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Abstract: - Designing an efficient memory system is a big challenge for future multicore systems. In 

particular, multicore systems increase the number of requests towards the memory systems, so the design of 

efficient on-chip caches is crucial to achieve adequate level of performance. Solutions based on conventional, 

big sized cache may be improved due to wire delay effects, so NUCA and D-NUCA cache may represents an 

alternative solution, thanks to their ability to limit such effects. Another important design issue of such systems 

is related to coherence management: the theory of caches kept coherent via directory based coherence protocols 

was successful in designing high performance DSM machine, and now must consider the requirements of the 

new scenario: many cores on a chip, and NUCA organizations. In this paper, we face some of these aspects by 

presenting a NUCA based last-level cache (LLC) architecture. Such an architecture is based on a D-NUCA 

scheme, i.e. a banked LLC architecture with a migration mechanism to put frequently accessed data near to the 

requesting processor. To improve access time to shared copies limited by ping-pong effects, we adopted the 

copy replication, that allows the replication of shared copies that are requested by processors located on the 

opposite side of the cache. Finally, we have adapted a directory based, distributed, coherence protocol to a D-

NUCA cache with migration and replication. Our resulting cache memory sub-system is more performing than 

a statically sub-banked LLC. The adoption of all such mechanisms forced us to deal with race conditions that 

may compromise data coherence inside the chip and the memory and, then, to modify the baseline coherence 

protocol. This experience demonstrated that, in the multicore era, coherence protocols still must be considered 

of the utmost importance by researchers and designers when facing the design of such systems. 
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1 Introduction 
The design of an efficient memory hierarchy for 

Chip MultiProcessor (CMP) [21] systems is even 

more critical than in the past. In fact, the increasing 

number of on-chip cores1 induces an aggregated 

bandwidth request towards the memory hierarchy 

which is dramatically increased. While the 

bandwidth, and especially latency, performance of 

main memory, even if it is slowly improving, still 

remains far below the requirements and can 

potentially slow down the execution of applications. 

For this reasons, the on-chip cache hierarchy, 

through its capacity, has an increased role in 

translating computational potential, and thus 

memory requirements, into overall CMP 

performance. 

                                                 
1
 Up to 16 cores in currently available in 

commercial products, for instance in the AMD 

Opteron Processors family [36]. 

The NUCA (Non Uniform Cache Architecture) 

cache design  paradigm [24] is promising in this 

scenario because of its intrinsic scalability towards 

both suitable sizes and high number of access ports, 

which can match the increasing number of on-chip 

cores. However, NUCA caches, being based on a 

banked organization and on an interconnection 

network between banks, introduce additional design 

space and management [3], [26] directions to be 

explored to seek optimal performance. 

In order to have an adequate scalability potential 

with respect to the number of cores, it is worthwhile 

for CMP systems to follow the principles of 

directory-based coherency protocols, similarly to the 

ones successfully adopted in the design of classical 

DSM systems [13] [20]. Anyway, the new Last 

Level (LL) cache requirements, in particular the 

need of addressing wire delay, force CMP designers 

to carefully adapt such protocols as traditional 

implementations are not suitable in this new LL 
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cache scenario and risk to introduce errors or 

significant overheads. 

In this paper we present the experiences done in 

such field while designing the LL cache for a high 

performance CMP architecture. To meet the 

scalability requirement of the overall design, a 

distributed directory-based version of the MESI 

coherence protocol has been adopted. To limit wire 

delay and bandwidth issues, we rely on a banked 

organization based on migration, according to a D-

NUCA paradigm. In order to boost the baseline 

performance achieved within the D-NUCA cache, 

we faced the false miss [4] problem by proposing 

the implementation of a False Miss Avoidance 

(FMA) protocol that doesn’t rely on any centralized 

structure and prevents the overheads occurring when 

accessing data that is migrating [3]. Then we have 

adopted a replication mechanism, which avoids the 

ping-pong issue deriving from the interaction 

between data migration and shared data access, in 

integration with the FMA protocol [19]. One crucial 

point is that all these proposals, in order to be able 

to deliver their full potential, need deep 

modifications to the baseline coherency protocol. 

The achieved performance results indicate that the 

resulting memory system outperforms statically last 

level banked cache organization (up to 15% of CPI 

improvement) in the considered configurations, and 

outperforms also conventional D-NUCA solutions, 

never degrading performance. Such experience 

highlights that in the multicore era data management 

policies and coherency protocols are of the utmost 

importance to obtain highly tuned - high 

performance systems, and may need to be carefully 

designed to address the issues introduced by 

nowadays technologic features and architectural 

implications. 

