

In many real-time applications, execution-time is crucially

important. In some applications, the use of a high-level

programming language cannot satisfy the application

requirements, and therefore, assembly language programming

becomes necessary. To achieve the real-time requirements,

algorithms need to be initially developed and tested using a

high-level language and then most of the time-consuming and

highly-repetitive processing functions may be implemented in

assembly language, which can then be called from within the

high-level language program [1-3].

The way in which compilers pass arguments from a main

function in C to the assembly language subroutine in a

particular micro-based system varies from one system to

another [1-6]. Therefore, thorough understanding of how

compilers pass arguments among various functions in a

particular system plays an important role in interfacing high-

level and assembly language. In many micro-based systems, the

most efficient way of passing arguments among various

functions is through stack [2,3]. However, the way the C

compiler passes arguments from the main function in C to a

TMS320C6713 assembly language subroutine is totally

different from the way the C compiler passes arguments in a

conventional microprocessor such as: MC68020 [1-6]. Hence,

it is very important for a user of a TMS320C6713-based

system to properly understand and follow the register

conventions when interfacing C with the TMS320C6713

assembly language subroutine.

Stack of the MC68020 microprocessor plays an important

role in interfacing C and MC68020 assembly language

subroutines. The MC68020 stack is used as a tool for passing

various arguments from the main function in C to the MC68020

assembly language subroutine. Stack pointer of the MC68020

microprocessor (A7) always points to the last item pushed

onto the stack. When an argument is pushed onto the

MC68020 stack, the stack pointer is pre-decremented by the

size of the arguments and then the arguments is pushed onto

the stack; and when an argument is popped off the stack, the

stack pointer is then post-incremented by the size of the

argument. Fig. 1a describes the manner in which the C

compiler pushes the arguments onto the MC68020 stack.

In Example 1, the C function (asmf) is translated into

MC68020 assembly language subroutine as shown in Fig. 1b.

MC68020 STACK

Value of j

Value of i

A7-1610(Finally)

A7-1210

A7-8

A7-4

A7(Initially)

High-Address

Low-Address

Address of k

Return Address

8-bit

main()
{

int i,j,k;

i=5;

asmf(i, j, &k);
}

#include <stdio.h>
extern asmf ();

j=6;

k=8;

{
a = a + b;

b = b + a;

}

asmf (int a, int b, int *c)

*c = *c + b;

Example 1

Fig.1a Show how the C compiler places arguments on the MC68020 stack

Interfacing C and TMS320C6713 Assembly Language (Part II)

ABDULLAH A. WARDAK,
Southampton Solent University, Southampton,

UNITED KINGDOM,

Abstract— In this paper, an interfacing of C and the assembly language of TMS320C6713 is presented.
Similarly, interfacing of C with the assembly language of Motorola 68020 (MC68020) microprocessor is also
presented for comparison. However, it should be noted that the way the C compiler passes arguments from the
main function in C to the TMS320C6713 assembly language subroutine is totally different from the way the C
compiler passes arguments in a conventional microprocessor such as MC68020. Therefore, it is very important
for a user of the TMS320C6713-based system to properly understand and follow the register conventions and
stack operation when interfacing C with the TMS320C6713 assembly language subroutine. This paper describes
the application of special registers and stack in the interfacing of these programming languages. Working
examples of C and their implementation in the TMS320C6713 assembly language are described in detail.
Finally, the concept presented in this paper has been tested extensively by examining different examples under
various conditions and has proved highly reliable in operation.

Keywords—Interfacing, high-level language, aseembly language.

Received: December 4 , 2020. Revised: April 11, 2021. Accepted: April 23, 2021. Published: April 30, 2021.

1. Introduction 2. Interfacing C and MC68020 Assembly

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 74 Volume 20, 2021

The C compiler passes arguments from the main function in

C into TMS320C6713 assembly language subroutine using

THREE different techniques. In the case of pure C

programming, the users of the TMS320C6713-based system

do not need to know how the C compiler passes arguments

among various C functions. However, in the case of

interfacing C with the TMS320C6713 assembly language

subroutine, it is vitally important for a user to understand how

the C compiler passes the arguments from a C function into a

TMS320C6713 assembly language subroutine. For more

information regarding the TMS320C6713 digital signal

processor, refer [6,11-14].

