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Abstract: - Image restoration is a very important task in image processing. The Artificial Neural Network 

(ANN) approach was used to solve this problem, especially the Discrete Hopfield Network (DHN). This 

approach suffers from the fluctuation problem due to the use of the hard limit function as activation function. 

To overcome this shortcoming, we use in this work the Continuous Hopfield Network (CHN) that uses a 

probabilistic density as activation function. Indeed, this kind of function avoids the fluctuation behaviour and 

permits to extend the research area of the solution. In this regard, we propose our own energy function with 

appropriate parameters to obtain feasible equilibrium points. The performance of our method is demonstrated 

by several computational tests. 
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1 Introduction 
Image Restoration Problem (IRP) is started since the 

50s after many researches carried out to improve the 

quality of the images received in the space program 

[1]. These images exposed to many damages due to 

the sensor and the conditions of the take. Among the 

defects of the sensors, firstly there is the blur of the 

optical system and the integrated light on each pixel, 

secondly the electronic noise which affects the 

measurement. Image restoration is an useful and a 

necessary pre-processing step for many applications 

[2]. 
Several methods were proposed in the literature to 

solve this problem, the most important were: firstly, 

the classical filters used to enhance the image 

quality based on the convolution operation. 

Secondly, as image restoration can be seen as a 

mathematical problem, many authors have proposed  

analytical methods to solve this problem, among 

them, the partial differential equation (PDE) [3] [4] 

[5].  On another side, the (IRP) can be considered as 

an optimization problem whose finding an 

approximation of the minimum was the objective of 

several works [6],[7].  Among these approaches, we 

mention the use of the Artificial Neural Networks 

(ANN) to approximate the solution of the IRP [8], 

[9]. In this context, the Discrete Hopfield Network 

(DHN) was the first artificial network which has 

been used for image restoration [10].  

This approach suffers from the fluctuation problem 

due to the use of the hard limit function as activation 

function. In this work, we propose a new 

Continuous Hopfield Network (CHN) that uses a 

probabilistic density as activation function. Indeed, 

this kind of function avoids the fluctuation 

behaviour and permits to extend the research area of 

the solution. To this end, we propose our own 

energy function with appropriate parameters to 

obtain feasible equilibrium points using the 

Hyperplane method [11]. The Continuous Hopfield 

Network (CHN) was proposed by Hopfield and 

Tank [12] to solve combinatorial problems; some 

authors have treated the Quadratic Knapsack 

Problem (QKP) [13], [14]. Within these papers, the 

feasibility of the equilibrium points of the CHN 

cannot, for the general case, be assured; Moreover, 

the solutions obtained are, often, not good enough. 
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To avoid this problem, a general methodology was 

proposed to solve the Generalized Quadratic 

Knapsack Problem (GQKP) [15]. Since the 

differential equation, which characterizes the 

dynamics of the CHN, is analytically hard to solve, 

many researchers used the famous Euler method. 

Recently, the CHN was used to solve the Travelling 

Salesmen Problem [16], [17], Constraint 

Satisfaction Problem [18] and the Placement of the 

Electronic Circuits Problem [19]. 

This paper is organized as follow: the second 

section describes the continuous Hopfield network. 

In the third section, we model the image restoration 

problem as a binary quadratic problem. An original 

continuous Hopfield network is proposed to solve 

the obtained problem in the fourth section. Finally, 

some computational experiments are represented.   

 

2 Continuous Hopfield Network  
In the beginning of the 1980s, Hopfield published 

two scientific papers, which attracted much interest. 

This was the starting point of the new area of neural 

networks, which continues today. Hopfield showed 

that models of physical systems could be used to 

solve computational problems. Moreover, Hopfield 

and Tank [12] presented the energy function 

approach in order to solve several optimization 

problems including the traveling salesman problem 

(TSP), analog to digital conversion, signal 

processing problems and linear programming 

problems. Their results encouraged a number of 

researchers to apply this network to different 

problems such as object recognition, graph 

recognition, graph coloring problems, economic 

dispatch problems and constraint satisfaction 

problems[18],[19]. 

The Continuous Hopfield Networks (CHN) consist 

of S  interconnected neurons with a smooth sigmoid 

activation function (usually a hyperbolic tangent).  

