
Coherence in the CMP ERA:

Lesson learned in designing a LLC architecture

Sandro Bartolini,

Dipartimento di Ingegneria dell’Informazione

Università di Siena

Via Roma 56, Siena

ITALY

bartolini@dii.unisi.it

Pierfrancesco Foglia, Cosimo Antonio Prete,

Marco Solinas

Dipartimento di Ingegneria dell’Informazione

Università di Pisa

Via Diotisalvi 2, Pisa

ITALY

{foglia, prete, solinas}@dii.unisi.it

Abstract: - Designing an efficient memory system is a big challenge for future multicore systems. In

particular, multicore systems increase the number of requests towards the memory systems, so the design of

efficient on-chip caches is crucial to achieve adequate level of performance. Solutions based on conventional,

big sized cache may be improved due to wire delay effects, so NUCA and D-NUCA cache may represents an

alternative solution, thanks to their ability to limit such effects. Another important design issue of such systems

is related to coherence management: the theory of caches kept coherent via directory based coherence protocols

was successful in designing high performance DSM machine, and now must consider the requirements of the

new scenario: many cores on a chip, and NUCA organizations. In this paper, we face some of these aspects by

presenting a NUCA based last-level cache (LLC) architecture. Such an architecture is based on a D-NUCA

scheme, i.e. a banked LLC architecture with a migration mechanism to put frequently accessed data near to the

requesting processor. To improve access time to shared copies limited by ping-pong effects, we adopted the

copy replication, that allows the replication of shared copies that are requested by processors located on the

opposite side of the cache. Finally, we have adapted a directory based, distributed, coherence protocol to a D-

NUCA cache with migration and replication. Our resulting cache memory sub-system is more performing than

a statically sub-banked LLC. The adoption of all such mechanisms forced us to deal with race conditions that

may compromise data coherence inside the chip and the memory and, then, to modify the baseline coherence

protocol. This experience demonstrated that, in the multicore era, coherence protocols still must be considered

of the utmost importance by researchers and designers when facing the design of such systems.

Key-Words: - CMP systems, wire delay, NUCA, coherence, migration, replication

1 Introduction
The design of an efficient memory hierarchy for

Chip MultiProcessor (CMP) [21] systems is even

more critical than in the past. In fact, the increasing

number of on-chip cores1 induces an aggregated

bandwidth request towards the memory hierarchy

which is dramatically increased. While the

bandwidth, and especially latency, performance of

main memory, even if it is slowly improving, still

remains far below the requirements and can

potentially slow down the execution of applications.

For this reasons, the on-chip cache hierarchy,

through its capacity, has an increased role in

translating computational potential, and thus

memory requirements, into overall CMP

performance.

1
 Up to 16 cores in currently available in

commercial products, for instance in the AMD

Opteron Processors family [36].

The NUCA (Non Uniform Cache Architecture)

cache design paradigm [24] is promising in this

scenario because of its intrinsic scalability towards

both suitable sizes and high number of access ports,

which can match the increasing number of on-chip

cores. However, NUCA caches, being based on a

banked organization and on an interconnection

network between banks, introduce additional design

space and management [3], [26] directions to be

explored to seek optimal performance.

In order to have an adequate scalability potential

with respect to the number of cores, it is worthwhile

for CMP systems to follow the principles of

directory-based coherency protocols, similarly to the

ones successfully adopted in the design of classical

DSM systems [13] [20]. Anyway, the new Last

Level (LL) cache requirements, in particular the

need of addressing wire delay, force CMP designers

to carefully adapt such protocols as traditional

implementations are not suitable in this new LL

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 195 Volume 13, 2014

cache scenario and risk to introduce errors or

significant overheads.

In this paper we present the experiences done in

such field while designing the LL cache for a high

performance CMP architecture. To meet the

scalability requirement of the overall design, a

distributed directory-based version of the MESI

coherence protocol has been adopted. To limit wire

delay and bandwidth issues, we rely on a banked

organization based on migration, according to a D-

NUCA paradigm. In order to boost the baseline

performance achieved within the D-NUCA cache,

we faced the false miss [4] problem by proposing

the implementation of a False Miss Avoidance

(FMA) protocol that doesn’t rely on any centralized

structure and prevents the overheads occurring when

accessing data that is migrating [3]. Then we have

adopted a replication mechanism, which avoids the

ping-pong issue deriving from the interaction

between data migration and shared data access, in

integration with the FMA protocol [19]. One crucial

point is that all these proposals, in order to be able

to deliver their full potential, need deep

modifications to the baseline coherency protocol.

The achieved performance results indicate that the

resulting memory system outperforms statically last

level banked cache organization (up to 15% of CPI

improvement) in the considered configurations, and

outperforms also conventional D-NUCA solutions,

never degrading performance. Such experience

highlights that in the multicore era data management

policies and coherency protocols are of the utmost

importance to obtain highly tuned - high

performance systems, and may need to be carefully

designed to address the issues introduced by

nowadays technologic features and architectural

implications.