In this method, the C compiler places the arguments inside

special registers in a particular manner. The user of the

TMS320C6713-based system needs to be aware of this fact

and use it correctly when interfacing C with the

TMS320C6713 assembly language. This method is presented

comprehensively in [1].

In the following sections, the second method (passing

arguments through registers and stack) is presented in detail.

In this case, the C compiler places arguments in designated

registers and also on the stack of the TMS320C6713-based

system. An argument that is not declared in the prototype

function and whose size is less than the size of integer is

passed as an int. An argument that is a float is passed as

double if it has no prototype declared. A structure argument is

passed as the address of the structure. For a function declared

with an ellipsis indicating that it is called with varying

numbers of arguments, the convention is slightly modified.

The last explicitly declared argument is placed on the stack, so

that its stack address can act as a reference for accessing the

undeclared arguments.

 In Example 2, the C compiler places the value of i in

register A4 and the values of j, k and the address of m on the

stack (see Fig. 2a). As can be seen from the stack-layout, each

of the arguments (value of j, value of k and the address of m)

occupy 4 bytes on the stack, starting with the first left

argument (address of m in this case). The difference between

the use of parenthesis and the use of square bracket should be

noted in the implementation of the assembly language

subroutine (see Fig. 2b).

The run-time stack grows from the high addresses to the

low addresses as shown in Fig. 2a. The C compiler uses

register B15 as a stack pointer (SP) to manage the stack and it

points to the next unused location on the stack. Note also, that

during push, the stack pointer is post-decremented and during

pull, the stack pointer is pre-incremented [4].

As shown in example-3, the first three arguments (the

values of i, j, k) are placed in registers A4, B4 and A6

respectively; and the remaining three arguments (address of

m, values of n and p) are placed on the stack (see Fig. 3a).

The use of ellipsis in the prototype function (Fig. 3a) indicates

that the C Compiler will certainly place some arguments onto

the TMS320C6713 stack. As shown in the prototype, the last

explicitly declared argument will be the start of the arguments

which the C compiler will place onto the stack. In this case,

the first 3 arguments will be placed in A4, B4 and A6

respectively; and the remaining 3 arguments will be placed

onto the stack (see Fig. 3a).

For better understanding, the C function (asmf) is converted

into the TMS320C6713 assembly language subroutine as

shown in Fig. 3b. The return address to the calling function is

placed in B3 and for this reason a branch to B3 needs to be

performed at the end of the assembly language subroutine. It is

worth mentioning that the way the C compiler passes

arguments from the calling function to the called function in

the TMS320C6713-based environment is totally different

from the way the C compiler passes arguments in a

conventional microprocessor such as MC68020 [1-3]. It

should be noted that this example gives the same correct result

when the TMS320C6713 DSK board is operated either in

little-endian or in big-endian mode.

In example-4, the floating-point values of x and y are

placed in registers A4 and B4 respectively; while the floating-

point value of m and the address of z are placed on the stack

(see Fig. 4a). Four arguments are passed to the C function

(asmf) and only the types of three arguments are explicitly

declared in the prototype function, therefore, the C compiler

places the last two arguments on the stack as shown in Fig. 4a.

The C function (asmf) is converted into the TMS320C6713

assembly language subroutine as shown in Fig. 4b. It should

be noted that this example works correctly and produces the

correct result in both little-endian and big-endian mode of the

TMS320C6713 DSK board.

