

Method for the Integration of Applications based on Enterprise Service
Bus Technologies

JOSÉ VICENTE BERNÁ MARTÍNEZ1, CLAUDIA IVETTE CASTRO ZAMORA2, FRANCISCO

MACIÁ PERÉZ3, CARLOS RAMÓN LÓPEZ PAZ4
1,3Higher Polytechnic School, Universidad de Alicante (University of Alicante), San Vicente del

Raspeig, Spain
2,4Faculty of Computer Engineering, Universidad Tecnológica de La Habana (Havana University of

Technologies José Antonio Echeverría), Havana, Cuba
1jvberna@ua.es, 2ccastro@ceis.cujae.edu.cu, 3pmacia@ua.es, 4carlosr@ceis.cujae.edu.cu

Abstract: - Companies have developed and acquired multiple business software applications to respond to new
organizational requirements. In many cases, the applications have logical dependencies or are used in isolation.
This practice increases the possibility of errors, produces inconsistencies and duplications of data, and hinders
management of the organization's processes. To take into account the complexities of an integration initiative in
terms of integration technologies, staff capabilities and the business applications themselves, organizations that
are new to Enterprise Application Integration should follow guidelines and best practices to implement their
integration solutions in an integrated manner. The present work conceptualizes a method for developing an
integration solution based on Enterprise Service Bus technologies. To achieve this objective, a case study
methodology is used for the conception and evaluation of the proposal in terms of systematizing the lessons
learned in the development of projects to integrate applications in multiple Cuban organizational sectors in the
2013-2016 period. The proposed method is independent of technology and is modelled as a process in terms of
stages, activities and artefacts. The results obtained offer a mechanism that guides and favours the development
of a service-based flexible integration solution using integration technologies such as the Enterprise Service
Bus.

Key-Words: - Application Integration, Enterprise Service Bus, web services

1 Introduction
It is common for the information technology areas
of organizations to identify situations such as
duplicate information, growing availability of
business software applications with a diversity of
information technologies, out-dated information and
the performance of unnecessary manual activities in
their information solutions [1]. These situations are
due in part to the implementation by companies of
new initiatives to automate processes without
adequately reviewing existing technologies, logic
and information systems deployed in the
organization. There are also cases where
intercommunication of applications is essential due
to changes in the structure of the organization or its
business model, such as those that occur in the
processes of the merger and acquisition of
companies. One solution to these problems is
Enterprise Application Integration (EAI).

Linthicum [2] defines EAI as the unrestricted
exchange of information between two or more
business applications, in which a group of
technologies allow the exchange and flow of
information between different applications and

business processes in the same company or between
different companies. EAI can also be viewed as an
approach that provides methodologies, technologies
and tools that help reduce the cost of integration
[3,4].

To satisfy this need, different software providers
offer a set of proprietary EAI tools that simplify the
different integration tasks and eliminate point-to-
point connections between applications (messaging
broker). Recently, the adoption of web services
technology and Service Oriented Architecture has
changed the paradigms of both application
development and integration [5]. Thus, web
services, while not an alternative to EAI
technologies, are a significant part of them [6].

EAI is more than a set of tools such as a
messaging broker and technologies such as web
services. EAI also involves plans and methods that
are applied in a structured way to integrate business
processes into IT infrastructure [6]. Lam and
Shankararaman [7] define three types of integration
components: the legacy systems that need to be
integrated, the manual processes that require the
development of new IT systems for automation, and

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 181 Volume 17, 2018

the automation of manual processes that extend
legacy systems.

The object of integration is business applications.
Business applications are defined as systems that
coordinate activities, decisions and knowledge
through different functional levels in an
organization in a specific business sector [8],
whether for a general or specific purpose. This type
of system is classified as any business software
comprising sales systems, material management
systems, project management systems, production
planning systems, human resources systems, supply
chain management systems, and general resource
planning systems such as Enterprise Resource
Planning (ERP) systems.

The implementation of an application integration
solution is facilitated by procedures that organize
the integration process. In addition, these procedures
should focus on formalizing good practices as a
means to reuse previous experiences and adapt to
new additions of customers and suppliers [9]. A
formalized integration process is even more justified
when a company does not have specialized
personnel in the area of integration.