The differential equation which governs the 

dynamics of the CHN is: 

bdu u
T v i

dt 
   (1) 

With: 
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where,  

iu  is the current states of the neuron i , 

iv  is the output of the neuron i , 

 ijT  is the weight of the synaptic  connection from 

neuron j  to neuron i ,   

b

ii  is the offset bias of the neuron i . 

Definition 1 

A point 
eu is called an equilibrium point of the 

system )1(  if for an input vector
0u , 

eu satisfies e

e ttutu )( , for some 0et . 

Hopfield has introduced the energy function E  on 

 0,1
S

 which is defined by 

     1

0
1

1 1

2

i
S vt

t b

i

E v v Tv i v g x dx






     .        (2) 

Hopfield proved that the symmetry of matrix T with 

zero diagonal are a sufficient conditions for 

existence of Lyapunov function [20], therefore, the 

existence of equilibrium point is guaranteed. The 

Continuous Hopfield Networks (CHN) will solve 

combinatorial problems that have an energy 

function taking the following form: 

    
1

2

t
t bE v v Tv i v                    (3)                          

Let P  be a combinatorial optimization problem 

with S variables and m linear constraints: 
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          (4)            

Let define the following sets 

 The Hamming Hypercube 

[0,1]SH       

 The Hamming hypercube corners set 

{0,1}S

cH   

 The feasible solutions set 

{v H / Rv b}F cH     

The energy function can be assumed as: 

( ) E ( ) ( )c pE E H                  (5) 

 E ( )c   is directly proportional to the 

objective function. 

 E ( )p   is a quadratic function that ensure 

the feasibility of the solution obtained by 

the CHN. 

In the fourth section, we propose an original 

continuous Hopfield network for image restoration 

problem. First, we model the said problem as a 

binary quadratic problem in the next section. 

 

3 Image restoration problem 

modelling 
 The main propose of this part is modelling the 

greyscale image restoration problem in terms of a 

quadratic optimisation problem with binary 

variables. First, we define some necessary tools 

such as convolution operation and linear filtering. 

 

3.1 Convolution operation and linear 

filtering 
As it is well known, the greyscale image can be seen 

as a two-dimensional function, in the practical 

situation each image in the grayscale can be 

represented as a matrix of 2 dimensions where each 

of its components is a pixel; see the figure 1. 

 

 

Fig. 1 Matrix representation of the image gray level 

functions. 

                                                

The convolution operation   

Convolution product is a very common operation in 

image processing. It presents a useful class of 

programs simple to use and efficient in its results. 

This efficacy results from the linearity of the 

convolution operation. In fact, the convolution is 

characterized by the linear neighbourhood operation 

and the invariance translation.  

Definition 

Let (i, j)X  be the gray levels function of image X, 

and let (i, j)H   be an operator. Generally, the 

convolution product noted by ( ) is defined as 

follow: 

   ( )(i, j) (i n, j m).X(n,m)
IR IR

H X H dmdn      (6) 

In the continuous case, the integral is substituted by 

the sum. 
 
The convolution using a kernel 

In image processing, a kernel, named convolution 

matrix or mask too, is a small window used for 

blurring, sharpening, embossing, edge-detection etc. 

The said kernel is chosen according to the desired 

processing, and then a convolution with the image 

under study is realized. The operation consists of the 

multiplication of the images pixels and theirs 

corresponds in the kernel. These products are then 

summed to find the new value of the block's center 

pixel; the figure 2 shows how to use the matrix 

convolution:  

Pixel 

X(4,2)=84 
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Fig. 2 The convolution using a kernel 

Remarks: Two interesting remarks should be 

pointed out: 

 In the practical situations researchers 

used a kernel of size 3x3 or 5x5. 

 In the case of matrix convolution, the set 

of kernels used for each pixel constitute 

a block matrix with sub-bocks, therefore, 

the convolution product ( ) will be 

substituted by a simple product.  

Linear filtering 

Filtering principle is to change the value of the 

pixels of an image, usually to improve its 

appearance. In practice, it is about creating a new 

image by using the pixel values of the original 

image. 

Linear filtering can improve images in many ways: 

sharpening the edges of objects, reducing random 

noise, correcting the unequal illumination, 

correcting the blur and the motion, etc. These 

procedures are carried out by convolving the 

original image with a specific kernel. 

A linear filter is said a high pass if it permits the 

passage of high frequencies, else it named pass bas 

filter. 