 

 

2 NUCA, Migration and Replication 
 

 

2.1 NUCA 
When scaling semiconductor devices feature sizes, 

it is known that, due to physical properties, the 

delays of wires that interconnect modules inside a 

chip  doesn’t scale with  gate delays [9], and this 

constitutes a big limiting factor [27] in the 

performance achievable by traditional single-

processor designs. The computer systems design 

paradigm has then moved to CMP architectures [21] 

for what concern processors (due also to the power 

constraint that does not permit to increase the clock 

rate over a certain threshold), and to a NUCA (Non 

Uniform Cache Architecture) design paradigm 

[23][25] for what concern the Last Level Cache 

architecture. 

NUCA caches are multi-banked based, where each 

bank can be accessed independently from the other, 

and the banks can be connected via a switched 

network [35].  In a NUCA cache, the access time to 

each bank depends on the physical distance of the 

cache bank from the copy requestor. As such 

distance can vary for different banks, it will lead to 

a Non-Uniform access time Cache Architecture. 

Such caches outperform conventional monolithic 

caches (UCA, Uniform Cache Architecture)

 

 
 

Fig. 1: The reference LLC organization. Squares are the NUCA banks, black circles are NoC switches. Bank 

columns are the banksets. Rows of the bank matrix are called lines, and are numbered from 1 (at the bottom) 

to 8. They represent the ways of a conventional set associative cache. 
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when wire delay effects are significant, also if UCA 

caches are internally spitted in arrays to optimize 

power or performance [25], [18]. They can be also 

more energy efficient [28], [22] than conventional 

caches.  

A NUCA can be a Static NUCA (S-NUCA), when 

each memory block is mapped only in one bank, or 

a Dynamic NUCA (D-NUCA), when a memory 

block is mapped (i.e. can stay) in more cache banks. 

Such flexible mapping can be exploited to bring the 

most frequently used copies near the utilizing CPU, 

thus minimizing the access latency to such data. For 

this, a migration mechanism and, therefore, a search 

mechanism are introduced. The migration 

mechanism is usually a “1hit-1hop”, i.e. on a hit the 

data moves of 1 hop near to the utilizer. The search 

mechanism usually utilizes broadcast messages, i.e. 

a request for a data is sent to all the banks that may 

contain the data [25]. At the cost of increased 

network traffic and more sophisticated data 

management techniques, D-NUCA outperform S-

NUCA, as evaluated in monoprocessor systems 

[25]. The NUCA design has been extended to 

optimize energy efficiency [10][30][31] and 

performance, it has been proposed also for CMP 

systems [30][23][4][6][8] also considering the 

effects of process variation [37]. As a matter of fact, 

today all the commercial CMPs exhibit a banked 

organization for the last level cache, that can be 

UCA or NUCA depending on the way in which 

banks are connected to the CPU, eventually 

leveraging NUCA features. For instance, the Power 

7 CMP family utilizes the banked L3 cache as a 

victim for the L2 cache, putting evicted L2 data in 

banks “near” to the L2 cache originating the data 

[29]. 

 

 

2.2 Migration and Replication 
In the design of the CMP on-chip cache hierarchy 

for high performance systems, that is in a wire delay 

dominated environment, one of the main issue is to 

reduce access latency to the cached data. Besides 

acting on the interconnection network [35] one 

solution is represented by reducing the distance, and 

so the latencies, among requesting processors and 

data. This can be done by introducing a copy 

migration mechanism, which is the essence of the 

D-NUCA, but also by replicating copies, so that 

each utilizing processor has its own copy near, 

especially in the case of concurrent access to shared 

data. 

When implementing the migration of data in a CMP 

environment, some race conditions must be solved, 

otherwise there should be situations in which copies 

of the same data but with different values may be 

present in cache, or update operations may produce 

error conditions as in Fig. 3. 