Example-5 demonstrates how the C compiler places the

floating-point values of the arguments x and y in registers A4

and B4 respectively; and places the remaining arguments on

the stack. It should be noted that the floating-point value of z

occupy 4 bytes on the stack and this is because the type of z is

explicitly declared in the prototype function; however, the

floating-point value of m occupy 8 bytes on the stack and it is

stored as 32-LSB/32-MSB as shown on the stack. The address

3. Interfacing C and TMS320C6713

Assembly

3.1 Passing Arguments Through Registers Only

3.2 Passing Arguments Through
 Registers and Stack

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 75 Volume 20, 2021

of z occupy 4 bytes as it is the address. Appropriate

TMS320C6713 assembly language instructions such as single-

precision are used for floating-point data manipulation. The

conversion of the C function (asmf) into the TMS320C6713

assembly language is presented in Fig. 5b. It should be noted

that in this example, the endianness of the TMS320C6713

DSK board also does not matter.

In example-6, the C compiler places the floating-point

values of the arguments x and y in registers A4 and B4

respectively; and places the remaining arguments on the stack.

It should be noted that the floating-point value of z occupy 4

bytes on the stack and this is because the type of z is explicitly

declared in the prototype function; however, m occupy 8 bytes

on the stack and it is stored as 32-MSB/32-LSB as shown on

the stack. The address of z occupy 4 bytes as it is the address.

Appropriate TMS320C6713 assembly language instructions

such as single-precision are used for floating-point data

manipulation. The conversion of the C function (asmf) into

the TMS320C6713 assembly language is presented in Fig. 5b.

It should be noted that in this example, the endianness of the

TMS320C6713 DSK board also does not matter.

In example-7, the address of the double-precision values of

the arguments n and the double-precision value of y are placed

in register A4 and in register pair B5:B4 respectively; while

the double-precision values of y, z and m are placed onto the

stack (see Fig. 7a). Appropriate assembly language

instructions such as double-precision addition (ADDDP) and

double-precision load (LDDW) are employed for data

manipulation. The reader needs to pay attention to the way

the final double-precision value of n is stored into the memory

when the TMS320C6713 board is operated in the little-endian

mode (see Fig. 7b).

Example-8 demonstrates the stack layout and the

implementation of asmf function in big-endian mode. It

should be noted that there are different layouts of the

TMS320C6713 stack in little-endian and in big-endian modes.

The reader needs to pay attention to the way the final double-

precision value of z is stored into the memory when the

TMS320C6713 board is operated in big-endian mode.

Thorough comparison of examples 7 and 8 will clarify the

difference using the two modes of the board.

In example-9, the long values of the arguments x and y are

placed as 64-bits in register pairs A5:A4 and B5:B4

respectively; and the long values of z and m and the address of

n is placed on the stack as shown in Fig. 9a. Appropriate

assembly language instructions are employed for data

manipulation. The reader is encouraged to pay lots of attention

to the implementation of the C function (asmf) into the

TMS320C6713 assembly language as shown in Fig. 9b,

especially to the way the final long value of z is stored in the

memory in little-endian mode.

Finally, example-10, implements the C function (asmf) into

TMS320C6713 assembly language. It should be noted that

there are different layouts of the TMS320C6713 stack in little-

endian and in big-endian modes. The reader needs to pay

attention to the way the final long-value of n is stored into the

memory when the TMS320C6713 board is operated in big-

endian mode. Thorough comparison of examples 9 and 10 will

highlight the difference using the two modes of the board.

TMS320C6713 STACK

{
a = a + b;

b = b + a;

}

asmf (int a, int b, int c, int *d)

c = c + b;

A4
stack
stack

extern asmf (int , int , ...);
main()

{

int i, j, k,m;

i=8;

j=10;

k=12;

m=20;

asmf(i,j,k,&m);
}

stack

*d = *d + c;

SP–0x8

High-Address

Low-Address

SP (Initially)

Byte

Address of m

Value of k

SP–0xC (Finally)
Unused

location

Value of j
SP–0x4

Example 2

Prototype

Fig.2a Shows how the C compiler places arguments in registers and on C6713 stack.