2 NUCA, Migration and Replication

2.1 NUCA
When scaling semiconductor devices feature sizes,

it is known that, due to physical properties, the

delays of wires that interconnect modules inside a

chip doesn’t scale with gate delays [9], and this

constitutes a big limiting factor [27] in the

performance achievable by traditional single-

processor designs. The computer systems design

paradigm has then moved to CMP architectures [21]

for what concern processors (due also to the power

constraint that does not permit to increase the clock

rate over a certain threshold), and to a NUCA (Non

Uniform Cache Architecture) design paradigm

[23][25] for what concern the Last Level Cache

architecture.

NUCA caches are multi-banked based, where each

bank can be accessed independently from the other,

and the banks can be connected via a switched

network [35]. In a NUCA cache, the access time to

each bank depends on the physical distance of the

cache bank from the copy requestor. As such

distance can vary for different banks, it will lead to

a Non-Uniform access time Cache Architecture.

Such caches outperform conventional monolithic

caches (UCA, Uniform Cache Architecture)

Fig. 1: The reference LLC organization. Squares are the NUCA banks, black circles are NoC switches. Bank

columns are the banksets. Rows of the bank matrix are called lines, and are numbered from 1 (at the bottom)

to 8. They represent the ways of a conventional set associative cache.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 196 Volume 13, 2014

when wire delay effects are significant, also if UCA

caches are internally spitted in arrays to optimize

power or performance [25], [18]. They can be also

more energy efficient [28], [22] than conventional

caches.

A NUCA can be a Static NUCA (S-NUCA), when

each memory block is mapped only in one bank, or

a Dynamic NUCA (D-NUCA), when a memory

block is mapped (i.e. can stay) in more cache banks.

Such flexible mapping can be exploited to bring the

most frequently used copies near the utilizing CPU,

thus minimizing the access latency to such data. For

this, a migration mechanism and, therefore, a search

mechanism are introduced. The migration

mechanism is usually a “1hit-1hop”, i.e. on a hit the

data moves of 1 hop near to the utilizer. The search

mechanism usually utilizes broadcast messages, i.e.

a request for a data is sent to all the banks that may

contain the data [25]. At the cost of increased

network traffic and more sophisticated data

management techniques, D-NUCA outperform S-

NUCA, as evaluated in monoprocessor systems

[25]. The NUCA design has been extended to

optimize energy efficiency [10][30][31] and

performance, it has been proposed also for CMP

systems [30][23][4][6][8] also considering the

effects of process variation [37]. As a matter of fact,

today all the commercial CMPs exhibit a banked

organization for the last level cache, that can be

UCA or NUCA depending on the way in which

banks are connected to the CPU, eventually

leveraging NUCA features. For instance, the Power

7 CMP family utilizes the banked L3 cache as a

victim for the L2 cache, putting evicted L2 data in

banks “near” to the L2 cache originating the data

[29].

2.2 Migration and Replication
In the design of the CMP on-chip cache hierarchy

for high performance systems, that is in a wire delay

dominated environment, one of the main issue is to

reduce access latency to the cached data. Besides

acting on the interconnection network [35] one

solution is represented by reducing the distance, and

so the latencies, among requesting processors and

data. This can be done by introducing a copy

migration mechanism, which is the essence of the

D-NUCA, but also by replicating copies, so that

each utilizing processor has its own copy near,

especially in the case of concurrent access to shared

data.

When implementing the migration of data in a CMP

environment, some race conditions must be solved,

otherwise there should be situations in which copies

of the same data but with different values may be

present in cache, or update operations may produce

error conditions as in Fig. 3.

A consequence of the search and migration

mechanism on the same cached copy is the false

miss problem (Fig. 2, with reference to the system

L1 - 0 L2 - 16 L2 - 24L1 - 1

MIG
RATI

ON

GETS

miss

miss

GETS

miss

FALSE MISS

End-of-
migration

Fig. 2: The False miss problem. L1-0, with reference to the architecture of Fig. 1, generates a request that

produces a migration (a data migrates from L2-24 to L2-16) and a simple migration message (MIGRATION)

is used. If another cache (L1-1) generates a new request for the same data, and such request arrives at L2-16

before the end of migration, both L2-16 and L2-24 caches reply with a miss, so for L1-1 the data is not

present in the cache (FALSE MISS).

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 197 Volume 13, 2014

of Fig. 1). The effect of such false miss is that a

second copy of data is taken from the external

memory, and, if the copy in cache has been

modified, the two copies are different. The

migration may also generate other race condition,

related to the management of L1 replacements that

involve private blocks in the L2 (i.e. blocks that are

owned by L1 caches, according to the MESI

behavior), that must be adequately solved by acting

on the protocol. In such a case, when an L1 cache

(L1-0 in Fig. 3) issues a GETX command to the L2

cache, such request is forwarded by the L2 cache

(L2-24) to the owner (L1-1), that will receive the

data. Once received the data, if L1-0 needs to

replace the data, it must update the content of the L2

cache. But if the block has migrated (from L2-24 to

L2-16), L1-0 is no more aware of where the block is

located, and sending the put to the previous L2 bank

will result in an error, as the bank no more contains

the block.

From the performance point of view, the migration

mechanism is less effective for those applications

that exhibit a high number of accesses to blocks that

are alternative accessed (fine grain sharing [42]) by

two or more threads located at the opposite sides of

the CPU: a thread accesses a block, and the block

migrates in the next bank toward the requestor (Fig.