A consequence of the search and migration 

mechanism on the same cached copy is the false 

miss problem (Fig. 2, with reference to the system  

 
L1 - 0 L2 - 16 L2 - 24L1 - 1

MIG
RATI

ON

GETS

miss

miss

GETS

miss

FALSE MISS

End-of-
migration 

 
Fig. 2: The False miss problem. L1-0, with reference to the architecture of Fig. 1, generates a request that 

produces a migration (a data migrates from L2-24 to L2-16) and a simple migration message (MIGRATION) 

is used. If another cache (L1-1) generates a new request for the same data, and such request arrives at L2-16 

before the end of migration, both L2-16 and L2-24 caches reply with a miss, so for L1-1 the data is not 

present in the cache (FALSE MISS). 
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of Fig. 1). The effect of such false miss is that a 

second copy of data is taken from the external 

memory, and, if the copy in cache has been 

modified, the two copies are different. The 

migration may also generate other race condition, 

related to the management of L1 replacements that 

involve private blocks in the L2 (i.e. blocks that are 

owned by L1 caches, according to the MESI 

behavior), that must be adequately solved by acting 

on the protocol. In such a case, when an L1 cache 

(L1-0 in Fig. 3) issues a GETX command to the L2 

cache, such request is forwarded by the L2 cache 

(L2-24) to the owner (L1-1), that will receive the 

data. Once received the data, if L1-0 needs to 

replace the data, it must update the content of the L2 

cache. But if the block has migrated (from L2-24 to 

L2-16), L1-0 is no more aware of where the block is 

located, and sending the put to the previous L2 bank 

will result in an error, as the bank no more contains 

the block. 

From the performance point of view, the migration 

mechanism is less effective for those applications 

that exhibit a high number of accesses to blocks that 

are alternative accessed (fine grain sharing [42]) by 

two or more threads located at the opposite sides of 

the CPU: a thread accesses a block, and the block 

migrates in the next bank toward the requestor (Fig. 

4 A and B). Then, another thread running on a CPU 

plugged at the opposite side of the D-NUCA (Fig. 1) 

accesses the same block, that migrates back to the 

previous bank (Fig. 4 C, D, E). As a consequence, 

frequently accessed shared blocks alternatively 

migrate in both directions, and they are never able to 

be hosted in banks close to the utilizing CPUs. For 

this reason, the benefits of the reduction of the 

average NUCA access time can be extremely 

limited by migration in case of applications that 

exhibit fine grain sharing. This phenomenon is 

known as ping-pong [23] or conflict hit [15].  

 

 

2.3 Related Works 
NUCA caches have been initially proposed for 

monoprocessor systems [25] to limit wire delay 

effects. The NUCA design has been then extended 

to optimize energy efficiency [31], [30], [24] and 

performance [38], and has been proposed also for 

CMP systems [23][4] [6] [8], [30]. 

In DSM systems, data migration and replication are 

solutions utilized to speed-up performance [40], 

[41]. Their implementation has been explored also 

in the context of NUCA cache in the CMP 

environment [3][4][5][6]. 

Migration for NUCA CMP systems has been 

proposed in [4], [23]. Beckmann and Wood in [4] 

propose an 8-cpus CMP system based on a huge 

shared L2 NUCA cache. They face the false miss 

problem by i) relaying on an idealized centralized  

 

 

L1 - 0 L1 - 1 L2 - 16 L2 - 24......

A: <I,STORE>

miss

GETX

MIGRATION

FWD_GETX

DATA_EXCLUSIVE

PUTX

ERROR!!!!

Replacement

 
Fig. 3: Race condition in case of replacement of a block owned by a L1 cache. The block is owned by L1-1. 

As a consequence of a STORE operation, L1-0 issues a GETX command, that hits in L2-24. After the hit, the 

block migrates from L2-24 to L2-16. Anyway, as the block is owned by L1-1, L2-24 forwards the request to 

L1-1, which must furnish the data to L1-0. If now L1-0 needs to replace the data, L1-0 must perform a PUTX 

operation to update the content of L2, so it issues the PUTX command towards L2-24, generating an error 

condition as L2-24 no more holds the data, with potential loss of the updated data. 
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off-chip directory embedded in the controller that 

knows which blocks are actually on-chip, ii) 

stopping migration (and solving related race 

conditions) when the directory receives a request for 

a block that believes being in the cache (false miss 

detection) and sequential searching for an existing 

valid copy of the data, iii) delaying block migration 

of thousand cycles in order to reduce the false miss 

probability (lazy migration). A centralized directory 

is adopted also by Huh et al. in [23] for a CMP 

system in which 16 processors share an L2 NUCA 

cache, with partial TAGs optimization. Both [4] and 

[23] observe that for some applications a statically-

partitioned shared cache performs better than the 

corresponding banked cache with migration, due to 

the conflict hit access pattern. 

