function calls). Lynx focuses on
artifact sequences. Specifically, how artifact relates
to or can be constructed from previous artifacts in
the sequence. Lynx seeks to help students answer
the question: “How could I create a Bricklayer arti-
fact an+1 given a function that creates artifact an?”.
Mystique focuses on developing an understanding of
symmetry. More specifically, horizontal and vertical
reflection symmetry as well as 2-fold and 4-fold ro-
tational symmetry. Oftentimes the understanding of
positional calculations (e.g., the endpoints of a line)
as well as more specific code-based activities like pa-
rameter passing (e.g., (0,max) and (max,0)) and the
number of function calls needed can be more clearly
understood though an awareness of symmetry.

The Grid serves as electronic graph paper with
some enhanced features that allows students to sketch
out and thereby develop a clearer understanding of
salient aspects of an artifact before writing a Brick-
layer program that creates the artifact. And finally,
BLite is a block-based programming environment in
which a subset of Bricklayer programs can be cre-
ated in an environment relatively free from the com-
plexity and dangers resulting from syntactic errors.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 93 Volume 20, 2021

The BLite programming environment employs a con-
tinuous execution model and provides extensive vi-
sual and verbal feedback regarding how to create well
formed programs. BLite provides a gentle transition
to text-based Bricklayer programming.

2.2 ...Infinite Ceiling

From a technical standpoint, Bricklayer programs are
SMLprograms that make use of the Bricklayer graph-
ical library. Since SML is a general-purpose program-
ming language, the Bricklayer library can be (and has
been) used to create a wide variety of artifacts includ-
ing (but not limited to): (1) pixel art, (2) geometric
patterns, (3) buildings and other forms of architec-
ture, (4) 2D and 3D space-filling curves, (5) minimal
surfaces like the Moebius strip, and (5) a variety of
fractals includingWolfram’s nested patterns, sponges
(e.g., the Menger sponge), and Julia sets (e.g., the
Mandelbrot set). The general-purpose computing ca-
pabilities of SML also admit the possibility of creat-
ing artifacts within polar coordinate systems such as
Mystic Roses and Cardioids.

In addition, Bricklayer’s cell-based framework is
well suited for creating cellular-automata models and
simulations allowing for the exploration of various
phenomena such as percolation, heat diffusion and the
spread of infectious diseases. Bricklayer can also be
used to study Lindenmayer Systems (L-systems) as
well as elementary cellular automata.

3 Bricklayer Highlights
To date, Bricklayer curriculums have been used in
eastern Nebraska in over 100 schools across the K-
16 spectrum. Thus far, engagement with elementary
and middle schools has primarily involved gifted stu-
dents.

At the elementary level, Bricklayer curriculums
have been used to teach coding as well as math [11].
These Bricklayer curriculums have been shown to in-
crease spatial abilities in students [9].

At the middle school level Bricklayer inquiry-
based learning activities have been developed to teach
various aspects of geometry [13].

At the high school level, preliminary findings in-
dicate that Bricklayer has appeal to broad audiences
[20]. High school level engagements include a year-
long Bricklayer course offered under the title of Math
Analysis. This course culminated with a VR experi-
ence (using the HTC Vive) where student teams cre-
ated Bricklayer artifacts that were then placed in a
Minecraft world. The high school course was offered
for 2 consecutive years and was discontinued after the
instructor was recruited by the tech industry. It should
be noted that such recruiting represents a major con-
cern to hiring and retaining teachers having appro-

priate technical backgrounds necessary for the edu-
cational needs of the future.

Beyond K-12, two courses are being offered at
the University of Nebraska-Omaha (UNO). The first
course is titled Introduction to Mathematical and
Computational Thinking and can be used to satisfy the
GenEd math requirement (e.g., an alternative to Col-
lege Algebra) for non-STEM majors [23]. Currently,
four sections, each section having a cap of 40 stu-
dents, is being offered every semester at UNO. Om-
aha’s Metro Community College also offers this same
course which is recognized (from the perspective of
transfer credit) by UNO as an acceptable substitute
for the UNO course. The second course is titled Intro-
duction to Computational Science and can be counted
towards the fulfillment of the GenEd science require-
ment. Currently, one section, with a cap of 60 stu-
dents, is offered annually at UNO with an anticipated
significant increase in demand. Plans are underway
at the Metro Community College to offer this course
as well.

4 Related Work
Prodigy is a commercially available online multi-
player web-based game that is comprehensively in-
tegrated with math learning standards for grades 1-8.
The math concepts encountered during gameplay are
broadly determined by the indicated grade level of the
player, and the specifics of problem selection (e.g.,
problem difficulty) is determined by an adaptive al-
gorithm, whose goal is to keep students in their zone
of proximal development [17].

Prodigy gameplay revolves around the completion
of quests. In order to complete a quest, a player must
battle their way through pokemon-esque monsters. A
player can get monsters to join their side and be their
pets. These pets can be used to fight other monsters.
The outcome of battles are determined by math prob-
lems, which have a read aloud feature as well as as-
sociated embedded educational videos. If a player
gets the given math problem right, their attack is suc-
cessful; otherwise the attack does nothing. Prodigy
also provides comprehensive feedback in the form of
a teacher/parent dashboard. Feedback includes: (1)
mastery level assessments, (2) individual concept sta-
tus, and (3) overall grade-level completion status (i.e.,
curriculum progress).

Beast Academy is an educational ecosystem, cre-
ated by theArt of Problem Solving, focusing on math
for ages 8-13. Originally, educational content was of-
fline in comic-book form. However, in 2018 Beast
Academy went online. The homepage of the online
ecosystem shows a small 2D mountain town com-
prised of four buildings: a centrally located Class
building, a Theater, a Library, and a Lab. The Class
building contains lessons, reading material and exer-

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 94 Volume 20, 2021

Figure 1: The Vitruia test generator: on the left generating a test, and on the right, displaying test results.

cises. The Theater contains instructional videos. The
Library contains Beast Academy comic books, and
the Lab contains interactive puzzles. Beast Academy
is an excellent example of an engaging and compre-
hensive embedding of educational content into a tech
environment.