The levels of formalization of good integration
practices can be conceptualized with the case study
method [10]. This is an observational research
method based on the projection and collection of
multiple sources of evidence that rigorously allows
both the evaluation and construction of theories
from the exploration, description and explanation of
phenomena in their actual context. In this work, the
phenomenon under investigation is the diversity of
scenarios of EAI.

Thus, this paper analyses different integration
solutions developed in academic-business contexts
in the period 2013-2016 as case studies. The results
obtained are systematized as an integration process
that has value for guiding the development of an
integration solution in a flexible manner.
Following this introduction, the related work is
reviewed in section 2. The theoretical propositions

of the case are presented in section 3. In sections 4
and 5, each of the case studies that constitute the
basis of the proposed method are presented. The
integration process, defined as the
GeIntegrationApp method, is described in section 6
and is validated in section 7. Finally, in section 8,
the main conclusions of this article and future lines
of work are described.

2 Related Work
Enterprise Application Integration Methodology
(EAIM) [11, 12] describes a structured approach
that responds to the implementation needs of the
enterprise architecture [13]. Among the
recommended practices for using EAIM is
Integration [14], which is used to integrate processes
and applications across the company. Among the
EAIMs consulted that are dedicated to the practice
of Integration, most use experiences in different
sectors [7, 15, 16, 17] as the basis for constructing
methods. Some studies, such as [15, 17], rely on the
case study method for the validation of the proposed
solution, while others, such as [7, 16], do not
present evidence of validation. For this article, we
will use a subset of the elements proposed in [16] to
address the integration of applications with a
systemic approach. The selected elements are
Stages, Work Units, Participants and Work
Products. Table 1 is a comparative table that shows
the main features of the reviewed methodologies.

Table 1 reflects different aspects of existing
integration methods. The stages refer to those within
the life cycle of the business architecture and are
indicated as follows: I (planning), II (analysis), III
(design) and IV (implementation). The table shows
whether the work identified takes into account these
stages (Yes or No). In addition, the absence, slight
presence or presence of the work products is also
analysed.

3 Theoretical
Proposals of Enterprise
Service Bus
Technologies
The theoretical propositions of
the case mark the beginning of
the study. Integration projects
develop in a real context, and as
developed in later sections, they
assume that web services,
although they have played a Table 1. Dimensions of the integration methods

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 182 Volume 17, 2018

leading role as an integration solution, still have the
following limitations [18]. (a) It is not possible to
have control over the information that is exchanged
between the applications because each application is
responsible for connecting with the rest. (b) Each
client application is responsible for updating when
there are changes in the interfaces of the provider
applications. (c) For medium and large businesses,
the increase in point-to-point links hinders
maintenance tasks. (d) There are legacy business
applications that do not natively support web
services, and therefore, their integration occurs
through messaging, which is a limitation for reuse
by other business applications or services that need
it. (e) Format incompatibilities in the information
that is exchanged must be resolved by each
application that participates in the integration. (f)
The survey of the composition of the information is
performed on each client machine, and its
reusability for the rest of the applications is null.

An Enterprise Service Bus (ESB) solves these
problems [19] by providing a framework that
manages services and their integration with others
through a common platform. In addition, the ESB
acts as a mediator between the service provider and
its associated clients. The ESB also provides the
support infrastructure needed to implement message
routing, protocol translation and transformation and
acts as a mediating agent that supports
interconnection for multiple services.

This communication is usually based on the
exchange of messages between the two parties. The
ESB allows the messages received from the clients
to be processed and sends them to the designated
service point. In addition, it provides a set of
interfaces or endpoints for different channels, as
well as incorporates various types of IT resources.
The ESB allows the incorporation of suppliers and
service applicants with different communication
interfaces. During the communication, the service
applicants do not need to know their identity; it is
the responsibility of the ESB to manage this identity
for each service applicant.

The main capabilities of an ESB model to
assume the development of an integration solution
are [20] service repository, policy based on secure
messaging, communication protocols, service
discovery and monitoring. ESB technology is an
integration model that combines messaging, web
services, data transformation and intelligent routing.

3.1 Mule and WSO2 technology

Mule is a free open-source software project
developed by Ross Mason and belonging to the
company MuleSoft [21]. Mule is a Java-based
software tool with architecture that is inspired by the
ESB concept that supports the design and
implementation of EAI solutions based on
integration patterns [22].