4 A and B). Then, another thread running on a CPU

plugged at the opposite side of the D-NUCA (Fig. 1)

accesses the same block, that migrates back to the

previous bank (Fig. 4 C, D, E). As a consequence,

frequently accessed shared blocks alternatively

migrate in both directions, and they are never able to

be hosted in banks close to the utilizing CPUs. For

this reason, the benefits of the reduction of the

average NUCA access time can be extremely

limited by migration in case of applications that

exhibit fine grain sharing. This phenomenon is

known as ping-pong [23] or conflict hit [15].

2.3 Related Works
NUCA caches have been initially proposed for

monoprocessor systems [25] to limit wire delay

effects. The NUCA design has been then extended

to optimize energy efficiency [31], [30], [24] and

performance [38], and has been proposed also for

CMP systems [23][4] [6] [8], [30].

In DSM systems, data migration and replication are

solutions utilized to speed-up performance [40],

[41]. Their implementation has been explored also

in the context of NUCA cache in the CMP

environment [3][4][5][6].

Migration for NUCA CMP systems has been

proposed in [4], [23]. Beckmann and Wood in [4]

propose an 8-cpus CMP system based on a huge

shared L2 NUCA cache. They face the false miss

problem by i) relaying on an idealized centralized

L1 - 0 L1 - 1 L2 - 16 L2 - 24......

A: <I,STORE>

miss

GETX

MIGRATION

FWD_GETX

DATA_EXCLUSIVE

PUTX

ERROR!!!!

Replacement

Fig. 3: Race condition in case of replacement of a block owned by a L1 cache. The block is owned by L1-1.

As a consequence of a STORE operation, L1-0 issues a GETX command, that hits in L2-24. After the hit, the

block migrates from L2-24 to L2-16. Anyway, as the block is owned by L1-1, L2-24 forwards the request to

L1-1, which must furnish the data to L1-0. If now L1-0 needs to replace the data, L1-0 must perform a PUTX

operation to update the content of L2, so it issues the PUTX command towards L2-24, generating an error

condition as L2-24 no more holds the data, with potential loss of the updated data.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 198 Volume 13, 2014

off-chip directory embedded in the controller that

knows which blocks are actually on-chip, ii)

stopping migration (and solving related race

conditions) when the directory receives a request for

a block that believes being in the cache (false miss

detection) and sequential searching for an existing

valid copy of the data, iii) delaying block migration

of thousand cycles in order to reduce the false miss

probability (lazy migration). A centralized directory

is adopted also by Huh et al. in [23] for a CMP

system in which 16 processors share an L2 NUCA

cache, with partial TAGs optimization. Both [4] and

[23] observe that for some applications a statically-

partitioned shared cache performs better than the

corresponding banked cache with migration, due to

the conflict hit access pattern.

The replication has been considered in [6], [7], [8],

[11]. Chishti et al. [6], propose an hybrid design that

takes advantage of both shared and private

configuration for the LL cache, and they exploit

distance locality by decoupling the data and tag

arrays. However their CMP implementation requires

a non-scalable atomic bus for maintaining

coherence. Cooperative Caching [7] is based on a

private cache design with a centralized directory

scheme, and considers the aggregate private caches

as shared cache space by introducing optimizations

such as replication-aware replacement and global

replacement of inactive data. ESP-NUCA [8] adopts

a dynamic private-shared cache partitioning, with

replication and victim management. The ASR

mechanism [11] is proposed to optimize CMP

performance by controlling the cache replication of

memory blocks to minimize potential miss rate

increase induced by replication. As a summary, such

replication-based schemes adopt a mechanism that

controls the number of replicas, as blind replication

may affect the LL cache hit-rate, but none of them

considers the combined effects of migration and

replication.

Finally, Hardavellas et al. [5] propose a tiled

architecture in which the aggregation of all L2

banks is seen as a shared NUCA, and adopt a hybrid

hard-soft mechanism to control block placement,

migration and replication among slices. This,

together with others [33], [14], [39] operates at

software or at integrated hardware and software

level and not at hardware level only.

3 The adopted D-NUCA scheme
The adopted LL cache architecture (L2 in our case)

relies on a banked shared cache with migration and

replication. In particular, the overall system

configuration has a dance-hall architecture [35],

where CPUs with private L1 caches are distributed

on two opposite sides of the shared L2 NUCA cache

(Fig. 1).

Fig. 4: Conflict hits and the ping-pong phenomenon. L1-0 requests data S (A), that is taken from main

memory and put in the L2-24 block (B). Then L1-4, located at the opposite side of the cache with respect to

L1-0, requests the same data (C). The data now hits in the cache, and migrates towards L1-4 (the requestor)

in the bank L2-32 (D). If L1-0 requests again the data S, it migrates towards L1-0, but it does not improve the

access latency with respect to (B), nullifying the benefit of migration.

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

G
E

TS
 S

(A)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

S

(B)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

G
E

TS
 S

(C)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

Migration

(D)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

(E)

G
E

TS
 S

Migration

Ping-Pong

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 199 Volume 13, 2014

The topology of the interconnection network among

CPUs and cache banks is derived from a 2D mesh

by employing only a subset of the links of a full 2D

mesh (partial 2D mesh [35], [32]). With such

topology, there is only one path that links a CPU

(that is, a L1 cache) with a L2 bank, and this

simplify in-order point-to-point communication.