Originally, Bootstrap [12] was a programming
language, environment and curriculum designed pri-
marily for middle and high school students. Programs
were written in a subset of Racket, a functional pro-
gramming language, and focused on the creation of
video games involving four principle abstractions: (1)
a player, (2) a target, (3) a danger, and (4) a back-
ground. Bootstrap coding is designed to achieve very
precise learning objectives, namely, to improve abil-
ities in solving algebra word problems of the kind
found in standardized algebra tests given to middle
school students in the US. The Bootstrap philosophy
is based on the premise that in order for transfer of
learning to occur between domains (e.g., coding and
algebra) study must be carefully guided. Towards this
end, students are taught how to use a process called
the (Bootstrap) Design Recipe [8] to design and de-
velop the functions that underly their video games.
This approach has strong ties to key concepts defined
in algebra learning standards.

Bootstrap has evolved in recent years to a larger
educational ecosystem consisting of four modules: an
Algebra module, a Reactive module, a Data Science
module, and a Physics module. Computer science
plays a foundational role in all modules. The original
Bootstrap is now the Bootstrap:Algebra module. The
Bootstrap:Reactive module explores more sophisti-

cated elements of programming, thereby enabling ex-
tensions of the Bootstrap:Algebra game. The Boot-
strap:Data Science module focuses on computational
techniques and statistical methods used to analyze
large datasets. The Bootstrap:Physics module fo-
cuses on building computational models of the phys-
ical world.

Alice[4] is a visual programming language and en-
vironment supporting object-based and event driven
programming. Though visual in nature, Alice 3 pro-
grams can be converted into Java [3]. Alice pro-
grams produce interactive 3D computer animations
whose goal is to tell a story. This storytelling ob-
jective distinguishes Alice1 from traditional environ-
ments whose objectives center around the creation of
a game or puzzle. Storytelling is appealing to a broad
audience, in particular to females. Due to its general
appeal, a strength of storytelling is that is it highly
motivational. The hope being that this will result in
learners spending significant time on task thereby im-
proving learning outcomes. In general, people have
considerable experience with and exposure to story-
telling. This knowledge level of the learner facilitates
the introduction of storyboarding as a design tech-
nique. Thus, Alice positively impacts learner moti-
vation and its instructional design is able to leverage
a higher knowledge level than might otherwise be ex-
pected.

CodeSpells [6][7] is an extensible educational
platform designed to teach Java programming in the
context of video game play (a JavaScript/Blockly ver-

1Recently, scope ofAlice has been expanded to support the creation of

simple games.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 95 Volume 20, 2021

sion is available on Steam). CodeSpells targets learn-
ing spaces outside of the traditional classroom. The
authors believe that it is in such non-institutionalized
settings that lifelong passion for coding is most likely
to develop.

In contrast to educational systems like Boot-
strap[12], which focuses on building video games,
the focus of CodeSpells is on playing a video game.
More specifically, CodeSpells is a non-competitive
role playing game in which the student is a wizard in
a 3D world populated by gnome-like creatures. The
game provides 7 primary spells which include levita-
tion of objects, fire, and flying. Programming consists
of modifying and creating spells, which are written
in Java. Game play is largely unstructured, though
quests can be undertaken to earn badges. The first
level of the game introduces students to Java basics
like method parameters, conditional statements, and
iteration.

5 Advancements in Bricklayer’s

Periphery
This section gives an overview of five web apps: Vit-
ruvia, Mystique, Quill, Lynx, and the Grid. These
web apps are interactive and have been designed (re-
designed in the case of the Vitruvia web app) to be
mobile friendly. As discussed in Section 2.1.1, these
apps provide scaffolding for the acquisition of skills
beneficial to Bricklayer programming. In the subsec-
tions that follow, overviews are provided for each of
these apps.

5.1 Vitruvia
Vitruvia is a web app that focuses on developing an
understanding of Bricklayer library functions as well
as SML programming constructs. A detailed discus-
sion of Vitruvia can be found in [22]. Automatic
test generation is a new capability in which tests can
be created consisting of exercises randomly selected
from a given set of concepts. The image on the left in
Figure 1 shows the creation of a 15 question test con-
sisting of exercises randomly selected from Concepts
1, 3, and 5. The image on the right shows the results
of a test consisting of 10 questions selected fromCon-
cept 1. It should be noted that Mystique, Quill, and
Lynx all have test generators similar to Vitruvia.

5.2 Mystique
Mystique is an interactive web app whose purpose is
to develop a student’s understanding of various forms
of symmetry. Its creation was inspired from an inter-
action with a student who was working on a Brick-
layer program to produce an artifact having various
forms of symmetry. Rather that leveraging the prop-
erties of symmetrywithin the code, the student was re-
calculating coordinates for each symmetric element in

the artifact (e.g., calculating the midpoint of the bot-
tom of a square, then calculating midpoint of the left
side of a square, and so on).

In Mystique, exercise sets exist for (1) horizontal
and vertical reflection symmetry, (2) 2-fold, and 4-
fold rotational symmetry, and (3) a special category of
problem called a completion. Reflection and rotation
exercise sets have two levels of difficulty. Difficulty
level I involves artifacts occupying a 3 × 3 grid, and
difficulty level II involves artifacts occupying a 5× 5
grid.

The general form of a reflection/rotation exercise
is as follows. An exercise is presented in a 2 col-
umn format with an image of an artifact displayed
on the left and an empty interactable grid displayed
on the right. The objective of an exercise is to create
(via mouse clicks) a flipped/rotated version of the dis-
played artifact in the grid. Cell-based algorithms for
reflecting or rotating artifacts can be employed when
solving such problems. However, in order to encour-
age the development and exercise of a student’s spa-
tial abilities, artifacts have been selected to facilitate
flipping or rotating the entire artifact in the “minds
eye”. The exercise shown on the left in Figure 2 is an
example of artifact designed to encourage such ma-
nipulation. The intuition here is that the letter-h is
a familiar shape and can therefore easily be flipped
in its entirety. Other such shapes include arrows, the
letter-s, diagonal lines and so forth.