The replication has been considered in [6], [7], [8], 

[11]. Chishti et al. [6], propose an hybrid design that 

takes advantage of both shared and private 

configuration for the LL cache, and they exploit 

distance locality by decoupling the data and tag 

arrays. However their CMP implementation requires 

a non-scalable atomic bus for maintaining 

coherence. Cooperative Caching [7] is based on a 

private cache design with a centralized directory 

scheme, and considers the aggregate private caches 

as shared cache space by introducing optimizations 

such as replication-aware replacement and global 

replacement of inactive data. ESP-NUCA [8] adopts 

a dynamic private-shared cache partitioning, with 

replication and victim management. The ASR 

mechanism [11] is proposed to optimize CMP 

performance by controlling the cache replication of 

memory blocks to minimize potential miss rate 

increase induced by replication. As a summary, such 

replication-based schemes adopt a mechanism that 

controls the number of replicas, as blind replication 

may affect the LL cache hit-rate, but none of them 

considers the combined effects of migration and 

replication. 

Finally, Hardavellas et al. [5] propose a tiled 

architecture in which the aggregation of all L2 

banks is seen as a shared NUCA, and adopt a hybrid 

hard-soft mechanism to control block placement, 

migration and replication among slices. This, 

together with others [33], [14], [39] operates at 

software or at integrated hardware and software 

level and not at hardware level only. 

 

 

3 The adopted D-NUCA scheme 
The adopted LL cache architecture (L2 in our case) 

relies on a banked shared cache with migration and 

replication. In particular, the overall system 

configuration has a dance-hall architecture [35], 

where CPUs with private L1 caches are distributed 

on two opposite sides of the shared L2 NUCA cache 

(Fig. 1). 
 

 

 
Fig. 4: Conflict hits and the ping-pong phenomenon. L1-0 requests data S (A), that is taken from main 

memory and put in the L2-24 block (B). Then L1-4, located at the opposite side of the cache with respect to 

L1-0, requests the same data (C). The data now hits in the cache, and migrates towards L1-4 (the requestor) 

in the bank L2-32 (D). If L1-0 requests again the data S, it migrates towards L1-0, but it does not improve the 

access latency with respect to (B), nullifying the benefit of migration. 
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The topology of the interconnection network among 

CPUs and cache banks is derived from a 2D mesh 

by employing only a subset of the links of a full 2D 

mesh (partial 2D mesh [35], [32]). With such 

topology, there is only one path that links a CPU 

(that is, a L1 cache) with a L2 bank, and this 

simplify in-order point-to-point communication. 

More complex interconnection and switches 

infrastructures does not produce performances 

improvements, and instead cost more in terms of 

area. Coherence of the private L1 caches is 

maintained via a directory MESI protocol. By 

assuming an inclusive cache hierarchy, we avoid the 

need of a centralized directory, so that the directory 

is distributed [20], with directory information held 

together with the TAG field of the block stored in 

the LLC banks. 

 

As a consequence of migration, a block can be 

moved to any of the bankset’s banks [25] (that is, 

the banks included in a column of banks in Fig. 1), 

so we assume that, to locate the copy, requests 

coming from L1 are broadcasted to all the banks of 

the bankset. A block, belonging to a specific section 

of the memory space, may be stored in any bank (or 

way) of the bankset. The address of the memory 

block addresses the specific memory set. The 

adopted migration mechanism considers per-hit 

block migration: a block migration is triggered 

whenever a request from L1 hits. Data can migrate 

only along a column of banks, and migration 

happens towards the requesting L1 cache. This 

solution constitutes a good trade-off between 

performance and complexity (search mechanism 

and coherence management). A smart replication 

mechanism is adopted to minimize the ping-pong 

effects produced by applications having fine-grain 

sharing [34]. 

 

 

3.1 False Miss Avoidance Protocol 
In order to face the false miss race condition, our 

solution consists in adding to the baseline MESI 

protocol a block migration mechanism, called False 

Miss Avoidance or FMA [3] protocol, which is 

implemented completely on chip. In particular, the 

FMA protocol is able to prevent false misses by 

guaranteeing that at any time, if a copy exists in the 

L2 cache, at least one bank knows where it is and, 

therefore, it is able to signal the hit condition and 

forward the request. For this reason, the FMA lets 

the two banks involved in the migration transaction 

communicate via message exchange. In this way, 

even if a request arrives when the block is on-the-

fly, it won’t result in a miss. 