.global _asmf

SP .set B15

.text

_asmf: LDW *+SP(0x4),A0 ;A0=j=b=10

NOP 5 ;5 delay slots

LDW *+SP(0x8),A1 ;A1=Value of k=c=12

NOP 5 ;5 delay slots

LDW *+SP(0xC),A2 ;A2=Address of m

NOP 5 ;5 delay slots

LDW *A2,A3 ;A3=m=*d=20

NOP 5

ADD.D1 A4,A0,A4 ;A4=a=a+b=8+10=18

NOP 5

ADD.D1 A0,A4,A0 ;A0=b=b+a=10+18=28

NOP 5

ADD.D1 A1,A0,A1 ;A1=c=c+b=12+28=40

NOP 5

ADD.D1 A3,A1,A3 ;A3=m=*d=*d+c=20+40=60

NOP 5

STW.D1 A3,*A2 ;Store the final value of m

NOP 5

B B3 ;return to the calling function

NOP 5 ;5 delay slots for branch

Fig.2b Translation of the above C function (asmf) into C6713 assembly language.

Following is the screen-shot of the CCS after running the

code in Example 2.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 76 Volume 20, 2021

A4
B4
A6

extern asmf (int , int , int , int *, ...);
main()

{

int i,j,k,m,n,p;

i=8;

j=10;

k=12;

m=20;

n=30;

p=40;

asmf(i,j,k,&m,n,p);
}

stack
stack
stack

SP–0x8

High-Address

Low-Address

SP (Initially)

Byte

Address of m

Value of n

SP–0xC (Finally)
Unused

location

{
a = a + b;

b = b + a;

}

asmf (int a, int b, int c, int *d, int e, int f)

c = c + b;

Value of p

SP–0x4

*d = *d + c;

e = e + d;

TMS320C6713 STACK

f = f + e;

Example 3

Prototype

Fig.3a Shows how the C compiler places arguments in registers and onto TMS320C6713 stack.

Following is the screen-shot of the CCS after running the

code in Example 4.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 77 Volume 20, 2021

A4
B4
stack

extern float asmf (float , float , float , ...);
main()

{

float x, y, z, m, n;

x=4.3;

y=2.6;

z=5.3;

m=6.5;

n=7.8;

asmf(x,y,z,m,&n);
}

stack
stack

SP – 0xC

TMS320C6713 STACK

High-Address

Low-Address

SP (Initially)

Byte

Address of n

32-MSB of m

SP – 0x10 (Finally)
Unused

location

{
a = a + b;

b = b + a;

asmf (float a, float b, float c, float d, float *e)

c = c + b;

Value of z
SP – 0x8

32-LSB of m
SP – 0x4

d = d + c;

*e = *e + d;
}

Example 5

Prototype

Fig.5a Indicates how the C compiler places arguments in registers and onto TMS320C6713 stack.

N.B (Little-Endian)
.global _asmf

SP .set B15

.text

_asmf: LDW *+SP(0x4),B0 ;B0=z=5.3

NOP 5 ;5 delay slots

LDW *+SP(0x8),A0 ;A0=32-LSB of m

NOP 5 ;5 delay slots

LDW *+SP(0xC),A1 ;A1=32-MSB of m

NOP 5 ;5 delay slots

LDW *+SP(0x10),A2 ;A2=Address of n

NOP 5 ;5 delay slots

MV A2,A5 ;Save address of n

NOP 5

LDW.D1 *A2,A3 ;A3=n=7.8

NOP 5

ADDSP.L1X A4,B4,A4 ;A4=x=x+y=4.3+2.6=6.9

NOP 7 ;8 delay slots

ADDSP.L2X B4,A4,B4 ;B4=y=y+x=2.6+6.9=9.5

NOP 7

ADDSP.L2 B0,B4,B0 ;B0=z=z+y=5.3+9.5=14.8

NOP 7

SPDP.S2 B0,B1:B0 ;B1:B0=z=5.3

NOP 7

ADDDP.L1X A1:A0,B1:B0,A1:A0 ;A1:A0=m=m+z=6.5+14.8=21.3

NOP 8

DPSP.L2 B1:B0,B0 ;B0=z=5.3

NOP 7

SPDP.S1 A3,A3:A2 ;A3:A2=z=5.3

NOP 7

ADDDP.L1 A3:A2,A1:A0,A3:A2 ;A3:A2=n=n+m=7.8+21.3=29.1

NOP 8

DPSP.L1 A3:A2,A2 ;A2=n=29.1

NOP 7

STW.D1 A2,*A5 ;Store the final value of n

NOP 5

B B3 ;return to the calling function

NOP 5 ;5 delay slots for branch

Fig.5b Translation of the above C function (asmf) into TMS320C6713 assembly language.