The last and most difficult problem type in Mys-
tique is called a completion. The exercise shown on
the right in Figure 2 is an example of completion prob-
lem. In a completion problem, a student is given a
partial view of a completed artifact belonging to one
of the following symmetry groups: (1) horizontal re-
flection symmetry, (2) vertical reflection symmetry,
(3) 2-fold rotational symmetry, (4) 2-fold and 4-fold
rotational symmetry, (3) horizontal, vertical, and 2-
fold symmetry, and (4) horizontal, vertical, 2-fold,
and 4-fold symmetry. The objective of a completion
exercise is to create in the grid (via mouse clicks) the
smallest artifact (measured in terms of occupied cell
count) having the desired symmetries. Sufficient in-
formation is provided in the partial artifact view to
enable the completion of the artifact (i.e., solutions
are unique).

5.3 Quill

Quill is an interactive web app designed to provide a
stepping stone between Vitruvia and Bricklayer-lite.
The key difference between Vitruvia and Quill is that
while Vitruvia focuses on reading and executing pro-
grams, Quill focuses on writing/creating programs.

Quill exercises are presented in a 2 column format
with an image of an artifact displayed on the left and
an empty interactable grid displayed on the right. The

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 96 Volume 20, 2021

Figure 2: Mystique: On the left, flipping an artifact horizontally. On the right, solving a completion problem.

Figure 3: Quill: On the left, a Quill artifact creation using overwriting. On the right, enforcement of a row major
construction algorithm.

objective of an exercise is to create (via mouse clicks)
the displayed artifact in the grid. Quill exercises pro-
vide a set of brick shapes (e.g., 1 × 1, 2 × 3, and so
on) and a set of brick colors (e.g., BLUE, YELLOW,
and so on). A brick of a given size and color can be
placed in the via the following mouse click sequence.
First, click on the put2D button. Then click on the
desired brick dimensions. Then click on the desired
color. And finally, click on the cell in the grid where
the lower left corner (the reference point) of the brick
should be placed. In addition to creating the speci-
fied rectangle in the grid, a corresponding text-based
put-function call will be created in the lower section
of the right column. In this way, Bricklayer programs
consisting of a linear sequence of put-function calls
can be created.

Function Call Optimization. Bricklayer does
not place restrictions on the positioning of bricks. For
example, bricks can be placed so that they overlap
(i.e., overwrite) one another or even go off the edge
of the grid. Such capabilities, in particular overwrit-
ing, can be leveraged to optimize the number of put-
function calls needed to create an artifact. Consider
the creation of the artifact shown on the left in Fig-
ure 3. Without overwriting, 8 put-function calls (each
placing a 1×1 brick) are needed to create the artifact.
However, with overwriting the artifact can be created
using using 6 put-function calls: 2 put-function calls
placing 2 black (or white) 2 × 2 bricks followed by
4 put-function calls placing white (alternately black)
unit bricks.

Quill tracks such optimization metrics and pro-
vides problem sets for which artifacts must be created
using no more than a given number of put-function

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 97 Volume 20, 2021

calls. It should be noted that artifact creation involv-
ing such optimizations can require non-trivial analy-
sis.

Pixel Art Creation Algorithms. Empirical evi-
dence indicates that the creation of pixel art in Brick-
layer is a very popular activity among students of all
ages [24]. In a typical pixel art assignment, the stu-
dent is given considerable freedom in the selection
of the pixel art image they wish to create. A quick
Google search of pixel art reveals that the range of
complexity for pixel art images is extremely broad. In
cases involving non-geometric art (e.g., portraits), the
mathematically patternless nature of pixel placement
requires a scribe-like approach to software construc-
tion that is heavily dependent upon reliable human-
centered processes. For the creation of such pixel art
in code, column/row major construction algorithms
are very effective. For a detailed discussion of this
topic see [25].

Quill provides problem sets that enforce the cre-
ation of artifacts through both column and row ma-
jor construction algorithms. This assures that students
have a correct understanding of these algorithms be-
fore attempting the construction of complex pixel art
in code. In Figure 3, the image on the right shows
the result of artifact creation using row major (left-to-
right and bottom-to-top) construction algorithm.

5.4 Lynx
The website http://www.visualpatterns.org/
provides a repository of artifact sequences. An entry
in this repository consists of a sequence of three arti-
facts followed by one or more questions and answers
about properties of the 43rd artifact in the sequence.
The most common question asks how many unit ele-
ments (e.g., 1× 1 bricks) make up the 43rd artifact in
the sequence.

The Lynx web app was inspired, in part, by http:
//www.visualpatterns.org/. Artifact sequences
provide a visual format for developing and under-
standing of incremental change and problem decom-
position. For example, given and artifact sequence
a0, a1, a2 one can write a Bricklayer function that cre-
ates a1. One can then analyze how a2 might be con-
structed by extending, in some way, a single instance
of a1. In other words, what bricks need to be added to
a1 to obtain a2? A corresponding mathematical anal-
ysis can then be done involving the size of the arti-
facts. This type of analysis underlies mathematical
series (e.g., arithmetic series and geometric series).

Lynx has two types of exercises. The first type of
Lynx exercise, shown on the left in Figure 4, consists
of an image showing the first three artifacts of an ar-
tifact series where each artifact ai+1 in the series can
be created by adding bricks to ai. In other words, the

size of the artifact ai+1 is increased through a visual
union involving ai. The student is then asked to cre-
ate, in the empty grid on the right, the next artifact
in the sequence. The second type of Lynx exercise,
shown on the right in Figure 4, focuses on artifact se-
ries where the size of an artifact ai+1 is increased by
expanding the size of an initial seed artifact a0. For
example, the size of a seed artifact a0 can be increased
by replacing each cell in a0 by an n× n square. The
resulting larger artifact will have similar shape to a0.