More complex interconnection and switches

infrastructures does not produce performances

improvements, and instead cost more in terms of

area. Coherence of the private L1 caches is

maintained via a directory MESI protocol. By

assuming an inclusive cache hierarchy, we avoid the

need of a centralized directory, so that the directory

is distributed [20], with directory information held

together with the TAG field of the block stored in

the LLC banks.

As a consequence of migration, a block can be

moved to any of the bankset’s banks [25] (that is,

the banks included in a column of banks in Fig. 1),

so we assume that, to locate the copy, requests

coming from L1 are broadcasted to all the banks of

the bankset. A block, belonging to a specific section

of the memory space, may be stored in any bank (or

way) of the bankset. The address of the memory

block addresses the specific memory set. The

adopted migration mechanism considers per-hit

block migration: a block migration is triggered

whenever a request from L1 hits. Data can migrate

only along a column of banks, and migration

happens towards the requesting L1 cache. This

solution constitutes a good trade-off between

performance and complexity (search mechanism

and coherence management). A smart replication

mechanism is adopted to minimize the ping-pong

effects produced by applications having fine-grain

sharing [34].

3.1 False Miss Avoidance Protocol
In order to face the false miss race condition, our

solution consists in adding to the baseline MESI

protocol a block migration mechanism, called False

Miss Avoidance or FMA [3] protocol, which is

implemented completely on chip. In particular, the

FMA protocol is able to prevent false misses by

guaranteeing that at any time, if a copy exists in the

L2 cache, at least one bank knows where it is and,

therefore, it is able to signal the hit condition and

forward the request. For this reason, the FMA lets

the two banks involved in the migration transaction

communicate via message exchange. In this way,

even if a request arrives when the block is on-the-

fly, it won’t result in a miss.

The FMA protocol doesn’t deny the other LLC-1

caches to issue new requests for a migrating block,

as described in [23], nor relies on any centralized

structure and lazy migration as in [4]. Fig. 5 shows

the main FMA actions: in case of hit in an L2 bank

(L2-24 in Fig. 2), the block is provided to the L1

Requestor (L1-0), and a MIGRATION_START

message, containing both the block and the directory

L1 - 0 L2 - 16 L2 - 24L1 - 1

MIG
RATIO

N_S
TART

MIG
RATIO

N_E
ND

GETS

DATA_SHARED

DATA_SHARED

Fwd_G
ETS

MIGRATION_ACK

miss

miss

GETS

Fig. 5: Sequence diagram representing the block migration process of the FMA protocol. In case of hit in an

L2 bank (L2-24), the copy is sent to the L1 Requestor (L1-0), and a MIGRATION_START message,

containing both the block value and the directory information, is sent to the L2 Receiver (L2-16). When the

L2 Receiver gets the message, allocates a cache line for the block, and replies with a MIGRATION_ACK to

the L2 Sender (L2-24), which will conclude the migration process with a MIGRATION_END message. If a

new request is received by the L2 Sender while waiting for the MIGRATION_ACK, the request is forwarded

to the L2 Receiver, which will serve it.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 200 Volume 13, 2014

L1 - 0 L1 - 1 L2 - 16 L2 - 24......

A: <I,STORE>

miss

GETX

FWD_GETX

DATA_EXCLUSIVE

Replacement

MIGRATION_START

MIGRATION_ACK

MIGRATION_END

A: MIG_P -> P

HOME(L2-24)

HOME(L2-24)

Fig. 6: Sequence diagram representing the protocol behavior in case of replacement of a block owned by an

L1 cache. After receiving the MIGRATION_START message, L2-16 keeps L1-0 informed of the new home

node, so that L1-0 can send, on replacement, the data (via PUTX) to the right bank.

information, is sent to the destination L2 bank (L2-

16). When L2-16 receives the migrating block, it

allocates a cache line for the block, and replies with

a MIGRATION_ACK to L2-24, which will

conclude the migration process with a

MIGRATION_END message. If a new request is

received by L2-24 while waiting for the

MIGRATION_ACK (that is, a potentially false miss

condition), the request is forwarded to L2-16, which

will serve it. In conclusion, L2-16 replies with a

miss until the reception of the

MIGRATION_START message; after that it replies

with a hit. L2-24 replies with an hit and send a

MIGRATION_START message; then it forwards

the GETS request until the reception of the

MIGRATION_ACK message, with which the block

in L2-24 became invalid, so that subsequent

requests generate a miss.

The forwarding technique, on which the FMA

protocol is based, solves also other race conditions

related to the management of L1 replacements that

involve private blocks in the L2 presented in the

previous section. With the FMA protocol, L2-24

(Fig. 6) forwards the request to the owner and starts

the migration with the MIGRATION_START

message. L2-16, on receiving such a message, will

send an HOME message to the L1 requestor, so that

it is informed of the home node change, and can

then send the consequent PUTX to the right block.