 

3.2  Quadratic programming for image 

restoration 
The problem of restoring noisy-blurred images is 

very important for a large number of applications 

[2]. In this part, we model a quadratic programming 

for image restoration. To this end, we define the 

blur matrix concept. 

3.2.1 Image blurring  

A blurred image can be seen as a convolution with 

the blur operator. The next figure shows how 

blurred image can be constructed 

 

Fig.3 A blurred image using the blur operator H 

In the literature, the blur matrix is described using 

the point spread function (PSF); this later depends 

on the point source. A blurring is called spatially 

invariant if the PSF looks the same no matter where 

the point source is. To take into account the 

boundary conditions choice (BCs), several 

structures are proposed [21]. In this context, we cite:   

 Zero boundary conditions (ZBC):  these 

conditions put the Dirichlet conditions at the 

border of the image. His structure is a Block 

Toeplitz with Toeplitz Block (BTTB).  

 Reflexive boundary conditions (RBC): In 

this category, the continuity of the image is 

preserved while the continuity of its normal 

derivative is not. The resulting structure is 

block Toeplitz + Hankel with Toeplitz + 

Hankel blocks.    

 

 Periodic boundary conditions (PBC): it’s 

characterizes the discontinuities at the 

borders of the image, the corresponding 

matrix is Block Circulant with Circulant 

Blocks (BCCB) (7). 

In our work, we will focus on the periodic 

conditions by benefiting the computational 

advantage of the BCCB matrix, and getting rid of 

the difficulty of adapting the (ZBC’s) and (RBC’s) 

matrix’s with the IRP problem, for more details see 

[22], [23]. 

 

This is an example of a BCCB matrix: 
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H=

(C) (C1) . . . . . (C1)

(C1) . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . (C1)

(C1) . . . . . (C1) (C)

 
 
 
 
 
 
 
 
 
 
 
 
 

      (7) 

 

C and C1 are two circulant blocks which had their 

values from the PSF. 

3.2.2 Modeling 

Practically, the image degradation can be, 

adequately, modeled by a linear blur (motion, 

defocusing, atmospheric turbulence...) and an 

additive white Gaussian process. In this sense, the 

degradation model is given by  

    Y H X                                 (8) 

Where  

X:  The original image. 

Y: The degraded image. 

H: blur operator. 

  : The additive noise. 

The purpose of image restoration is to operate on 

the degraded image Y   to obtain a new image that 

has close to the original image X  as possible, 

subject to suitable optimality criterion. By 

converting the images to a vectors and using the 

matrix convolution, the restored image is obtained 

by the following optimization problem: 

2

{0,..,255}

1
min

2M Nx
HX Y


                     (9) 

Where M, N are the image dimensions and .   is 

the Euclidean norm. 

The problem is estimating X  from (10). It an ill-

posed inverse problem in the sense of Hadamard: 

the problem is numerically unstable, i.e. if the 

quantity 
0 0HX HX   does not involve 

0 0X X  [24]. 

Several approaches have arisen to regulate the 

problem [25], [26]. In this work we will focus on the 

regularization of Tikhonov [27]. It’s a technique 

which is the most used to regularize the ill-posed 

problems. The method consists of adding a 

regularization term (
2

DX ), the idea behind the 

added term is minimizing the gradient of X which 

will remove the noise. 

The regularized energy function is: 

 
2 2

{0,..,255}

1 1
min

2 2M Nx
HX Y DX


              (10) 

 

Where   is a penalty positive parameter generally 

associated with the noise [28] , and D is a second-

order differential operator; we can choose D as a 

Laplace operator.   

In order to simplify the calculation and to reduce the 

Complexity, the operator D can be corrected with 

the same BCs as H .  

  

4 Continuous Hopfield network for 

image restoration problem 

The main purpose of this section is to apply the 

CHN to solve the IRP. To this end, we define an 

appropriate energy function which takes into a count 

the IRP particularities. To be precise, the choice of 

the parameters of this function must ensure the 

feasibility of CHN equilibrium points. 

 

4.1  Discrete Hopfield network for image 

restoration problem 

In this subsection, we explain the steps used for 

solving image restoration using the discrete 

Hopfield network. 