The FMA protocol doesn’t deny the other LLC-1 

caches to issue new requests for a migrating block, 

as described in [23], nor relies on any centralized 

structure and lazy migration as in [4]. Fig. 5 shows 

the main FMA actions: in case of hit in an L2 bank 

(L2-24 in Fig. 2), the block is provided to the L1 

Requestor (L1-0), and a MIGRATION_START 

message, containing both the block and the directory 

 
L1 - 0 L2 - 16 L2 - 24L1 - 1

MIG
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N_S
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N_E
ND

GETS

DATA_SHARED

DATA_SHARED

Fwd_G
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MIGRATION_ACK

miss
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GETS

 
Fig. 5: Sequence diagram representing the block migration process of the FMA protocol. In case of hit in an 

L2 bank (L2-24), the copy is sent to the L1 Requestor (L1-0), and a MIGRATION_START message, 

containing both the block value and the directory information, is sent to the L2 Receiver (L2-16). When the 

L2 Receiver gets the message, allocates a cache line for the block, and replies with a MIGRATION_ACK to 

the L2 Sender  (L2-24), which will conclude the migration process with a MIGRATION_END message. If a 

new request is received by the L2 Sender while waiting for the MIGRATION_ACK, the request is forwarded 

to the L2 Receiver, which will serve it. 
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L1 - 0 L1 - 1 L2 - 16 L2 - 24......

A: <I,STORE>

miss

GETX

FWD_GETX
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Replacement

MIGRATION_START

MIGRATION_ACK

MIGRATION_END

A: MIG_P -> P

HOME(L2-24)

HOME(L2-24)

 
Fig. 6: Sequence diagram representing the protocol behavior in case of replacement of a block owned by an 

L1 cache. After receiving the MIGRATION_START message, L2-16 keeps L1-0 informed of the new home 

node, so that L1-0 can send, on replacement, the data (via PUTX) to the right bank. 

 

information, is sent to the destination L2 bank (L2-

16). When L2-16 receives the migrating block, it 

allocates a cache line for the block, and replies with 

a MIGRATION_ACK to L2-24, which will 

conclude the migration process with a 

MIGRATION_END message. If a new request is 

received by L2-24 while waiting for the 

MIGRATION_ACK (that is, a potentially false miss 

condition), the request is forwarded to L2-16, which 

will serve it. In conclusion, L2-16 replies with a 

miss until the reception of the 

MIGRATION_START message; after that it replies 

with a hit. L2-24 replies with an hit and send a 

MIGRATION_START message; then it forwards 

the GETS request until the reception of the 

MIGRATION_ACK message, with which the block 

in L2-24 became invalid, so that subsequent 

requests generate a miss. 

The forwarding technique, on which the FMA 

protocol is based, solves also other race conditions 

related to the management of L1 replacements that 

involve private blocks in the L2 presented in the 

previous section. With the FMA protocol, L2-24 

(Fig. 6) forwards the request to the owner and starts 

the migration with the MIGRATION_START 

message. L2-16, on receiving such a message, will 

send an HOME message to the L1 requestor, so that 

it is informed of the home node change, and can 

then send the consequent PUTX to the right block. 

 

 

3.2 Shared Blocks Migration Issues 
In order to avoid the ping-pong in accessing to 

shared blocks, a block replication mechanism is also 

adopted [19]. By considering a compromise 

between protocol complexity and performance gain, 

only two copies of a data are permitted in the 

architecture, each one devoted to serve the accesses 

of the nearer CPU. In particular, a replica is created 

when a replica does not exists and a block receives 

requests coming from a CPU in the opposite site, i.e. 

only in case of potential conflict hits (Fig. 7). In this 

way, each copy is able to reach the respective low 

latency way, and the benefits of migration are 

always effective. In case L1 needs the exclusive 

copy of a replicated block, the LLC copy farthest to 

the requesting CPU will be invalidated. 

We called this mechanism limited replication [34], 

as it allows at most two copies of the same block to 

be stored in the shared LLC, in contrast to a private 

caches solution in which more than 2 copies of the 

same block can be present (up to n, where n is the 

number of CPUs). As for the false miss solution, 

once again the introduction of the replication 

mechanism requires to update the coherence 

protocol for replicas management and coherence. In 

the following, we describe the main changes 

introduced by the mechanism, while a complete 

description of the protocol can be found in [19]. 