5.5 The Grid
The Grid[19] is a Bricklayer web app that allows
users to choose a color by clicking on a palette, then
click on selected cells in the displayed grid in order
to fill them with the chosen color. The Grid’s stan-
dard capabilities include: (1) saving images of Grid
artifacts, (2) saving and loading json files containing
models of Grid artifacts, (3) undo and redo operations,
and (4) repositioning an artifact within a Grid (e.g.,
moving an artifact to the left, right, up or down).

The original goals of the Grid were modest: it was
designed to replace the graph paper and coloredmark-
ers that students were using to create pixel art. The
process of creating an image is iterative and often la-
bor intensive. However, since then the feature set of
the Grid has been extended as discussed in the sec-
tions that follow.

5.5.1 Exploring Static and Dynamic Elements of

Pattern
Grid artifacts are static in nature in the same sense
that paintings, drawn on canvas, are static in nature.
In more technical terms, an image of a Grid artifact
captures the state of the Grid (with respect to cell oc-
cupancy) at a given point in time. In such images,
dynamic elements of the construction process (e.g.,
the order in which cells are occupied to create the ar-
tifact) are tacit as is the algorithm used to construct
the artifact, which is left to inference.

To address this limitation, the Grid was extended
to include an advanced set of features and interac-
tions to (1) make explicit various dynamic elements
underlying artifact creation, and (2) facilitate the ex-
ploration and examination of the exposed dynamic el-
ements [21].

When exploring dynamic elements of artifact cre-
ation, three Grid features are of central importance:
Create Frame (copy), Frame Mode (similar to paste),
and Show Graph.

It should be noted that the Grid’s frame metaphor
is similar to, though different from the typical copy-
paste metaphor used in text editors. The notion of
frame draws on abstractions from film-making where
the central focus is on animation. A frame is a finite
function (i.e., an array) from integers (i.e., indexes) to

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 98 Volume 20, 2021

http://www.visualpatterns.org/
http://www.visualpatterns.org/
http://www.visualpatterns.org/

Figure 4: Lynx: On the left, an example of type 1 artifact sequences. On the right, an example of type 2 artifact
sequences.

grid states. At present, the input domain of the frame
function is {0, 1, . . . , 5}. The Grid also supports rudi-
mentary animation of artifact construction (which is
not discussed in this article).

5.5.2 Frames
When selected, the Create Frame button will take a
snapshot of (i.e., capture) the current state of the grid
and associate this state with a particular index (i.e.,
input) of the frame function. The first snapshot will
associate the current grid state with frame 0, the sec-
ond snapshot will associate the current grid state with
frame 1 and so on. We use the term frame artifact to
denote a grid state that is stored in the frame function.

Complimenting the Create Frame button is a
Frame Mode button which can be toggled on and
off. When the Frame Mode is off, mouse clicks can
be used to create an artifact using the standard “one
mouse click for each cell to be colored” approach.
However, when the Frame Mode is on, a mouse click
will result in the placement of the entire contents of
the most recently created frame artifact at the posi-
tion selected by the mouse click. More specifically,
the lower-left corner of the bounding box of the frame
artifact will be positioned at the cell corresponding to
the mouse click.

The frame function facilitates the systematic ex-
ploration and development of artifact construction
techniques based on abstraction and inductive think-
ing. An example is shown in Fig 5. Beginning with
an empty grid, one can use standard construction tech-
niques to create an initial artifact. One can then use
theCreate Frame feature to take a snapshot of the arti-
fact. Taking this initial snapshot will have the effect of
updating the frame function so that the input 0 is asso-
ciated with the artifact (i.e., frame(0) = artifact). With
the Frame Mode on, one can then place copies of the
captured artifact using single mouse clicks. Thus, the

creation of the captured artifact has been abstracted
to a single mouse click. When a desired grid state has
been reached (e.g., the next artifact in a sequence of
imagined artifacts), one can again capture the (entire)
artifact using the Create Frame feature. In this way,
abstract thinking is exercised through the association
of single mouse clicks with artifacts of increasing size
and complexity.

5.5.3 Artifact Graphs

The grid captures all mouse click sequences associ-
ated with the construction of an artifact. This includes
mouse clicks associated with the creation of a frame
artifact. Figure 6 shows the construction graphs re-
sulting from three different lace creation algorithms.
The graph on the upper right results from the frame-
based inductive construction algorithm described in
Figure 5. The graph on the lower left results from
a top-down (recursive) construction algorithm based
on the creation of a sequence of wire-frame trian-
gles having smaller and smaller sizes. And the graph
shown on the lower right results from a cellular au-
tomata construction algorithm based on rule 102.

6 Advancements in Bricklayer’s Core

The creation of 2D and 3D block-based artifacts
through text-based SML programs making use of the
Bricklayer graphics library represents the core of the
Bricklayer ecosystem. The ecosystem’s primary ob-
jective is to develop abilities suitable for artifact cre-
ation in this setting. As a result, all tool and educa-
tional content design and development efforts are ori-
ented towards this goal.

This section describes some key advancements to
Bricklayer’s coding infrastructure.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 99 Volume 20, 2021

Step 1: Using the standard approach, construct the artifact shown using mouse clicks on
cells (0, 0), (1, 0), and (1, 1). Use the Create Frame button to capture the artifact.

Step 2:WithFrameMode set to on, the artifact shown here can be constructed by extending
the artifact created in the previous step through two mouse clicks, one mouse click on cell
(2, 0) and the other on cell (2, 2). After the construction is complete, use the Create Frame
button to capture the artifact.

Step 3: Use an approach similar to Step 2 to create the artifact shown here using through
two mouse clicks, one mouse click on cell (4, 0) and the other on cell (4, 4).

Step 4: Use an approach similar to Step 2 to create the artifact shown here through two
mouse clicks, one mouse click on cell (8, 0) and the other on cell (8, 8).

Figure 5: Frame-based artifact construction of the reverseL Lace.