Let X the Gray level function of an image of 

size M N , and G its maximal value, by 

transforming X as a concatenation of the image 

matrix arrays using the formula: 

 

    1 .X m X i M j                (11) 

 

The data is represented via the simple sum scheme 

which is described in [16] by: 

1

(i) 1,........,M N
G

ik

k

X v i


           (12)  

 

The network proposed for IRP is a network with 

S M N G    neurons mutually interconnected. 

It is characterized by: 

The set of the network state V  :              

 / 1,.., , 1,..,G}ikV v i M N k     

The weight matrix:                

 , / , 1,.., , 1,..,G}ik jlT T i j M N and k l     
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with ,ik jlT  is the weight between the   neurons 

( , )i k and  ( , )j l , 

The activation function Heaviside: 

1 u 0
g( )

0

if
v u

else


  



                 (13) 

The first step to solve the IRP using the DHN is 

calculating for each neuron the current state by the 

following formula: 

,

1 1

u
S G

ik ik jl jl ik

j l

T v I
 

                    (14) 

 

By developing (10) and using the expression (11), 

we obtain the following energy function: 

 
2 2

2 2

1 1

2 2

1 1 1

1 1 1 1 1 1 1 1 1 1

1 1

2 2

1 1
(y ) ( )

2 2

1 1
(y ) ( ) (15)

2 2

1 1
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s s
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E h x d x

E h h d d

y h






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  

  
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 



   
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 

2

1 1 1 1

1

2

S G S S

i ik s

i k s s

v y
   

 

 

 

pih  And pid  are, successively, the elements of H   

and D . 

Using the identification between the equation (15) 

and Lyapunov functions [9], we obtain by 

neglecting the last term: 

 

,

1 1

S S
DHN

ik jl si sj si sj

s s

T h h d d
 

                      (16) 

And 

1

S
DHN

ik s si

s

I y h


                              (17) 

Two aspects must be mentioned, the first is that the 

weights are independent of the subscripts k and l  
which will reduce the complexity by neglecting 

repeated terms, the second concerns the self-

connections  ,ik ikT  which not equal to zero, and then, 

it contradicts the convergence criterions mentioned 

before.  

To solve this later problem, authors proposed a 

decision rule [10], it was a stochastic rule which 

depends on the variation of energy function E  and 

neurons states ikv , it is described as follow: 

 

due to state chif

ot

ange is less than zero

herwise

ik

new

new ik

ik old

ik

vv E
v

v

 
 


 (18) 

 

Where E  and ikv are defined by: 

new oldE E E    

new old

ik ik ikv v v    

The next subsection concerns the use of the 

Continuous Hopfield network for solving the IRP 

problem. 

 

4.2  Continuous Hopfield network for image 

restoration problem 

In this part we propose the continuous Hopfield 

network to solve the IRP; firstly, we propose a new 

energy function that makes compromise between 

two criterions: the objective function E  and the 

corners constraint characterized by the following 

quantity:   

1 1

(1 v )
S G

ik ik

i k

v
 

                          (19) 

 

In this sense, our energy function is  

                

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1
( )

2 2

(1 ) (20)

S S S G G S S S G G S G S

si sj ik jl si sj ik jl s si ik

s i j k l s i j k l i k s

S G

ik ik

i k

E v h h v v d d v v y h v

v v

  



            

 

  

 

  



where      and    are penalty parameters.  

It should be noted that the second Term forces the 

analogue neurons to take finally 0 or 1. 

The CHN was proposed for two interesting reasons: 

 The use of the CHN permits expanding the 

feasible solution areas. 

 Thanks to the continuous behavior of the CHN, 

we can improve the image restoration by the 

resolution of the fluctuation phenomena in 

which the equilibrium point    turn around the 

solution without stopping. 

The network proposed consists of S interconnected 

neurons with hyperbolic tangent activation function. 

A simple comparison between the old DHN (16), 

(17) and the proposed CHN leads to the following 

formulas: 
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,

,

, jl

( , ) ( , )

2 ( , ) ( , )

DHN

ik jlCHN

ik jl DHN

ik

T if i k j l
T

T if i k j l



 

 
 

 

(21) 

 And 

 
CHN DHN

ik ikI I                               (22) 

In the next section, we use the hyperplane method to 

select the feasible parameters [11]. 