The replication mechanism is implemented via a 

messages exchange between the bank that receives a 

request that hits the block (sender), and the bank 

that will store the replica (receiver). Banks are able 

to distinguish between near requests (coming from 

L1s placed at the closest NUCA side) and far 

requests (coming from L1s placed at the farthest 

NUCA side), Fig. 7. Both Read-Only and Read-

Write data can be replicated. 
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The sender bank starts the replication process when 

the request that hits the block is a Read requests 

(GETS) and the request is recognized as far.  

Fig. 8 shows the messages exchanged by the banks 

involved in the replication. The choice of which L2 

bank will host the replica is fixed for each bankset. 

For example, referring to the bankset 0 in Fig. 1, 

banks 0, 8, 16 and 24 will send the 

REPLICATION_START message to bank 40, while 

banks 32, 40, 48 and 56 will send the message to 

bank 24. At the end of the replication, two copies of 

the same block exist. In order to let a copy be aware 

that it is a replica, an isReplica bit is added to the 

TAG field of the block. The isReplica bit is set 

whenever a replication process ends. Besides, both 

the copies are able to migrate toward the faster way 

of the respective target side. The migration process 

is started for a replica whenever a GETS near is 

received; GETS far are treated as miss. 

As it is allowed the replication of both Read-Only 

and Read-Write blocks, it is possible that a 

replicated block receives a Read-With-Intent-To-

Modify requests (GETX). In this case, in order to 

guarantee the correctness of memory operations as 

there are more copies of the same data, an 

invalidation protocol is introduced that involves 

both the banks that hold a copy of the block. In 

particular, the proposed schema invalidates the 

farthest replica with respect to the L1 requestor and 

updates the state of the remaining copy, according 

to the coherence protocol.  

 

 

4 Performance evaluation 

Performance of the systems were evaluated via full-

system simulation using Simics [16] and GEMS 

[17]. 

 

Our reference architecture assumes an in-order 8-

cpu UltraSparc II ISA-like CMP system.

 

 
Fig.7: The replication scheme. On a request for a data S from an L1 cache, L1-0 in this case (A), the data is 

put in the cache from the external memory (B). On a subsequent request from a CPU located at the opposite 

side with respect to the previous request (L1-4) (C), called a far request, a replica of the data is created (D). 

The two replicas now can migrate, each one on requests coming from the nearer CPUs (E1 and E2). 

 

Table 1.  Configuration Parameters 

CPUs 8 cpus (Ultra Sparc II), in-order 

Clock Freq. ~4 GHz 

L1 cache Private 16 Kbytes I + 16 Kbytes D, 2 way s.a., one cycle TAG, 2 cycles TAG+Data 

L2 cache 16 Mbytes, 64 banks (256 Kbyte banks, 4 way s.a., 5 cycles TAG, 8 cycles TAG+Data) 

Block Size 64 bytes 

NoC 

configuration 

Partial 2D Mesh Network; NoC switch latency: one cycle; NoC link latency: one cycle; 

flit size: 32 bits 

Main Memory 2 GByte, 240 cycles latency 
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L1 - 0 L1 - 2 L2 - 24 L2 - 40......

GETS
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Data_Shared

REPLICATION_START 

REPLICATION_ACK 

REPLICATION_END 
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GETS

Fwd_GETS

Data_Shared

Far

Far

Near

Miss

Miss

 
Fig. 8: Sequence diagram of the messages exchanged during block replication. In case of a hit far in an L2 

bank (L2-40), the block is sent to the L1 Requestor (L1-0), and a REPLICATION_START message is sent to 

the L2 Receiver (L2-24). When L2-24 gets the message, it replies with a REPLICATION_ACK to the L2 

Sender (L2-40), which will conclude the migration process with a REPLICATION_END message. If a new 

request is received by L2-40 while waiting for the REPLICATION_ACK (in the figure L1-2 sends a request to 

L2-40, that without the mechanism would recognize it as far), the request is forwarded to L2-24, which will 

serve it (L2-24 recognizes the forwarded request as near, and no action is taken by the replication mechanism). 