N.B (Big-Endian)
.global _asmf

SP .set B15

.text

_asmf: LDW *+SP(0x4),B0 ;B0=z=5.3

NOP 5 ;5 delay slots

LDW *+SP(0x8),A0 ;A0=32-LSB of m

NOP 5 ;5 delay slots

LDW *+SP(0xC),A1 ;A1=32-MSB of m

NOP 5 ;5 delay slots

LDW *+SP(0x10),A2 ;A2=Address of n

NOP 5 ;5 delay slots

MV A2,A5 ;Save address of n

NOP 5

LDW.D1 *A2,A3 ;A3=n=7.8

NOP 5

ADDSP.L1X A4,B4,A4 ;A4=x=x+y=4.3+2.6=6.9

NOP 7 ;8 delay slots

ADDSP.L2X B4,A4,B4 ;B4=y=y+x=2.6+6.9=9.5

NOP 7

ADDSP.L2 B0,B4,B0 ;B0=z=z+y=5.3+9.5=14.8

NOP 7

SPDP.S2 B0,B1:B0 ;B1:B0=z=5.3

NOP 7

ADDDP.L1X A1:A0,B1:B0,A1:A0 ;A1:A0=m=m+z=6.5+14.8=21.3

NOP 8

DPSP.L2 B1:B0,B0 ;B0=z=5.3

NOP 7

SPDP.S1 A3,A3:A2 ;A3:A2=z=5.3

NOP 7

ADDDP.L1 A3:A2,A1:A0,A3:A2 ;A3:A2=n=n+m=7.8+21.3=29.1

NOP 8

DPSP.L1 A3:A2,A2 ;A2=n=29.1

NOP 7

STW.D1 A2,*A5 ;Store the final value of n

NOP 5

B B3 ;return to the calling function

NOP 5 ;5 delay slots for branch

Fig.6b Implementation of the above C function (asmf) into TMS320C6713 assembly language.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 78 Volume 20, 2021

SP-0xC

TMS320C6713 STACK

High-Address

Low-Address

SP (Initially)

Byte

32-LSB of m

SP-0x1C (Finally)
Unused location

{

*a = *a + e;

b = b + c;

}

asmfunc (double *a, double b, double c, double d, double e)

c = c + b;

SP-0x8

32-MSB of m

SP-0x4

d = d + c;

e = e + d;

A4
B5:B4
stack

extern double asmf (double *, double , double , ...);
main()

{

double x, y, z, m, n;

x=4.3;

y=2.6;

z=5.3;

m=6.5;

n=7.8;

asmf(&n,x,y,z,m);
}

stack
stack

32-MSB of z

32-LSB of z

SP-0x14

SP-0x10
32-MSB of y

32-LSB of y

Example 7

Prototype

Fig.7a Describes how the C compiler places arguments in registers and onto TMS320C6713 stack

Following is the screen-shot of the CCS after running the

code in Example 7.