Mule technology provides tools to support
developers in the creation and configuration of an
XML file that contains the Mule flow definitions
[21], such as plugins for Eclipse, MuleStudio and
AnypointStudio. Mule provides the possibility to
monitor and manage the different flows of
applications that are deployed in the ESB. In
addition, Mule permits the visualization of the
resources of the implemented applications, whether
they are flows, components or messages that are
exchanged between components, as well as the
status of the server where it has been deployed in
terms of consumption of physical resources [21].
For its part, WSO2 is an ESB tool designed for a
service-oriented infrastructure under Apache
Software License v2.0. The technology allows
developers and designers to configure the message
for the actors involved in integration through
routing, mediation, and transformation [23].

With respect to the functionalities it provides to
the developer, WSO2 allows the creation,
administration and deployment of ESB projects
through the Eclipse Developer Studio plugin, in
addition to the ESB management console, which
allows the creation and administration of integration
projects [23].

4 Mule-ESB Case Study
During the 2013-2016 period, an application
integration project was developed at the Havana
University of Technologies. During 2013-2015, the
project focused on the study and understanding of
ESB technologies as part of an effort to validate
technologies to develop IT solutions as integration
services. Mule technology was selected because of
the potential flexibility of its components for
modelling integration flow.

4.1 Preparation of the case
The selected integration scenario was an Intranet at
the faculty level and a system for the management
of academic activity. The Intranet offered
information related to the different processes carried
out by the faculty; however, the update mechanism
was based on manual updates. The academic
management system, in contrast, offered

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 183 Volume 17, 2018

information regarding the teaching and personal
data of the students through web services. The
services were developed with the Java programming
language and had security levels such as basic
authentication and digital certification. Thus,
integration of the Intranet with the academic
management system was proposed to obtain the
information associated with the students.

The case was designed based on the "MuleESB
technological environment" context; the analysis
unit was the ability to orchestrate secure, developed
services with Java technology.

4.2 Evidence collection strategy
The evidence collection strategy was developed
based on the units of analysis. Evidence must be
obtained from multiple sources to minimize biases
on the part of the researchers and thus guarantee
their accuracy [24]. The most significant types of
evidence are (obtained in the Mule-ESB case):
• Documents: Technical reports such as manuals

or evaluation results of ESB tools. Scientific
articles with evaluations of ESB. Regulations,
good practices, procedures and documentation
templates.

• Computational artefacts: Integration flows to be
collected during the development of an
integration initiative with Mule.

• Observations: artefacts defined to collect
evidence of the analysis of certain aspects in
the investigation. These include videos, images
or spreadsheets related to the assimilation of
tools and problems presented during the
development of the projects. The technique
used is the thinking aloud protocol [25].

In general, the documents consulted contributed

to form a theoretical basis for working with the tool.
However, no guidelines or recommendations were
found on how to guide the development of the
integration requirements, which necessitated
considerable additional effort on the part of the team
responsible for designing the specific flow of
integration.

At the end of the work, a set of documentary
evidence was obtained to generate a step-by-step
guide with a specific solution complementing the
collected documentation.
The integration flow included an orchestration
involving the consumption of three services with
different features; subsequently, all collected

information was integrated and returned in JSON
format.

4.3 Analysis of the evidence
In the first stage of the case, a study of the service
layer provided by the academic management system
was performed. The conclusion of this study was
that no single operation responded to the need for
integration. However, some operations were
identified that, when combined, could obtain the
desired result. Bearing in mind that one of the
capabilities of the ESB is orchestration and reuse by
other clients, the development of integration with
ESB technology was considered.

It later became necessary to create a pseudo-code
that would define the logic of the orchestration to
solve the need. At this step, clarity of the different
activities to be executed in the integration flow was
very helpful prior to implementation.

In addition, during the process of implementing
the Mule flow, transformations required to prepare
the input objects for the different operations to be
consumed were identified. The message within the
flow was also modified by the features of the SOAP
message that was consumed. Other specifications,
such as definitions of the flow variables for storing
the responses of the operations consumed and their
subsequent use in the flow, were identified.