 

The shared NUCA LL cache is composed by 64 

banks organized as in Fig. 1, (each of 256 KB, 4 

ways set associative), for a total storage capacity of 

16 MB, backed up by a 240-cycles latency main 

memory. Cache latencies have been obtained by 

CACTI [18]. The NoC is organized as a partial 2D 

mesh network, with 64 wormhole switches; NoC 

link latency has been calculated using the Berkeley 

Predictive Model [1]. The simulated system runs the 

Sun Solaris 10 operating system. We run 

applications from the SPLASH-2 benchmark suite 

[2], and from the PARSEC 2.0 suite [12]. All the 

applications were compiled with the gcc provided 

with the Sun Studio 10 suite. Table 1 reports the 

main configuration parameters. 

In the first set of experiments, we compare the 

performance of a D-NUCA implementing the FMA 

protocol against a baseline S-NUCA cache. Fig. 9 

shows the Normalized CPI with respect to the S-

NUCA for the considered benchmarks. In line with 

other works [4][23], the adoption of a DNUCA is 

effective, but not for every workload. In particular, 

we notice different behaviors: a good CPI 

improvement with the D-NUCA (6% or more for 

raytrace, blackscholes and swaptions); a little 

improvement (about 2-4% for barnes, ocean, 

bodytrack and canneal); and in some cases a 

performance degradation (radix, radiosity, and 

streamcluster). To explain such behavior, we can 

observe that performance improvements are good 

for those applications that succeed in bringing most 

frequently accessed blocks in lines 1 and 8 (i.e. in 

the faster ways), as Fig. 10 demonstrates for 

raytrace, blackscholes and swaptions, indicating that 

when migration is not limited by conflict hits, it is 

successful in boosting performance. For all the other 

applications, performance improvement are limited 

by the ping-pong phenomenon, that prevents most 

used  data to reach the faster ways, so that the 

accesses are equally distributed among all the cache 

lines. 

To limit ping-pong  effects on a D-NUCA, the 

solution consisted in adopting the replication of 

blocks. Fig. 11 shows the CPI of the limited 

replication scheme (R-NUCA), compared to the one 

achieved by the D-NUCA schemes. Performance of 

the solution adopting replication are similar to the 

D- NUCA one for Ocean and bodytrack. For all the 

other applications, we observe an improvements, 

which varies from the 3% of Streamcluster up to the 

15% of bodytrack. Adding the replication greatly 

improves the distribution of hits (Fig. 12): for Ocean 

and Canneal almost 20% of the hits are to ways 

other than Way8 and Way1. In all the other cases, 

less than 5% of the hits are to slower ways. Besides, 

in no case, the replication introduces performance 

degradation with respect to a D-NUCA: when 

conflict hit are not discovered, the replication 

protocol behaves exactly like a D-NUCA. 

 

 

 

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia, 
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 203 Volume 13, 2014



 
Fig. 9: CPI for S-NUCA and D-NUCA. Data are normalized to the S-NUCA system. 

 
Fig. 10: Hit distribution for S-NUCA and D-NUCA. Lines are numbered according to Fig. 1 

 
Fig. 11: Normalized CPI for D-NUCA without (D-NUCA) and with (R-NUCA) block replication. 

 
Fig. 12: Hit Distribution for D-NUCA, without (D-NUCA) and with (Re-NUCA) block replication. 
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5 Conclusions 
Technology trends have imposed the advent of 

CMPs and the proposal of new architectures for the 

on-chip cache memory subsystems. Such proposals 

may introduce new race conditions in the coherence 

protocol, that must be adequately managed to 

guarantee performance and correctness. In this 

paper we have shown how a D-NUCA solution, 

based on migration and replication, can significantly 

improve the performance with respect to a 

conventional banked cache, and we have 

highlighted both the negative effect of migration, 

both how they can be avoided via replication. Such 

results have been obtained mainly acting on the 

coherence protocol. In fact, to deal with race 

conditions imposed by the new architecture and data 

management policies, specific actions have been 

added to the baseline MESI solution (the FMA 

protocol). To speed-up the performance of the 

resulting system, again there was the need to modify 

the coherence protocol, by introducing replication 

and the states needed to manage it. The resulting 

system is able to achieve up to 15% improvement of 

CPI, and, differently from other proposals, never 

performs worse than a S-NUCA based solution. 

Such results highlight that data management and 

coherence protocol can be a significant source of 

performance improvement also in the multicore era, 

so they still must be considered of the utmost 

importance by researchers and designers of such 

systems. 
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