3.2 Shared Blocks Migration Issues
In order to avoid the ping-pong in accessing to

shared blocks, a block replication mechanism is also

adopted [19]. By considering a compromise

between protocol complexity and performance gain,

only two copies of a data are permitted in the

architecture, each one devoted to serve the accesses

of the nearer CPU. In particular, a replica is created

when a replica does not exists and a block receives

requests coming from a CPU in the opposite site, i.e.

only in case of potential conflict hits (Fig. 7). In this

way, each copy is able to reach the respective low

latency way, and the benefits of migration are

always effective. In case L1 needs the exclusive

copy of a replicated block, the LLC copy farthest to

the requesting CPU will be invalidated.

We called this mechanism limited replication [34],

as it allows at most two copies of the same block to

be stored in the shared LLC, in contrast to a private

caches solution in which more than 2 copies of the

same block can be present (up to n, where n is the

number of CPUs). As for the false miss solution,

once again the introduction of the replication

mechanism requires to update the coherence

protocol for replicas management and coherence. In

the following, we describe the main changes

introduced by the mechanism, while a complete

description of the protocol can be found in [19].

The replication mechanism is implemented via a

messages exchange between the bank that receives a

request that hits the block (sender), and the bank

that will store the replica (receiver). Banks are able

to distinguish between near requests (coming from

L1s placed at the closest NUCA side) and far

requests (coming from L1s placed at the farthest

NUCA side), Fig. 7. Both Read-Only and Read-

Write data can be replicated.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 201 Volume 13, 2014

The sender bank starts the replication process when

the request that hits the block is a Read requests

(GETS) and the request is recognized as far.

Fig. 8 shows the messages exchanged by the banks

involved in the replication. The choice of which L2

bank will host the replica is fixed for each bankset.

For example, referring to the bankset 0 in Fig. 1,

banks 0, 8, 16 and 24 will send the

REPLICATION_START message to bank 40, while

banks 32, 40, 48 and 56 will send the message to

bank 24. At the end of the replication, two copies of

the same block exist. In order to let a copy be aware

that it is a replica, an isReplica bit is added to the

TAG field of the block. The isReplica bit is set

whenever a replication process ends. Besides, both

the copies are able to migrate toward the faster way

of the respective target side. The migration process

is started for a replica whenever a GETS near is

received; GETS far are treated as miss.

As it is allowed the replication of both Read-Only

and Read-Write blocks, it is possible that a

replicated block receives a Read-With-Intent-To-

Modify requests (GETX). In this case, in order to

guarantee the correctness of memory operations as

there are more copies of the same data, an

invalidation protocol is introduced that involves

both the banks that hold a copy of the block. In

particular, the proposed schema invalidates the

farthest replica with respect to the L1 requestor and

updates the state of the remaining copy, according

to the coherence protocol.

4 Performance evaluation

Performance of the systems were evaluated via full-

system simulation using Simics [16] and GEMS

[17].

Our reference architecture assumes an in-order 8-

cpu UltraSparc II ISA-like CMP system.

Fig.7: The replication scheme. On a request for a data S from an L1 cache, L1-0 in this case (A), the data is

put in the cache from the external memory (B). On a subsequent request from a CPU located at the opposite

side with respect to the previous request (L1-4) (C), called a far request, a replica of the data is created (D).

The two replicas now can migrate, each one on requests coming from the nearer CPUs (E1 and E2).

Table 1. Configuration Parameters

CPUs 8 cpus (Ultra Sparc II), in-order

Clock Freq. ~4 GHz

L1 cache Private 16 Kbytes I + 16 Kbytes D, 2 way s.a., one cycle TAG, 2 cycles TAG+Data

L2 cache 16 Mbytes, 64 banks (256 Kbyte banks, 4 way s.a., 5 cycles TAG, 8 cycles TAG+Data)

Block Size 64 bytes

NoC

configuration

Partial 2D Mesh Network; NoC switch latency: one cycle; NoC link latency: one cycle;

flit size: 32 bits

Main Memory 2 GByte, 240 cycles latency

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

G
E

TS
 S

(A)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

S

(B)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

G
E

TS
 S

 (f
ar

)

(C)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

Replica

(D)

L1-0

L2-0

L2-8

L2-16

L2-24

L2-32

L2-56

L2-48

L2-40

L1-4

(E)

(E1)

(E2)

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 202 Volume 13, 2014

L1 - 0 L1 - 2 L2 - 24 L2 - 40......

GETS

GETS

Data_Shared

REPLICATION_START

REPLICATION_ACK

REPLICATION_END

GETS

GETS

Fwd_GETS

Data_Shared

Far

Far

Near

Miss

Miss

Fig. 8: Sequence diagram of the messages exchanged during block replication. In case of a hit far in an L2

bank (L2-40), the block is sent to the L1 Requestor (L1-0), and a REPLICATION_START message is sent to

the L2 Receiver (L2-24). When L2-24 gets the message, it replies with a REPLICATION_ACK to the L2

Sender (L2-40), which will conclude the migration process with a REPLICATION_END message. If a new

request is received by L2-40 while waiting for the REPLICATION_ACK (in the figure L1-2 sends a request to

L2-40, that without the mechanism would recognize it as far), the request is forwarded to L2-24, which will

serve it (L2-24 recognizes the forwarded request as near, and no action is taken by the replication mechanism).