Moreover, systematizing the lesson learned in
this exploratory case revealed that the three
operations to be invoked within a flow designed in
Mule required different levels of security, such as
basic authentication and digital certification. The
flow invoked two services of the academic
management solution with one and two operations,
respectively. This feature required a study of a
global element in the HTTP_HTTPS flow that
specified the physical address of the certificate, as
well as its credentials and basic authentication.

Once the case was executed, the following
conclusions were reached:
• Understanding the integration scenario and

identifying and characterizing the data sources
can lead to approach options such as web
services or ESB, among others.

• Defining the logic of integration as a pseudo-
code beforehand can organize and guide the
process of implementation of integration in the
ESB.

• Characterizing the operations to be invoked in
terms of security levels and input and output
data contributes to clarifying the integration
solution prior to implementing it.

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 184 Volume 17, 2018

• The design of the service providers determines
the use of the components in the
implementation of integration flow.

• Providing a service layer with medium
granularity, as in the case of the academic
management solution, allows a combination of
different operations and thus responds to the
proposed need for integration.

5 Case Study Mule- WSO2-ESB
The second case corresponded to the evaluation of
the WSO2-ESB tool as an alternative to ESB
technologies. Consequently, a new case was
designed that focused on explaining how both
integration technologies responded to the same need
for integration. The observers were participants
without previous knowledge of either of the two
technologies.

5.1 Preparation of the case
The selected integration scenario was the integration
needs of a project management application
implemented in .NET. The application under study
was the Team Foundation Server (TFS) tool. It was
decided to develop a service layer that would allow
reuse by third parties. Consequently, the service
layer was presented in a single integration context
with two analysis units: the Mule solution and the
WSO2ESB solution.

The evidence collection strategy was identical to
that of the Mule case.

5.2 Analysis of the evidence
The analysis of evidence shown in Table 2
illustrates how both ESB tools respond to the main
integration activities. The two tools have similarities
in terms of the components and mediators that
invoke, transform and route the message. ESB Mule
provides more message manipulation options than
WSO2ESB. This difference implied that the activity
demands more knowledge from the developer since
the structure of the message that travels within
WSO2ESB is XML.

During the execution of the case, it was evident
that identification of the operations was of great
importance in the planning and creation of the
integration logic. In this way, unnecessary loss of
time was avoided during the implementation of the
orchestration because the input and output

parameters required by each operation were
previously known.

Integration act. MuleESB WSO2ESB
 Invoke
operation

SOAP, HTTP PayloadFactory,
Call

Manipulate the
message that
travels inside
the ESB

SetPayload,
Expression,
Java
Variable

PayloadFactory,
Header

Iterate a fix Foreach Iterate
Transf. to XML Object to XML PayloadFactory

Table 2. MULE - WSO2 integration activities

In addition, the characterization of the operations
in terms of data complexity allowed the adoption of
strategies focused on the variables to be used during
the orchestration regardless of the ESB. With
respect to technology, the characterization of the
operations allowed the configuration of the
invocation of the necessary services to be previously
defined. In this way, errors and unnecessary
difficulties were avoided. If the operation requires
security, then components and configurations are
available within the orchestration.

Regarding the development of the integration
solutions with the Mule and WSO2ESB tools, it is
concluded that Mule allows trace tracking during
flow execution through its Debugger View. Mule
allows the data of the flow message, the message
processor, and their structure to be visualized by
showing the values and types of data. To perform
debugging, breakpoints can be defined for most
components.

Mule provides a variety of transformers.
However, if the actions performed in the flow are
very specific and the available components cannot
meet these needs, the Java component can be used.
Methods, objects or variables can be created to
perform the necessary transformations. When using
these components, it must be borne in mind that
when receiving parameters internally, the flow
message must be used and allowed to install itself
with all functionalities and methods it has as an
object.

In addition, Mule proposes its own language,
MEL, for the configuration of some components.
For some developers, this may be a disadvantage
because they must know another language to
develop integration flows, but MEL is very useful
for the flexibility of integration. MEL also provides
a wide variety of output points that facilitate the
consumption of information from any data source.
Similarly, there a variety of points of entry, which

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 185 Volume 17, 2018

exposes the flow developed through different
mechanisms.