Figure 6: The construction graphs resulting from
three different lace creation algorithms.

7 BLite

BLite is a Google blockly-based visual program-
ming environment for creating Bricklayer artifacts.
BLite, currently under development, is a signifi-
cant improvement over its predecessor Bricklayer-

lite. It provides a gentle transition from skills de-
veloped through engagement with Bricklayer we-
bapps to the complexity of text-based programming.
In Bricklayer-lite, which is not particularly mobile
friendly, a run button must be clicked in order to see
the results of evaluation. Error messages, which are
only displayed after the run button has been clicked,
are text-based, somewhat cryptic, and not promi-
nently displayed (one would have to scroll down to
see the error message). BLite, on the other hand, is
mobile friendly, provides continuous evaluation and
comprehensive visual feedback. Figure 7 gives a
screenshot of an artifact produced by a well-formed
BLite program as well as an example of an error mes-
sage.

The benefit of continuous evaluation is that a clear
cause-and-effect is established between function pa-
rameters (e.g., rectangle dimensions, color, and posi-
tion) and their (visual) semantics. In BLite, an error
message is displayed themoment a user places a block
resulting in an ill-formed program. Furthermore, the
error message displayed is contains both text based
and visual information. Specifically, the visual infor-
mation displays the error in terms of BLite program
blocks. Error messages are sufficiently comprehen-
sive that a person having no prior background can cre-
ate a well-formed BLite program by simply fixing all
program errors in the manner described by the error
messages.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 100 Volume 20, 2021

Figure 7: BLite: On the left, an artifact produced by a well-formed BLite program. On the right, an example of
an error message.

7.1 The BricklayerIDE

Previously [18][22], text-based Bricklayer program-
ming required a third party text editor. A Bricklayer
install was required to create file associations and per-
form system level actions associated with program
execution. The install for Windows machines was
fairly standard, but the install for MAC OS machines
was complex. Within this infrastructure, updates to
the Bricklayer library required a complete reinstall.
And finally, error messages as well as standard out-
put was displayed in a systemwindow (e.g., command
prompt for windows).

When viewed as a whole, the infrastructure for
executing Bricklayer programs, viewing error mes-
sages, and updating the Bricklayer library was cum-
bersome and unwieldy. These issues were the impetus
behind the development of a Python-based Bricklayer
development environment called the BricklayerIDE.
The BricklayerIDE installs easily on both Windows
and MAC machines without requiring administrator
privileges. It embeds a SML-NJ compiler [2] and is
packaged to be a self-contained installation with zero
external installation requirements.

The BricklayerIDE provides a custom text edi-
tor (with features similar to notepad++) for creating
Bricklayer programs. A Help tab provides links to
online Bricklayer documentation for each Bricklayer
programming level, and also allows the user to check
for Bricklayer library updates. If a newer version of
the Bricklayer library exists, the BricklayerIDE asks
the user if they would like to install the update. If the
user replies “yes” the Bricklayer library is automati-
cally updated (i.e., no reinstall of the BricklayerIDE
is required).

The BricklayerIDE also has a run button and a con-
sole window below the text editor in which error mes-
sages as well as standard output is displayed. To facil-
itate debugging, error messages (produced by SML)
are scanned for line number information and the cor-
responding lines in the program text are flagged. This
has proven to be extremely helpful for novice pro-

grammers.

7.2 Bricklayer’s Color Palette

In the past, LEGO Digital Designer (LDD) and
LDraw served as the primary and secondary tools for
viewing Bricklayer artifacts. Using these tools, unit
bricks were rendered as LEGO bricks. LDD, whose
development has been discontinued by LEGO, is re-
source intensive. A number of classroom settings
where Bricklayer was being taught had thin clients
that were unable to support LDD and as a result the
use of LDraw gained prominence. However, both
these tools require their own software installs, are
LEGO based, and were limited by the LEGO color
palette. For these reasons, a custom browser-based
tool, called WebViewer, was created to serve as the
primary tool for viewing Bricklayer artifacts. The
WebViewer is implemented in javascript using the
three.js graphics library and is bundledwith the Brick-
layerIDE install. It therefore requires no additional
software installation. In the WebViewer, a unit brick
is displayed as a cube (not a LEGO brick). Further-
more, the WebViewer supports the full RGB color
palette. To leverage this capability, the Bricklayer
library was extended to enable the contents of cells
to hold RGB values in addition to LEGO bricks and
Minecraft blocks.

RGB values make the expression of color gradi-
ents possible, which in turn allow for visually mean-
ingful mappings between numbers and colors. For ex-
ample, the RGB color cube shown in Figure 8 was
created by mapping 3D coordinates to RGB values.
Specifically, (x, y, z) → rgb(x, y, z) with an arith-
metic operation (e.g., multiplication) thrown in to ad-
just for the dimensions of the cube. Julia sets rep-
resent a class of artifacts requiring mappings from
real numbers to a color model such as RGB or HSV.
The Julia set shown in Figure 8 was created with
c = −0.835− 0.2321i.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 101 Volume 20, 2021

Figure 8: WebViewer: On the left, an RGB color cube, and on the right a Julia Set with c = −0.835− 0.2321i.

7.3 Output Formats

One of the strengths of Bricklayer is that all artifacts
are composed of unit cubes placed at discrete coordi-
nates. The advantages of imposing such constraints
on a design are numerous and widely recognized. In
Minecraft, standard blocks and their placement con-
form to these constraints. In Fortnite, the placement
of ramps, floors, and walls also conform to these con-
straints.

Unit cubes have relatively simple specifications.
This significantly reduces the complexity associated
with implementing a show function capable of out-
putting Bricklayer artifacts to a targeted file format
(e.g., FBX). Table 1 lists the display capabilities of
Bricklayer.

8 Digital Experiences and

Gamification
Presently, significant development efforts are focused
on the gamification of Bricklayer’s learning objec-
tives. These efforts revolve around the creation of
third-person digital games/experiences developed in
Unity. The showUnity display function and the Kessel
Run are two Unity games that are in the early release
stage.