4.3 Parameter setting 

According to the equation (21) and (22), weights 

and thresholds associated with IRP depend on the 

parameters ,  ,  . Thus, In order to solve the 

IRP via the CHN, parameter settings must be 

performed. In this context we impose the next 

constraints: 

 The constraint below is imposed to minimize the 

objective function: 

0   

 The constraint below is necessary to avoid the 

stability of the interior point c Fv H H  : 

2 2

,

1 1

( ) 2 0 1,..,
S S

CHN

ik ik si si

s s

T h d i S  
 

       

 

 The coming equality is a sufficient condition:  

2 2

1 1

2 S S

si si

s s

h d



  

    

To liberate this latter, we use consider the constant  

2 2

1
1 1

max( )
S SS

si si
i

s s

M h d


 

    

Then, the imposed condition is: 

2
M




  

Finally, the parameters   ,  and   must verify 

the conditions 0   and   
2

M



 . 

 Proposed algorithm 

A possible restoration is associated with an 

equilibrium point. This point is a solution of the 

equation (1) which is hard to solve analytically. 

Thus we use the well known Euler Cauchy 

method. In this regard, and basing on our 

theoretical studies, we propose the following 

algorithm for restoring the images under study: 

 

Input: Degraded image Y   of size ( , )M N  

           The matrix H and D.  

           Initialization of itermax. 

Output: desired clean image. 

Begin: 

     For each pixel use (12), (21) and (22) to 

Extract T and I; 

       1Iter  ; 

      X=Y; 

      ( )oldE E X ; 1 ( )E E X ; 

Repeat  
   

    For each neuron ( , )i k  calculate: 

         Repeat 

           ,

1 1

u
S G

new old

ik ik jl jl ik

j l

T v I
 

  ; 

            0,0 0,0

1
(1 tanh( / ))) / 0;

2

new old

ik ikv u u u    

      
        

new old

ik ik ikv v v   ; 

              newE  = ( )E X  ; 

             new oldE E E   ; 

               iki vX X i  ; 

     Until ( ikv =0 or 0E   or  0 255X i  )  

   End For 

                 2 (X) E(X)E  ; 

            if ( 1 2 0E E  ) 

                     Break; 

            Else 

                  1 2( ) (X)E X E ; 

                  1iter iter  ;  

            End if 

Until ( maxiter iter  ) 

Construct the image X using (12). 

End 
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Algorithm1: Image restoration using the continuous 

Hopfield neural network. 

 

 Practical algorithm 

Practically the use of the previous algorithm is 

difficult on machines that have modest 

configurations and especially a weak processor, 

for example, in image with M×N pixels we 

need  M×N×G neurons and 1

2
(M×N)

4
×G

2
   

interconnections which needs (M×N)
4
×G

2
    

additions and multiplications at each iteration. 

For this reason the sequential update was 

proposed for each neuron [9]. Based on (17) 

and (18), we can see that weights and bias are 

independent of subscripts k and l ; this permits to 

reduce the program complexity by neglecting 

repeated terms. In the following expression, we 

calculate the state of neuron iku  using the 

precedent 
, 1i ku 

 : 

, , 1 i, ,i k i k k i iu u v T                    (23) 

By the same manner, we calculate the variation 

of energy using the following expression: 

2

., .

1
( )

2
ik ik i i ikE u v T v                  (24) 

The two latest equations  reduce the space and 

time complexities from O((M×N)
4
×G

2
)  and 

O((M×N)
4
×G

2
×K) to O((M×N)

2
)
 

 and  

O((M×N)
2
×G), where K is the number of 

iterations. 

In comparison with the DHN algorithm, the 

proposed algorithm has a continuous behavior. 

In fact, to calculate the neurons outputs our 

algorithm uses the hyperbolic tangent. 

 

5 Computer simulation 
In this section, we perform some results by the 

proposed algorithm. Experimental result will be 

compared with some filters and algorithms. For this 

reason, the proposed model has been applied to a 

reference image of type grayscale. By adopting the 

periodic boundary conditions, we use the image test 

“Cameraman”, which is blurred by a 1x9 motion 

and added white Gaussian noise of variance . In 

order to fairly compare the performance with image 

restoration algorithms, we use the following 

metrics: 

 

Mean Square Error (MSE):      

2

1 2

1 1

(X (i, j) (i, j))
M N

i j

X

MSE
M N

 







       

   

Where 1X and 2X denote, respectively, the restored 

and the original images. 