For its part, the WSO2ESB analysis unit does not
incorporate the option of debugging the sequences,
which is advantageous for developers to determine
which values that reach the mediators, particularly
when an XML message travels between
components. As an alternative, a mediator property
can be added to the sequence to store the value, and
a mediator log can be used to show the value in the
console. In this way, the data obtained can be
visualized, and any failure can be corrected if
necessary.

Based on the experience acquired with this case
and the previous case, a set of steps are proposed to
guide the development of integration solutions, and
artefacts are proposed for the documentation and
organization of the solution. The steps are: identify
integration needs; identify and characterize the
possible service providers; identify services and
operations of suppliers; characterize the operations
to be consumed; perform a pseudocode with the
logic of the integration solution, identify the
possible components or mediators in the ESB tool
that respond to integration activities; and implement
the integration.

6 The Application Integration Method
as a Process
 The development of both case studies is
conceived under the research paradigm of
Design Science Research (DSR) [26]. In this
context, case studies are appropriate to
investigate in depth a context of real and
contemporary integration, which is a typical
scenario in these types of initiatives.

In addition, the perspective of a case study under
DSR gives this research process a reflective
approach since during the execution of the projects

with research integration
initiatives as their goal, the
general types of problems
related to technologies and
integration methods that must
be conceptualized and
systematized will be reflected.

The method is conceived
independent of technology,
although its conceptualization
is based on lessons learned
from specific technologies.

Therefore, the integration process to be modelled
combines both theoretical propositions and practical
experiences of systematized integration. The
collection of evidence based on the units of analysis
identified enables a revealing analysis of possible
scenarios in which the findings can be replicated in
similar contexts.

Consequently, the application integration method
is conceived as generic in terms of stages, activities,
roles and artefacts. It is called GeIntegrationApp
and will guide the development of application
integration solutions with a focus on web services.
The bases of GeIntegrationApp are:
• The method focuses on an application

integration oriented to web services.
• The design principles proposed by SOA for the

development of interoperable services are
incorporated.

• ESB is the integration technology. In this
sense, the selection of this type of technology is
facilitated.

• It is mainly aimed at business units that provide
IT solutions and are in the initial stages of
implementation of application integration
initiatives.

• The method conceptualizes the principle of
design first and then installs the selected
integration technology.

• The activities are defined in the methods in a
general way as a guide. Each integration team
can complement them with other resources,
techniques, methods or specific procedures as
required.

The defined method follows three stages:
Planning, Design and Implementation, as shown in
Figure 1. The premise of the method is based on the
activities pursued in the systematization of related
work that address invariants to implement an
integration initiative. In addition, the method takes
as resources the results of the study of the executed

Figure 1. GeIntegrationApp as a process

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 186 Volume 17, 2018

cases. The phases of analysis of these cases are
more detailed, and the findings are formalized in
terms of activities to be replicated in analogous
contexts.

There is precedence between each of the stages,
which guarantees that the previous stages have been
completely executed. Next, each of the activities are
specified in stages. Due to space issues, the process
models of each subprocess of the method and the
specifications of each template that are used in the
activities by phase are not included in this work.

6.1 Planning stage
In the Planning stage, as the main objective, the
necessary aspects to start an EAI initiative are
defined. In this stage, the structure of the company
is learned to understand the processes and the
different business applications that support these
processes. The integration needs are also defined, as
well as the design of the integration scenarios. This
stage is divided into three activities: understand the
structure of the company, specify the integration
needs and define the integration scenario.

6.1.1 Understand the structure of the company
In this activity, each of the processes and business
operations are analysed. The portfolio of business
applications that the business unit of an organization
has among its IT service providers is identified and
characterized.

In this activity, an integration map is designed to
reflect the dependencies between the different
applications in terms of the information required by
the business that is shared. The information
resulting from integration has strategic value for the
technology areas because it streamlines the
operations in the business that are supported by
these applications to be potentially integrated. For
this purpose, the integration workflow of
GeIntegrationApp is complemented with technical
documentation specific to each application object of
integration.

The formalization of this activity is
complemented by the artefacts Diagnostic Template
of the IT structure and Integration Map. The
Diagnostic Template of the IT structure presents a
characterization of the company's technological
situation, the description of its own systems and
legacies, and the service layers. The Integration
Map indicates the dependencies between the

applications, where the degree of dependency is the
integration flow itself.