8.1 The UnityViewer

The Bricklayer library has been extended with a
showUnity display function that can be used launch
a 3D digital experience via an application called
the UnityViewer. The UnityViewer offers a third-
person Unity digital experience (currently under de-
velopment) in which the user enters a digital world
where they can interact with educational content
and summon and destroy their Bricklayer artifact.
A short YouTube video of an early version of the
UnityViewer can be viewed at https://youtu.be/
hRCj7g3gnZU. Figure 9 shows the current version of
theUnityViewerwhich contains (1) a variety of player

spell casting emotes for player teleportation, as well
as for summoning and destroying artifacts, (2) dance
emotes with selectable music, and (3) and magic sur-
faces that when triggered appear underneath the play-
ers feet allowing them to walk into space.

The showUnity function requires that the Uni-
tyViewer has been previously installed (i.e., the Uni-
tyViewer lies outside of the BricklayerIDE). Under
these conditions, an artifact that was created via the
BricklayerIDE can be viewed using the UnityViewer.

8.2 The Kessel Run

The Kessel Run is a third-person Unity game frame-
work in whichVitruvia, Mystique, Quill and Lynx ex-
ercises can be embedded. The Kessel Run incorpo-
rates versions of Bricklayer web apps that have been
slightly modified so that information from the web
app (e.g., whether an exercise has been solved cor-
rectly) is communicated from the web app back to
the Unity game. Inspired by Han Solo’s Kessel run,
the game involves a trek across a sequence of plat-
forms located in a galaxy far far away (see Figure
10). Teleportation from one platform to the next is
enabled by correctly completing the platform’s ac-
tivity, which is contained in the embedded (and in-
teractive) web app, and then walking through a por-
tal which only appears after the exercise has been
completed correctly. Completion of the final plat-
form’s exercise initiates an awards ceremony inwhich
NPCs perform a dance (i.e., an emote). A narrated
YouTube video showing game play can be accessed
at https://youtu.be/huJVMSs_QIA.

Each platform in the Kessel Run is associated with
a specific set of exercises. For example, the first plat-
form is associated with the exercises from Vitruvia
Concept 1, the second platform is associated with the
exercises from Mystique horizontal reflection level
1, and so on. During gameplay, an exercise is ran-
domly selected from the platform’s exercise set and
presented to the player.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 102 Volume 20, 2021

https://youtu.be/hRCj7g3gnZU
https://youtu.be/hRCj7g3gnZU
https://youtu.be/huJVMSs_QIA

show The Bricklayer artifact will be displayed using a browser.

showLDD If LEGO Digital Designer (LDD) is installed, the Bricklayer artifact will be displayed in
LDD.

showLDR If LDraw is installed, the Bricklayer artifact will be displayed in LDR.

showSTL The Bricklayer artifact will be displayed using an available STL viewer (e.g., 3D Viewer
or Print 3D in Windows)

showFBX The Bricklayer artifact will be displayed using an available FBX viewer (e.g., 3D Viewer
or Paint 3D in Windows)

showBinvox While any viewer supporting the binvox file format can be used, this output format was
specifically created for use with Brickr. To view with Brickr, first install Brickr (one time),
create an “open with” file association (one time), and then manually load the desired binvox
file from within Brickr (every time).

showMC This requires that both a Minecraft client and a special Minecraft server are running on
your machine. The Bricklayer artifact will then be created in the Minecraft world that is
currently on the server.

showArduino This show function is in an experimental stage and requires the installation of the Arduino
IDE as well as specific Arduino libraries.

showUnity This show function is not yet publicly available and requires the installation of the Uni-
tyViewer.

Table 1: Bricklayer’s output functions.

Figure 9: Scenes from the UnityViewer. On the top left, solving a reflection exercise and then doing an emote.
On the top right, summoning a Bricklayer artifact.

The scoring function for the Kessel Run is cur-
rently being refined and its design draws upon con-
siderable research that has been conducted regarding
how to best measure performance [16]. Intuitively,
performance (i.e., the scoring function) should, at a
minimum, take into account mouse clicks and time.
It should be noted that exercises (which are randomly
selected) require the creation of artifacts of various
sizes. Thus, the following properties should hold if
a scoring function is to be fair. The scoring function
should not penalize a player for (1) having to create an
artifact that requires more mouse clicks than the arti-
fact created by another player, and (2) requiring more
time to create an artifact that is larger than the artifact
created by another player. To ensure the first prop-
erty, the accuracy (i.e., the number ofmouse clicks for

the optimal solution divided by the number of actual
mouse clicks used to create the current solution) of a
solution is measured. To ensure the second property,
a speed function that measures the number of cor-
rect mouse clicks per second is used. And lastly, the
value of experience, measured in how many times a
player has completed the Kessel Run, is taken into ac-
count. The experience metric rewards practice which
has been shown to positively affect stress relating to
test performance [1].

9 Computational Science
A variety of scientific models and simulations are
based on cellular automata [10]. Diffusion models
and simulations can be used to study heat-diffusion,
spreading of fire, ant behavior, and biofilms [14]. Cel-

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 103 Volume 20, 2021

Figure 10: Kessel Run: Player in front of a Vitruvia exercise (top). Player in front of a portal (lower left), and
player at the awards ceremony at the end of the Kessel Run (lower right).

lular automata have also been used tomodel and study
the formation of biological patterns (e.g., molds), Tur-
ing patterns, as well as adhesive interactions of cells
[5]. Calculations associated with such models and
simulations involve storing numerical values in cells
and performing cell-based calculations using those
values (e.g., computing the average value for a von
Neumann or Moore neighborhood). To support such
models and simulations, the Bricklayer library has
been extended to enable the contents of cells to hold
fixed-point values2.

9.1 The Heat Diffusion Library

The Bricklayer library contains a Heat Diffusion li-
brary providing abstractions and functionality that
support exploring and experimenting with heat diffu-
sion on 2D surfaces.