The shared NUCA LL cache is composed by 64

banks organized as in Fig. 1, (each of 256 KB, 4

ways set associative), for a total storage capacity of

16 MB, backed up by a 240-cycles latency main

memory. Cache latencies have been obtained by

CACTI [18]. The NoC is organized as a partial 2D

mesh network, with 64 wormhole switches; NoC

link latency has been calculated using the Berkeley

Predictive Model [1]. The simulated system runs the

Sun Solaris 10 operating system. We run

applications from the SPLASH-2 benchmark suite

[2], and from the PARSEC 2.0 suite [12]. All the

applications were compiled with the gcc provided

with the Sun Studio 10 suite. Table 1 reports the

main configuration parameters.

In the first set of experiments, we compare the

performance of a D-NUCA implementing the FMA

protocol against a baseline S-NUCA cache. Fig. 9

shows the Normalized CPI with respect to the S-

NUCA for the considered benchmarks. In line with

other works [4][23], the adoption of a DNUCA is

effective, but not for every workload. In particular,

we notice different behaviors: a good CPI

improvement with the D-NUCA (6% or more for

raytrace, blackscholes and swaptions); a little

improvement (about 2-4% for barnes, ocean,

bodytrack and canneal); and in some cases a

performance degradation (radix, radiosity, and

streamcluster). To explain such behavior, we can

observe that performance improvements are good

for those applications that succeed in bringing most

frequently accessed blocks in lines 1 and 8 (i.e. in

the faster ways), as Fig. 10 demonstrates for

raytrace, blackscholes and swaptions, indicating that

when migration is not limited by conflict hits, it is

successful in boosting performance. For all the other

applications, performance improvement are limited

by the ping-pong phenomenon, that prevents most

used data to reach the faster ways, so that the

accesses are equally distributed among all the cache

lines.

To limit ping-pong effects on a D-NUCA, the

solution consisted in adopting the replication of

blocks. Fig. 11 shows the CPI of the limited

replication scheme (R-NUCA), compared to the one

achieved by the D-NUCA schemes. Performance of

the solution adopting replication are similar to the

D- NUCA one for Ocean and bodytrack. For all the

other applications, we observe an improvements,

which varies from the 3% of Streamcluster up to the

15% of bodytrack. Adding the replication greatly

improves the distribution of hits (Fig. 12): for Ocean

and Canneal almost 20% of the hits are to ways

other than Way8 and Way1. In all the other cases,

less than 5% of the hits are to slower ways. Besides,

in no case, the replication introduces performance

degradation with respect to a D-NUCA: when

conflict hit are not discovered, the replication

protocol behaves exactly like a D-NUCA.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 203 Volume 13, 2014

Fig. 9: CPI for S-NUCA and D-NUCA. Data are normalized to the S-NUCA system.

Fig. 10: Hit distribution for S-NUCA and D-NUCA. Lines are numbered according to Fig. 1

Fig. 11: Normalized CPI for D-NUCA without (D-NUCA) and with (R-NUCA) block replication.

Fig. 12: Hit Distribution for D-NUCA, without (D-NUCA) and with (Re-NUCA) block replication.

0.8

0.85

0.9

0.95

1

1.05
S-NUCA

D-NUCA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

S-
N

U
C

A

D
-N

U
C

A

barnes ocean radiosity radix raytrace blackscholes bodytrack canneal streamcluster swaptions

Way 8

Way 7

Way 6

Way 5

Way 4

Way 3

Way 2

Way 1

0.8

0.85

0.9

0.95

1

1.05

D-NUCA R-NUCA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

D
-N

U
C

A

R
-N

U
C

A

barnes ocean radiosity radix raytrace blackscholes bodytrack canneal streamcluster swaptions

Way 8

Way 7

Way 6

Way 5

Way 4

Way 3

Way 2

Way 1

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 204 Volume 13, 2014

5 Conclusions
Technology trends have imposed the advent of

CMPs and the proposal of new architectures for the

on-chip cache memory subsystems. Such proposals

may introduce new race conditions in the coherence

protocol, that must be adequately managed to

guarantee performance and correctness. In this

paper we have shown how a D-NUCA solution,

based on migration and replication, can significantly

improve the performance with respect to a

conventional banked cache, and we have

highlighted both the negative effect of migration,

both how they can be avoided via replication. Such

results have been obtained mainly acting on the

coherence protocol. In fact, to deal with race

conditions imposed by the new architecture and data

management policies, specific actions have been

added to the baseline MESI solution (the FMA

protocol). To speed-up the performance of the

resulting system, again there was the need to modify

the coherence protocol, by introducing replication

and the states needed to manage it. The resulting

system is able to achieve up to 15% improvement of

CPI, and, differently from other proposals, never

performs worse than a S-NUCA based solution.

Such results highlight that data management and

coherence protocol can be a significant source of

performance improvement also in the multicore era,

so they still must be considered of the utmost

importance by researchers and designers of such

systems.

References:

[1] Predictive Technology Model (PTM),

http://www.eas.asu.edu/~ptm/

[2] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P.,

Gupta, A., The SPLASH-2 programs:

characterization and methodological

considerations. 22th ISCA, S. Mar. Ligure,

Italy, pp.24-36, June 1995.