6.1.2 Specify the integration needs
This activity begins with a detailed understanding of
the application integration map and proposes to
identify the types of needs that are present in the
organization at a global level or locally between two
or more applications. For each need, the level of
priority for its solution must be established (low,
medium, high).

The formalization of this activity is
complemented with the artefact Specification
Template of Integration Needs. It establishes and
documents the integration needs at a business or
private level between two or more systems.

6.1.3 Define the integration scenario
This activity specifies the scenarios that will solve
the identified integration needs. Providers and
customers are specified, taking into account that a
provider is the application that provides the
information required by another client application.

The formalization of this activity is
complemented by the artefact Description of the
integration Scenario Template. It presents a global
view of the integration scenario, where customers,
suppliers and integration requirements are involved.

6.2 Design stage
In the Design stage, the objective is to characterize
the data sources and define the logic of the
integration. This stage addresses the IT Analyst
profiling the integration before deciding what
technology will be used for its solution. To
accomplish this objective, two activities are
proposed: characterize the provider sources and
define the logic of the integration scenario.

6.2.1 Characterize the provider sources
This activity can concern the database type or
service layer of the provider systems. For a service
layer, the services and operations to be invoked in
the integration must be identified. In addition, the
operations are characterized in terms of entry and
output parameters and security requirements. For
the database case, a physical model of the database
must be built or consulted.

The formalization of this activity is
complemented by the artefact Characterization of
the Web Services Template. This artefact

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 187 Volume 17, 2018

characterizes the operations involved in the
integration scenario.

6.2.2 Define the logic of the integration scenario
In this activity, a pseudo-code is proposed that
allows the logic of the integration to be defined and
guided. Flow diagrams can be used for this activity.

6.3 Implementation stage
In the Implementation stage, the integration
technology to be used in the integration is selected:
web service or ESB. If ESB is used, the ESB
technological product that matches the needs and
characteristics of the company is selected. In
addition, the activities related to the implementation
of the solution are performed considering the design
principles proposed by SOA, and the relevant tests
are conducted to guarantee the quality of the
solution and its subsequent deployment. This stage
is divided into three activities as shown in Figure 2.

6.3.1 Select technology for integration
In the select technology for integration activity, the
architecture model that best fits the need for
integration is selected. For this, the design of the
integration scenario and the diagnosis of the IT
structure of the organization are taken into account.

6.3.2 Select the ESB technology
In the select the ESB technology activity, a guide
for the selection of an ESB product is proposed by
identifying elements that fit the needs and
characteristics of the company. The formalization of
this activity is complemented by the artefact
Evaluation of the ESB Technology Template. This
artefact provides a set of features that support the
evaluation of the ESB technologies identified for
integration.

6.3.3 Implement the
integration scenario
This activity considers the
SOA principles for the design
and implementation of
interoperable web services. In
addition, it proposes to
document the errors found
during the implementation of
the integration scenario. The
formalization of this activity is
complemented by the artefact

Error Specification Template.

6.3.4 Test the integration scenario
In the test the integration scenario activity, relevant
tests are performed to guarantee the quality of the
integration solution. The defects identified are
corrected, and a cycle of testing and corrections is
established. In addition, the integration scenario
solution is deployed in a development environment
to perform quality of service (QoS) tests. The
formalization of this activity is complemented with
the artefact Specification of QoS Indicators
Template. It documents the values associated with
the measured QoS indicators for further analysis.

6.3.5 Deploy the integration scenario
The activity deploy the integration scenario has the
objective of installing and configuring the necessary
infrastructure for the consumption of the integration
solution by the clients, namely, the Application
server or ESB server, service registration client, and
the tool for monitoring the services exposed for the
deployment of the integration. The formalization of
this activity is complemented by the artefact UML
Deployment Diagram.

6.4 Roles
Table 3 shows the roles involved and their
responsibilities for executing the activities proposed
in the different stages.

The IT Analyst is responsible for diagnosing the
technological situation of the company. The IT
analyst identifies the integration needs, designs the
integration scenarios, and selects the best-fitting
integration model. In addition, the IT analyst
designs the logic of integration. All of this workflow
occurs in the Planning and Design stages of the
integration.