.global _asmf

SP .set B15

.text

_asmf: LDDW *+SP(0x8),A1:A0 ;A1:A0=64-bits of

NOP 7

LDDW *+SP(0x10),A3:A2 ;A3:A2=64-bits of z

NOP 7

LDDW *+SP(0x18),A7:A6 ;A7:A6=64-bits of m

NOP 7

LDDW *A4,A9:A8 ;A9:A8=n=7.8

NOP 7

ADDDP.L2X B5:B4,A1:A0,B5:B4 ;B5:B4=x=x+y=4.3+2.6=6.9

NOP 7

ADDDP.L1X A1:A0,B5:B4,A1:A0 ;A1:A0=y=y+x=2.6+6.9=9.5

NOP 7

ADDDP.L1 A3:A2,A1:A0,A3:A2 ;A3:A2=z=z+y=5.3+9.5=14.8

NOP 7

ADDDP.L1 A7:A6,A3:A2,A7:A6 ;A7:A6=m=m+z=6.5+14.8=21.3

NOP 8

ADDDP.L1 A9:A8,A7:A6,A9:A8 ;A9:A8=n=n+m=7.8+21.3=29.1

NOP 8

STW.D1 A9,*A4++ ;Store 32-MSB of final value of n

NOP 5

STW.D1 A8,*A4 ;Store 32-LSB of final value of n

NOP 5

B B3 ;return from func to addr in B3

NOP 5 ;5 delay slots for branch

N.B (Big Endian)

Fig.8b Translation of the above C function (asmf) into TMS320C6713 assembly language.

A5:A4
B5:B4
stack

extern long asmf (long , long , long , ...);
main()

{

long x, y, z, m, n;

x=4;

y=2;

z=5;

m=6;

n=7;

asmf(x,y,z,m,&n);
}

stack
stack

SP-0xC

TMS320C6713 STACK

High-Address

Low-Address

SP (Initially)

Byte

32-LSB of m

SP-0x18 (Finally)
Unused location

SP-0x8

32-MSB of m
SP-0x4

32-MSB of z

32-LSB of z
SP-0x10

Address of n

{
a = a + b;

b = b + a;

}

asmf (long a, long b, long c, long d, long *e)

c = c + b;

d = d + c;

*e = *e + d;

Example 9

Prototype

Fig.9a Shows how the C compiler places arguments in registers and onto the C6713 stack.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 79 Volume 20, 2021

N.B (Little Endian).global _asmfunc

SP .set B15

.text

_asmf: LDDW *+SP(0x8),A1:A0 ;A1:A0=64-bits of z=5

NOP 8

LDDW *+SP(0x10),A3:A2 ;A3:A2=64-bits of m=6

NOP 8

LDW *+SP(0x18),A6 ;A6=Address of n

NOP 5

MV A6,A8

NOP 5

LDDW *A6,A7:A6 ;A7:A6=64-bits of n=7

NOP 7

ADD.L1X B4,A5:A4,A5:A4 ;A5:A4=x=x+y=4+2=6

NOP 7

ADD.S1X B5,A5,A5 ;A5:A4=x=x+y=4.3+2.6=6.9

NOP 7

ADD.L2X A4,B5:B4,B5:B4 ;B5:B4=y=y+x=2+6=8

NOP 7

ADD.S2X A5,B5,B5 ;B5:B4=y=y+x=2+6=8

NOP 7

ADD.L1X B4,A1:A0,A1:A0 ;A1:A0=z=z+y=5+8=13

NOP 7

ADD.S1X B5,A1,A1 ;A1:A0=z=z+y=5+8=13

NOP 7

ADD.L1 A2,A1:A0,A3:A2 ;A3:A2=m=m+z=6+13=19

NOP 8

ADD.S1 A3,A1,A1 ;A3:A2=m=m+z=6+13=19

NOP 8

ADD.L1 A2,A7:A6,A7 :A6;A7:A6=n=n+m=7+19=26

NOP 8

ADD.S1 A3,A7,A7 ;A7:A6=n=n+z=7+19=26

NOP 8

STW.D1 A6,*A8++ ;Store final value of n

NOP 5

STW.D1 A7,*A8 ;Store final value of n

NOP 5

B B3 ;return from func to addr in B3

NOP 5 ;5 delay slots for branch

Fig.9b Translation of the above C function (asmf) into C6713 assembly language.

Following is a screen-shot after running example 9.