[3] P. Foglia, F. Panicucci, C.A. Prete and M.

Solinas, Analysis of performance dependencies

in NUCA-based CMP systems. 21st Int. Symp.

on Computer Architecture and High

Performance Computing, Sao Paulo, Brazil,

pp.49-56, Oct. 2009.

[4] B.M. Beckmann and D.A. Wood, “Managing

Wire Delay in Large Chip-Multiprocessor

Caches” 37th Int. Symp. on Microarchitecture,

Portland, OR, USA, pp. 319-330, Dec. 2004.

[5] N. Hardavellas, M. Ferdman, B. Falsafi, A.

Ailamaki, “Reactive NUCA: Near-Optimal

Block Placement and Replication in Distributed

Caches”. 36th Int. Symp. on Comp. Arch.,

Austin, TX, USA, June 2009, pp. 184-195

[6] Z. Chishti, M.D. Powell and T.N. Vijaykumar,

“Optimizing Replication, Communication, and

Capacity Allocation in CMPs” 32nd ISCA,

Madison, WI, USA, pp. 357-368, June 2005.

[7] J. Chang and G.S. Sohi, “Cooperative Caching

for Chip Multiprocessors” 33rd Int. Symp. on

Comp. Arch., Boston, MA, USA, June 2006.

[8] J. Merino, V. Puente, J.A. Gregorio, “ESP-

NUCA: A Low-cost Adaptive Non-Uniform

Cache Architecture”. 16th Symp. on High-Perf.

Comp. Arch., Bangalore, India, Jan. 2010.

[9] R. Ho, K.W. Mai and M.A. Horowitz, “The

future of wires” Proc. of the IEEE, 89(4), pp.

490-504, April 2001.

[10] P. Foglia, M. Comparetti, “A Workload

Independent Energy Reduction Strategy for D-

NUCA Caches, Journal of Supercomputing,

10.1007/s11227-013-1033-5, October 2013.

[11] B. M. Beckmann, M. R. Marty, D. A. Wood,

"ASR: Adaptive Selective Replication for CMP

Caches" 39th Int. Symp. on Microarchitecture,

Orlando, FL, pp. 443-454, Dec. 2006.

[12] C. Bienia, S. Kumar, J. Pal Singh and K. Li,

“The PARSEC Benchmark Suite:

Characterization and Architectural

Implications” 17th PACT. Toronto, Canada,

pp. 72-81, Oct. 2008.

[13] K. Gharachorloo, M. Sharma, S. Steely and S.

Van Doren, “Architecture and Design of

AlphaServer GS320”. 9th ASPLOS,

Cambridge, MA, USA, pp. 13-24, Nov. 2000.

[14] Q. Lu, et al. “A compile-time data locality

optimization framework for NUCA chip

multiprocessors”. OSU-CISRC-6/08-TR29

[15] A. Bardine, M. Comparetti, P. Foglia, G.

Gabrielli and C.A. Prete, “A power-efficient

migration mechanism for D-NUCA caches”.

Design, Automation and Test in Europe, Nice,

France, pp. 598-601, Apr. 2009.

[16] Virtutec Simics, http://www.virtutech.com

[17] Winsconsin Multifacet GEMS Simulator,

http://www.cs.wisc.edu/gems/

[18] Muralimanohar, N., Rajeev B., and Norman P.

Jouppi."CACTI 6.0: A tool to model large

caches." HP Laboratories (2009).

[19] P. Foglia, M. Solinas, Exploiting Replication

to Improve Performances of NUCA-Based

CMP Systems, ACM Transactions on

Embedded Computing Systems, Vol. 13, No.

3s, doi: 10.1145/2566568, March 2014.

[20] D. Lenoski, J. Laudon, K. Gharachorloo, A.

Gupta and J. Hennessy, “The directory-based

cache coherence protocol for the DASH

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 205 Volume 13, 2014

http://www.cs.wisc.edu/gems/

multiprocessor”. 17th ISCA, Seattle, WA,

USA, pp. 148-159, May 1997.

[21] K. Olukotun, B.A. Nayfeh, L. Hammond, K.

Wilson and K. Chang, “The case for a single-

chip Multiprocessor” 7th ASPLOS, Cambridge,

MA, USA, pp. 241-251, Oct. 1996.

[22] A.Bardine, P. Foglia, F. Panicucci, J.

Sahuquillo, M. Solinas, “Energy Behaviors of

NUCA caches in CMPs”. 14th EUROMICRO

Conference on Digital System Design,

Architectures, Methods and Tools, OULU,

Finland, pp: 746-753, Aug 31 -Sept. 2, 2011.

[23] J. Hu, C. Kim, l. Zang, D. Burger, S. W.

Keckler, “A NUCA substrate for flexible CMP

cache sharing”, 19th Int. Conf.

Supercomputing, Camb. MA, USA, June 2005.

[24] A. Bardine, M. Comparetti, P. Foglia, G.

Gabrielli, C. A. Prete, P. Stenstrom,

“Leveraging Data Promotion for Low Power

D-NUCA Caches”. 11th Euromicro Conference

on Digital System Design, Parma, Italy, pp.