A basic heat diffusion experiment begins with a
Bricklayer model of a 2D surface (e.g., a table top or

2Afixed-point representation is needed to permit equality comparisons

on the contents of Bricklayer cells and a detailed discussion of this topic

lies outside the scope of this article.

cutting board) and a heat source with a given temper-
ature and a heat diffusion rate. Next, neighborhood
and boundary models must be specified. A neigh-
borhood model can be either a von Neumann model
(4 neighbors) or a Moore model (8 neighbors). A
boundary model can be either an absorbing model,
a reflecting model, or a periodic model. A heat dif-
fusion simulation can then be run for a given num-
ber of simulation steps. The result of a simulation is
a cellular automaton whose cells contain fixed-point
numerical values representing temperature. To visu-
ally display temperature in terms of color, the Heat
Diffusion library provides users the ability to spec-
ify color palettes. In this context, a color palette is a
list of (temperature, color) pairs, where colors are ex-
pressed as RGB values. Given a color palette, linear
interpolation is then used to map all temperature val-
ues in a specified range to corresponding RGB colors.
The Heat Diffusion library also provides some prede-
fined color palettes.

Figure 11 shows three stages of a heat diffusion
experiment. In the first stage, a 1′′ heated brass cube

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 104 Volume 20, 2021

Figure 11: Heat diffusion: A bamboo cutting board on which a heated brass cube has been placed (upper left). A
thermal image of the heat diffusion in the cutting board (upper right). ABricklayer simulation of the heat diffusion
for a model of the cutting board (bottom).

is placed on an 8′′×5.5′′ bamboo cutting board. After
a period of time, the cube is removed and a thermal
image is taken of the bamboo cutting board. Next, an
RGB image color picker is used to reverse engineer
the color mappings in the thermal image. The result-
ing information is used to create a color palette, which
is then used to display the result of the heat diffusion
simulation.

9.2 The Percolation Library
Percolation theory[15] provides an example of the
importance of probabilistic cell-based computational
models and simulations. A representative question in
Percolation theory is as follows. Assume that a liq-
uid is poured on top of some porous material. Will
the liquid be able to make its way from hole to hole
and reach the bottom? Percolation is an important
scientific model because of its numerous applications

to chemistry, biology, statistical physics, epidemiol-
ogy, and materials science. For example, a compos-
ite system comprised of metallic (open) and insulat-
ing (blocked) materials is an electrical conductor if
there is a metallic path from top to bottom. In Brick-
layer, such materials can be modeled as rectangles
(typically squares) in which some cells are occupied
(i.e., blocked) and others are empty (i.e., open). Sim-
ulations involving such 2D models can be useful in
studying the percolation phenomenon. Of particu-
lar interest is the application of Monte Carlo simu-
lations to approximate percolation thresholds. The
determination of such thresholds is an example of a
calculation for which no mathematical solution has
yet been derived. In practice, a standard approach
to answering the classical threshold question involves
a search for a probability p having the property that

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 105 Volume 20, 2021

Figure 12: A randomly generated Bricklayer 2D cell
structure that percolates.

when p-open = p half of the randomly generated in-
stances percolate. It should be noted that the graph
of f(p-open) = percolation-probability is a sigmoid
function that represents a tipping function. What this
means is that for large squares, small departures in
p-open from the percolation threshold will result in
instances that almost always/never percolate.

The Bricklayer library contains a Percolation li-
brary providing abstractions and functionality that
support exploring and experimentingwith percolation
in the context of 2D rectangles. Figure 12 shows an
artifact (displayed using the WebViewer) that perco-
lates in which (1) black blocks represent closed cells,
(2) empty cells represent open cells, and (3) blue
blocks represent water (a flowing liquid). The per-
colation functions provided enable both the manual
and automated search for percolation thresholds. A
key abstraction here is an individual percolation test
– a rectangle (typically a square) that is created in
which cells are populated according to a given p-open
probability and where water is then poured on the top
row. Bricklayer provides functionality supporting the
specification and analysis of individual tests. This in-
cludes metrics related to the number number of occu-
pied cells, the number of open cells on the top/bottom
rows, andwhether the rectangle percolates (which can
also be determined by visual inspection). Using just
this functionality, a question that can be asked is “For
a given test specification3, how many tests must be

3The specification of a percolation test includes a seed value for the

run before a percolating rectangle is encountered?”

The Percolation library allows individual percola-
tion tests to be grouped and their test results aggre-
gated (e.g., for a given p-open probability a rectangle
of a given size percolated x-percent of the time). Test
groups enable a manual search for percolation thresh-
olds and also demonstrate the power/value of simu-
lation. And finally, a Monte Carlo search function is
provided that can be used to automatically search for
threshold values to within a desired tolerance.

10 Conclusion
In order to appropriately engage student populations
of increasingly technological societies, technology
should be intentionally and comprehensively inte-
grated with educational objectives. The interactive
and responsive potential of tech provides a rich en-
vironment for culturally relevant personalized learn-
ing that is well suited for mastery-based learning.
Bricklayer is a growing educational ecosystem in pur-
suit of the previously stated objectives. On Brick-
layer’s periphery are a growing number of webapps
with expanding capabilities especially designed to ad-
dress knowledge gaps related to the Bricklayer cod-
ing. Bricklayer’s core technology begins with BLite
whose purpose is to provide a gentle transition to text-
based programming. The Unity game engine pro-
vides a cross-platform technology supporting the cre-
ation of increasingly engaging games and digital ex-
periences encompassing Bricklayer tech. And lastly,
Bricklayer’s block based visual domain is well suited
for a broad range of educational objectives including:
art, geometric patterns, fractals, math, computer sci-
ence, and computational science.

References:

[1] S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H.
Carr. More on the Fragility of Performance:
Choking Under Pressure in Mathematical Prob-
lem Solving. Journal of Experimental Psychol-
ogy: General, 133(4):584–600, 2004.

[2] Standard ML of New Jersey. https://www.
smlnj.org/, 2020.