 

Peak to Signal Noise Ratio (PSNR): 

 

2

10

255
10log ( )PSNR

MSE
  

 

For more carrying out of the human system visual, 

we propose the Structural SImilarity Metric (SSIM) 

which respects the strong inter-dependencies 

between pixels. 

 

Structural SImilarity Metric (SSIM): 

 

1 2 1 12 2
1 2 2 2 2 2

1 2 1 1 1 2

(2 )(2 )
(X ,X )

(m m )( )

m m M M
SSIM

M M



 

 


   
 

 

Where  

im  : is the averages of iX . 

i  : is the variance of iX . 

12  is the covariance of 1X  and 2X . 

1M  and 2M : are two variables which permits 

stabilizing the division with weak denominator, they 

depend on the dynamic range  of pixel values. 

 

The performance of the proposed model is 

compared against some of the most popular image 

processing filters, such as Median and Winner 

adaptive filters. In addition, we have compared our 

algorithm with the DHN [9], [10]. 

 

The next figure shows different results of the 

restored image using some methods including the 

(DHN) algorithm.  
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Fig.4: (A) “Cameraman”, original image; (B) 

degraded image by a shift known invariant blur and 

an additive white Gaussian noise( =0.05) ; (C) 

Restored image with median filter; (D) Restored 

image with Winner filter; (E) restored image using 

DHN; (F) Restored image using our method. 

 

In the figure 5, we see that the winner and median 

filters (C and D) have improved the image quality, 

but they are much less efficient for images with a 

high degradation, notably, when the variance of the 

noise is too wide.  

The restored image using the DHN (E) is better than 

those obtained by the Winner and median filters (C 

and D); indeed, it can restore the image with a good 

quality while preserving edge, but it still keeping 

some noise effects. 

Our results show the good performance of our 

method, especially the preservation of 

discontinuities. Moreover, the geometric 

characteristics such as corners and edges and 

originals contrast are well restored.  

To show as close the efficiency of our method, we 

compare a block of 30x30 pixels from the images A, 

B, E and F. In comparison with the DHN method, 

our method makes good noise suppression while 

keeping as much as possible the information, see the 

figure 6. 

 

 
Fig. 5: (i) original block (ii) degraded block (iii) 

restored block using the DHN (iv) restored block 

using the proposed method.  

For more illustration, the next table proves the 

performance of our method by some numerical 

results.  

Variance  Metrics 
Degraded 

image 

Median 

filter 

Winner 

filter 

DHN 

algorithm 

Proposed 

method 

0.05 

MSE 3.06x10
3
 

996.2445 10
3 

666.70 515.32 

PSNR 13.2673 18.1471 18.128 19.891 21.01 

SSIM 0.1331 0.2717 0.2869 0.4919 0.636 

0.03 

MSE 2.04x10
3 

790.6892 767.7110 655.1004 474.5810 

PSNR 15.0186 19.1507 19.2788 19.9677 21.3677 

SSIM 0.1734 0.3349 0.3592 0.5701 0.702 

0.02 

MSE 1.48x10
3 

680.8201 646.80 666.7056 482.03 

PSNR 16.4115 19.8005 20.0231 20.21 21.31 

SSIM 0.2178 0.3987 0.4330 0.4919 0.64 

Table.1 Metrics values of the restored images using the median, Winner, DHN and CHN method. 
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In the table 1, we have applied the restoration on 

“cameraman” degraded with blur motion and 

variance 0.02, 0.03 and 0.05. The three metrics used 

for the measurement are the betters in the last 

column. In one hand, the MSE of our method is the 

smallest obtained in comparison with the other ones. 

In the other hand, the proposed method generates a 

largest PSNR and SSIM than the other methods, 

which affirms the results in Fig.5. 

 

6 Conclusion & perspectives  
In this paper, we have proposed a new model for 

image restoration based on the continuous Hopfield 

network. The developed algorithm improves the 

noise suppression while preserving as much as 

possible the geometric characteristics of the image. 

Experimental results show that our restoration 

algorithm is better than some famous restoration 

methods. As the CHN converge rapidly to local 

minima, we can turn our method several times than 

we preserve the equilibrium points associated with 

the best restorations. We can use the genetic 

algorithm to improve the obtained results. In future 

work, we will investigate different connectionist 

architectures combined with partial differential 

equations, and consider different models of 

degradation. 
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