307-316, Sept. 3-5 2008.

[25] C. Kim, D. Burger and S. W. Keckler, “An

Adaptive, Non-Uniform Cache Structure for

Wire-Delay Dominated On-Chip Caches” 10th

ASPLOS, San Jose, CA, USA, Oct 2002.

[26] P. Foglia, F. Panicucci, C. A. Prete, M. Solinas,

An Evaluation of Behaviors of S-NUCA CMPs

running scientific workload. 12th Euromicro

Conf. on Digital System Design, Architectures,

Methods and Tools, Aug.t 27-29, Patras,

Greece, pp. 26-33, 2009.

[27] Agarwal, V.; Hrishikesh, M. S.; Keckler, S.W.;

Burger, D., "Clock rate versus IPC: the end of

the road for conventional microarchitectures".

27th Intern. Symp. on Com. Arch, June 2000

[28] A. Bardine. P. Foglia, G. Gabrielli, C. A. Prete,

Analysis of Static and Dynamic Energy

Consumption in NUCA Caches: Initial Results.

ACM MEDEA 2007 Worskhop, Brasov,

Romania, pp. 113-120., Sept. 2007.

[29] B. Sinharoy et al: IBM Power7 Multicore

Processor, IBM J. RES. & DEV. VOL. 55 NO.

3 PAPER 1, MAY/JUNE 2011.

[30] Z. Chisti, M.D. Powell, T.N. Vijaykumar:

“Distance Associativity for High-Performance

Energy-Efficient Non-Uniform Cache

Architectures” 36th Int. Symp. On

Microarchitecture, pp.55-66, Dec. 2003.

[31] P. Foglia, D. Mangano, C. A. Prete, A NUCA

Model for Embedded Systems Cache Design,

IEEE 2005 Work. on Embedded Systems for

Real-Time Multimedia, New York

Metropolitan Area, Usa, pp. 41-46, Sept. 2005.

[32] A. Bardine, M. Comparetti, P. Foglia, G.

Gabrielli, C. A. Prete, Impact of On-Chip

Network Parameters on NUCA Cache

Performance. IET Computers & Digital

Techniques, Vol. 3(5), pp. 501-512, Aug. 2009.

[33] S. Bartolini, P. Foglia, C.A. Prete, M. Solinas,

“Feedback Driven Restructuring of Multi-

Threaded Applications for NUCA Cache

Performance in CMPs”. 22nd Intern. Symp. on

Computer Architecture and High Perf. Comp.,

Oct. 27-30, Petropolis, Brazil, pp. 87-94, 2010.

[34] P. Foglia, C.A. Prete, M. Solinas, G. Monni,

"Re-NUCA: Boosting CMP Performance

Through Block Replication" 13th Euromicro

Conference on Digital System Design:

Architectures, Methods and Tools, 2010,

pp.199- 206, 1-3 Sept. 2010.

[35] J. Duato, S. Yalamanchili and L. Ni,

Interconnection Networks: an Engineering

Approach. Morgan Kauffmann, 2003.

[36] http://www.amd.com/us/products/server/proces

sors/6000-series-platform/6300/Pages/6300-

series-processors.aspx#2

[37] A. Bardine, M. Comparetti, P. Foglia, C. A.

Prete, Evaluation of Leakage Reduction

Alternatives for Deep Submicron Dynamic

Nonuniform Cache Architecture Caches, IEEE

Transactions on Very Large Scale Integration

Systems, vol.22(1), pp.185-190, Jan. 2014.

[38] Z. Chishti, M. Powell, and T. Vijaykumar.

Distance Associativity for High-Performance

Energy-Efficient Non-Uniform Cache

Architectures. 36th Intern. Symp. on

Microarchitecture, Wash., DC, USA, 2003.

[39] S. Cho and L. Jin, “Managing Distributed,

Shared L2 Caches through OS-Level Page

Allocation”. 39th M, Orlando, FL, USA, 2006.

[40] L. Noordergraaf, R van der Pas. 1999.

Performance experiences on Sun's Wildfire

prototype. 1999 Conf. on Supercomputing.

ACM, New York, NY, USA, Article 38, 1999

[41] R. Chandra, et al., Scheduling and page

migration for multiprocessor compute servers,

6th ASPLOS, Oct. 1994, pp. 12–24.

[42] P. Foglia, R. Giorgi, C. A. Prete, Reducing

Coherence Overhead and Boosting

Performance of High-End SMP

Multiprocessors Running a DSS Workload,

Journal of Parallel and Distributed Computing,

Vol. 65(3), pp. 289-306, March 2005.

WSEAS TRANSACTIONS on COMPUTERS
Sandro Bartolini, Pierfrancesco Foglia,
Cosimo Antonio Prete, Marco Solinas

E-ISSN: 2224-2872 206 Volume 13, 2014

http://www.amd.com/us/products/server/processors/6000-series-platform/6300/Pages/6300-series-processors.aspx#2
http://www.amd.com/us/products/server/processors/6000-series-platform/6300/Pages/6300-series-processors.aspx#2
http://www.amd.com/us/products/server/processors/6000-series-platform/6300/Pages/6300-series-processors.aspx#2