[3] T. Daly and E. Wrigley. Learning Java Through
Alice 3. CreateSpace Independent Publishing
Platform, second edition, 2014.

[4] W. Dann, S. Cooper, and R. Pausch. Learning
to Program with ALICE. Pearson Education,
501 Boylston Street, Suite 900, Boston Mas-
sachusetts 02116, third edition, 2012.

random number generator used by p-open.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 106 Volume 20, 2021

https://www.smlnj.org/
https://www.smlnj.org/

[5] A. Deutsch and S. Dormann. Cellular Automa-
ton Modeling of Biological Pattern Formation.
Birkhauser, 2nd edition, 2017.

[6] S. Esper, S. R. Foster, and W. G. Griswold.
CodeSpells: Embodying the Metaphor of Wiz-
ardry for Programming. In Proceedings of the
18th ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE
’13, pages 249–254, NewYork, NY, USA, 2013.
ACM.

[7] S. Esper, S. R. Foster, and W. G. Griswold. On
the nature of fires and how to spark them when
you’re not there. In Proceeding of the 44th
ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’13, pages 305–310,
New York, NY, USA, 2013. ACM.

[8] M. Felleisen, R. B. Findler, M. Flatt, and S. Kr-
ishnamurthi. How to Design Programs: An
Introduction to Computing and Programming.
MIT Press, Cambridge, MA, USA, 2001.

[9] M. Friend, M. Matthews, V., Winter, B. Love,
D. Moisset, and I. Goodwin. Bricklayer: El-
ementary Students Learn Math Through Pro-
gramming and Art. In Proceedings of the 49th
ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’18, pages 628–633,
New York, NY, USA, 2018. ACM.

[10] A. Ilachinski. Cellular Automata - A Discrete
Universe. World Scientific, 2001.

[11] P. Jakopovic, M. Friend, B. Love, and V.Winter.
Changing the game: Teaching elementary math-
ematics through coding. In K. Graziano, editor,
Proceedings of Society for Information Technol-
ogy & Teacher Education International Confer-
ence 2019, pages 55–60, Las Vegas, NV, United
States, March 2019. Association for the Ad-
vancement of Computing in Education (AACE).

[12] E. Schanzer, K. Fisler, S. Krishnamurthi, and
M. Felleisen. Transferring Skills at Solving
Word Problems from Computing to Algebra
Through Bootstrap. In Proceedings of the 46th
ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’15, pages 616–621,
New York, NY, USA, 2015. ACM.

[13] K. Sherwin, V. Winter, and B. Love. Inquiry-
Based Learning Activities for Geometry. In
National Council of Teachers of Mathematics
(NCTM), San Diego, California, 2019. (work-
shop).

[14] A. B. Shiflet and G. W. Shiflet. Introduction
to Computational Science - Modeling and Sim-
ulation for the Sciences. Princeton University
Press, 2nd edition, 2014.

[15] D. Stauffer andA.Aharony. Introduction to Per-
colation Theory. CRC Press, 1994.

[16] A. Vandierendonck. A comparison of methods
to combine speed and accuracy measures of per-
formance: A rejoinder on the binning procedure.
Behavior Research Methods, 49(2):653–673,
2017.

[17] L. S. Vygotsky. Mind in Society: Development
of Higher Psychological Processes. Harvard
University Press, 1978.

[18] V. Winter. Bricklayer: An Authentic Introduc-
tion to the Functional Programming Language
SML. Electronic Proceedings in Theoretical
Computer Science (EPTCS), 2014.

[19] V. Winter. The Grid, 2015.

[20] V. Winter and J. M. Diaz-Kelsey. In Pursuit
of CS-based Educational Content Suitable for
BroaderAudiences. In 2020 ACM Special Inter-
est Group on Information Technology Education
(SIGITE), October 2020.

[21] V. Winter, M. Friend, M. Matthews, B. Love,
and S. Vasireddy. Using Visualization to Re-
duce the Cognitive Load of Threshold Concepts
in Computer Programming. In 2019 IEEE Fron-
tiers in Education Conference (FIE), Oct 2019.

[22] V. Winter, B. Love, and C. Corritore. The brick-
layer ecosystem - art, math, and code. Electronic
Proceedings in Theoretical Computer Science,
230:47–61, Nov 2016.

[23] V. Winter, B. Love, M. Friend, and
M. Matthews. A computer scientist teaches
gen ed math. In 2019 International Conference
on Computational Science and Computational
Intelligence (CSCI), Symposium on Education
(CSCI-ISED), Dec 2019.

[24] V. Winter, B. Love, M. Friend, and
M. Matthews. A computer scientist teaches
gen ed math. In 2019 International Conference
on Computational Science and Computational
Intelligence (CSCI), pages 793–799, 2019.

[25] V. Winter, B. Love, and C. Harris. Delphi:
A source-code analysis and manipulation sys-
tem for bricklayer. In Proceedings - SEKE
2017, Proceedings of the International Confer-
ence on Software Engineering and Knowledge
Engineering, SEKE, pages 456–461. Knowl-
edge Systems Institute Graduate School, 2017.
29th International Conference on Software En-
gineering and Knowledge Engineering, SEKE
2017 ; Conference date: 05-07-2017 Through
07-07-2017.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.12 Victor Winter, Hubert Hickman, Isabella Winter

E-ISSN: 2224-2872 107 Volume 20, 2021

	Introduction
	Educational Goals
	Low Threshold
	Scaffolding

	...Infinite Ceiling

	Bricklayer Highlights
	Related Work
	Advancements in Bricklayer's Periphery
	Vitruvia
	Mystique
	Quill
	Lynx
	The Grid
	Exploring Static and Dynamic Elements of Pattern
	Frames
	Artifact Graphs

	Advancements in Bricklayer's Core
	BLite
	The BricklayerIDE
	Bricklayer's Color Palette
	Output Formats

	Digital Experiences and Gamification
	The UnityViewer
	The Kessel Run

	Computational Science
	The Heat Diffusion Library
	The Percolation Library

	Conclusion