The roles involved in the Implementation phase

Figure 2. GeIntegrationApp implementation stage

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 188 Volume 17, 2018

of the integration are the Integration Architect, the
Integration Developer and the Quality Specialist.

Each of these roles fulfils certain functions. The
Integration Architect is responsible for selecting the
integration model that fits the integration scenario.
In addition, when choosing the ESB model, the
Integration Architect is responsible for selecting the
ESB technology that adapts to the specific
characteristics of the company. The Integration
Developer is responsible for configuring and
implementing the ESB technologies or the service
layer with the necessary functionalities to meet the
integration needs. Finally, the Quality Specialist is
responsible for executing the tests to evaluate the
quality of the integration.

Table 3 specifies how each of the theoretical
propositions were systematized in each stage and
activity of GeIntegrationApp.

 Theor.

Propo
Case
study

Stage Planning
Understand the structure of the
company

[7,15]

Specify the integration needs
Define the integration scenario [15] X
Stage Desing
Characterize the provider sources X
Define the logic of the integration
scenario

 X

Stage Implementation
Select the technology for integration
Select the ESB technology X
Implement the integration scenario X
Test the integration scenario [15]
Deploy the integration scenario

Table 3. Theoretical propositions systematized in
GeIntegrationApp

7 Validation
During the course of 2016, IT consultancy services
were provided to a company that provides IT
services in the Cuban pharmaceutical and
biotechnological sector. The integration solution
was executed in the form of consultancy as a
process (or coaching-type IT consultancy). In this
case, the client of the consultancy was not the final
client but an intermediate client who was assisted to
implement integration strategies for subsequent
application in certain pharmaceutical companies and
biotechnology research centres in Cuba.

In a coaching-type consultancy, it is the client
who defines the workflow to perform the integration
solution based on a work system defined by the
client's rhythm. In addition, this intervention
modality is a process consultancy that performs
interventions as an expert, where the consultant
completes the integration solution that he will then
make available to the clients of the IT service
provider. This real context is based on both types of
client intervention for GeIntegrationApp validation.

Under a working system of coaching-type
consultancy, the client is assisted with developing
an integration solution for an inventory management
system module deployed in pharmaceutical and
biotechnological companies in Cuba. In this project,
the method adjusted the integration requirements,
and it was not necessary to modify or adjust any of
the definitions.

However, important elements were added to
ensure greater ease and guidance in the development
of integration solutions. For example, the identify
restrictions activity was included in the Design stage
of the integration scenario. It was noted that the
restrictions of the provider applications could
determine the integration scenario. Some of these
restrictions could be availability of source code,
security levels, and support for the development of
web services, among others.

In addition, the activity define the logic of the
integration scenario must be complemented in the
Design stage of the integration scenario. The utility
of this addition is justified by the need to define
SQL queries for each requirement of the integration
scenario when the source provider is a database.

8. Conclusions

From the results obtained in this work, it can be
concluded that the SOA approach offers a set of
technologies, such as web services and ESB, that
can reuse the business logic and use potential
information that can be shared by several
applications. In addition, the SOA approach offers a
set of guidelines that allow the development of
reusable and interoperable integration solutions.

The works identified as procedures, guides and
methodologies for the integration of applications did
not provide comprehensive proposals regarding the
different components that must be established to
integrate applications in different contexts.

The design of the web services providers was a
determining factor for minimizing problems during

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 189 Volume 17, 2018

the development of an integration solution with ESB
technology.

The case study method was used as the
methodological tool for the construction and
evaluation of the proposed method in multiple
contexts of application integration and in different
organizational sectors.

References:
[1] Curl, A. and K. Fertalj. A review of enterprise

IT integration methods. in Proceedings of the
International Conference on Information
Technology Interfaces, ITI. 2009.

[2] Linthicum, D.S., ed. Enterprise Aplication
Integration. First Edition ed. 2000, Addison
Wesley. 400.

[3] Chalmeta, R. and V. Pazos, A stay-by-step
methodology for enterprise interoperability
projects. Enterp. Inf. Syst., 2015. 9: p. 436-464.

[4] Z. Frantz, R., R. Corchuelo, and F. Roos-
Frantz, A methodology to evaluate the
maintainability of enterprise application
integration frameworks. Web Engineering and
Technology, 2015. 10: p. 334–354.