A5:A4
B5:B4
stack

extern long asmf (long , long , long , ...);
main()

{

long x, y, z, m, n;

x=4;

y=2;

z=5;

m=6;

n=7;

asmf(x,y,z,m,&n);
}

stack
stack

SP-0xC

TMS320C6713 STACK

High-Address

Low-Address

SP (Initially)

Byte

32-MSB of m

SP-0x18 (Finally)
Unused location

SP-0x8

32-LSB of m
SP-0x4

32-LSB of z

32-MSB of z
SP-0x10

Address of n

{
a = a + b;

b = b + a;

}

asmf (long a, long b, long c, long d, long *e)

c = c + b;

d = d + c;

*e = *e + d;

Example 10

Prototype

Fig.10a Shows how the C compiler places arguments in registers and onto C6713 stack.

Following is a screen-shot after running example 10

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 80 Volume 20, 2021

The concept of interfacing C with the TMS320C6713

assembly language has been fully described. The concept

presented in this paper will be essential and of great interest to

many users who are employing a micro-based system for their

applications; and especially for those users who want to use

the TMS320C6713-based system for assembly language

programming and signal processing.

It is strongly recommended to the users of the

TMS320C6713-based systems to properly understand and

follow the register conventions and the use of C6713 stack

when interfacing C with the TMS320C6713 assembly

language subroutine.

The presented software and concept have been tested

thoroughly by examining different types of examples under

various conditions and has proved highly reliable in operation.

[1] A.A. Wardak, “Interfacing C and TMS320C6713 Assembly

Language (Part-I)”. CESSE 2009 : International Conference on

Computer, Electrical, and Systems Science, and Engineering,
January 28-30, 2009, Dubai, United Arab Emirates

 [2] A. A. Wardak, G.A. King, R. Backhouse, “Interfacing high-level
and assembly language with microcodes in 3-D image generation”,

Journal of Microprocessors and Microsystems, vol. 18, no.4, May

1994.

 [3] A.A. Wardak, “Real-Time 3-D Image Generation with

TMS320C30 EVM”, Journal of Microcomputer Applications, vol.
18, pp. 355-373, 1995, Academic Press Limited.

[4] TMS320C6000 Optimizing C Compiler User’s Guide,
SPRU187K, Texas Instruments, Dallas, TX, 2002. Section 8, p. 4.

[5] Kyle A., Ashan K., “Data Movement Between Big-Endian and

Little-Endian Devices”. Freescale Semiconductor, Inc. Freescale
Semiconductor, Inc. San Jose, CA Austin, TX, 2008

[6] R Chassaing, Digital Signal Processing and Applications with the

6713 and C6416 DSK, Wiley, New York, 2005, Chapter 1.

[7] TMS320C6000 Programmer’s Guide, SPRU198G, Texas

Instruments, Dallas, TX, 2002.

[8] R. Bannatyne and C. Viot, “Introduction to Microcontroller - Part

1”, Wescon '98 : IEEEconference proceedings, Anaheim
Convention Center, Anaheim, California, September 15-17, 1998,

pp. 350-360.

[9] R. Bannatyne and C. Viot, “Introduction to Microcontroller - Part

2”, Northcon '98 : IEEE conference proceedings, Washington State
Convention Center, Seattle, Washington, October 21-23, 1998, pp.

250-354.

[10] S. Menhart, “Transitioning a Microcontroller Course from

Assembly Language to C”, Proceedings of the 2004 American

Society for Engineering Education, Midwest Section Conference

[11] TMS320C6211 Fixed-Point Digital Signal Processor–

TMS320C6711 Floating-Point Digital Signal Processor,
SPRS073C, Texas Instruments, Dallas, TX, 2000.

[12] TMS320C6713 Floating Point Digital Signal Processor, Literature

Number: SPRS186L -December 2001 - Revised November 2005

[13] TMS320C6000 Code Composer Studio Tutorial, SPRU301C,

Texas Instruments, Dallas, TX, 2000.

[14] TMS320C6000 Assembly Language Tools, User's Guide,

4. Conclusions

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.9 Abdullah A. Wardak

E-ISSN: 2224-2872 81 Volume 20, 2021