[5] Silveira, R.W., J.A. Pastor, and E. Mayol,
Towards a method for enterprise information
systems integration. 2010.

[6] Singh Bhadoria, R., N. Chaudhari, and G.
Singh Tomar, The Perfomance Metric for
Enterprise Service Bus (ESB) in SOA System:
Theoretical underpinnings and empirical
illustrations for information processing.
Information Systems, 2016. 15.

[7] Lam, W. and V. Shankararaman, An Enterprise
Integration Methodology. IT Professional,
2004. 6(2): p. 40-48.

[8] Wu, J., Y. Zhu, and H. Zhu, The definition and
implementation of flexible architecture for
enterprise application, in Advanced Materials
Research. 2011. p. 256-260.

[9] Kamal, M.M., R. Hackney, and M. Ali,
Facilitating enterprise application integration
adoption: An empirical analysis of UK local
government authorities. Int. J.l of Information
Management, 2013. 33(1): p. 61-75.

[10] Runeson, P., et al., Case study research in
software engineering: guidelines and examples.
2012, Hoboken, New Jersey: Jhon Wiley &
Sons,.

[11] Clark, T., B.S. Barn, and S. Oussena, A method
for enterprise architecture alignment. Practice-
Driven Research on Enterprise
Transformation, Springer, 2012: p. 48-76.

[12] Darvish Rouhani, B., et al., A systematic
literature review on Enterprise Arquitecture
Implementation Methhodologies. Information
and Software Technology, 2015. 62: p. 1-20.

[13] Medini, K. and J.P. Bourey, SCOR-based
enterprise architecture methodology Int. J.
Comput. Integrat. Manuf., 2012.

[14] Darvish Rouhani, B., et al., A systematic
literature review on Enterprise Architecture
Implementation Methodologies. Information
and Software Technology, 2015.

[15] Themistocleous, M. and Z. Irani. Towards a
methodology for the development of integrated
IT infrastructures. in P. of the Annual Hawaii
Int. Conference on System Sciences. 2006.

[16] Silveira, R., J. Pastor, and E. Mayol. Towards a
method for enterprise information systems
integration. in ICEIS 2008 - Proceedings of the
10th International Conference on Enterprise
Information Systems. 2008.

[17] Van Den Bosch, M.A.P.M., et al., A selection-
method for enterprise application integration
solutions, in Lecture Notes in Business
Information Processing. 2010. p. 176-187.

[18] Caselli, V., C. Binildas, and M. Barai, The
Mantra of SOA. Service Oriented Architecture
with Java. Birmingham. 2008, UK.

[19] Sharma, D. and D.K. Mishra, A role of
enterprise service bus in building web services,
in Exploring Enterprise Service Bus in the
Service-Oriented Architecture Paradigm. 2017.
p. 46-58.

[20] Singh Bhadoria, R., N. Chaudhari, and S.T. G. ,
The Perfomance Metric for Enterprise Service
Bus (ESB) in SOA System: Theoretical
underpinnings and empirical illustrations for
information processing. Information Systems,
2016. 15.

[21] Dossot, D., d´Emic, J. and Romero, V. Mule in
Action. 2º edition. Ed. Manning. 2014.

[22] Zimmermann, O., et al., A decade of enterprise
integration patterns: A conversation with the
authors. IEEE Software, 2016. 33(1): p. 13-19.

[23] García, I.F. WSO2 platform SOA
OPENSOURCE. 2018; Available from:
http://www.wso2.com.

[24] Yin, R.K., Case Study Research: Design and
Methods. 5 ed. 2014: Sage.

[25] Genero Bocco, M., J.A. Cruz-Lemus, and M.G.
Piattini Velthuis, Métodos de investigación en
ingeniería del software. 2014.

[26] Hevner, A. and S. Chatterjee, Design Science
in Information Systems Research. Theory and
Practice, O.S. University, Editor. 2010,
Springer-Verlag: Stillwater, USA.

WSEAS TRANSACTIONS on COMPUTERS
José Vicente Berná Martínez, Claudia Ivette Castro Zamora,

Francisco Maciá Peréz, Carlos Ramón López Paz

E-ISSN: 2224-2872 190 Volume 17, 2018

