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Abstract: - This paper presents a Tikhonov regularization based piecewise classification model for multi-category 

discrimination of sets or objects. The proposed model includes a linear classification and nonlinear kernel 

classification model formulation. Advantages of the regularized multi-classification formulations include its ability 

to express a multi-class problem as a single and unconstrained optimization problem, its ability to derive explicit 

expressions for the classification weights of the classifiers as well as its computational tractability in providing the 

optimal classification weights for multi-categorical separation. Computational results are also provided to validate 

the functionality of the classification models using three data sets (GPA, IRIS, and WINE data). 
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1 Introduction 
The main idea underlying regularization theory is 

that an ill-posed problem or in particular, a problem 

of approximating the functional relation between x 

and y given a finite number of l points 
1( , )l

i i ix y 
, 

can be formulated as a variational problem which 

contains both data and prior smoothness information. 

The smoothness of the function is taken into account 

by defining a smoothness functional ( )f  in such a 

way that smaller values of the functional correspond 

to smoother functions. To find a function that is 

simultaneously close to the data and is also smooth, 

leads to the approximation problem arising from the 

minimization of the following quadratic functional 

[1], [2]: 

 
2

1

1
[ ] ( ) ( )

l

i i

i

H f y f x f
l




    (1) 

for a fixed λ referred to as a regularization parameter. 

The first term is an L2 loss function for empirical risk 

that enforces closeness of the data (reducing the 

empirical error or rate of misclassification). The 

second term called stabilizer enforces smoothness 

(generalization ability), and the regularization 

parameter controls the tradeoff between minimizing 

the generalization ability and the empirical error. 

Support Vector Machines (SVMs), developed by 

Vapnik [3], [4] have been successfully applied to a 

wide range of problems. The SVM model as 

originally proposed requires the construction of 

several binary SVM classifiers to solve a multi-class 

problem. Although theoretically this scheme may 

seem practical, it becomes increasingly tedious to 

continue to perform the same repeated procedure of 

providing a solution for all independent classification 

models as this tends to increase the time used to 

obtain all solutions. The proposed least squares 

piecewise multi-classification model addresses this 

issue by solving the underlying multi-class problem 

as a linear system of equations that originates from a 

single optimization problem. 

Most developed classification models are for 

discriminating between two classes. To address the 

problem of multi-classification, researchers have in 

the past adopted methods which involve solving k 

SVM models (one-against-all (OAA) method) to 

produce k classifiers [10] or solving k(k-1)/2 SVM 

models (one-against-one (OAO) method) to produce 

k(k-1)/2 classifiers; k is the number of classes. Hsu & 

Lin [11] developed a decomposition strategy and 

made a comparison of the above methods. Methods 

include the OAA, OAO, and Direct Acyclic Graph 

SVM [12]. It was reported that the OAO method and 

DAGSVM are more suitable for practical use, and 

that for large scale problems, methods that consider 

all data at once, in general, use fewer support vectors. 
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In expressing and solving a multi-class problem as a 

single optimization problem the following models 

were suggested [13], [14], [15], [16], [17], [18], [19] 

and [20].  

The objective of this study is aimed towards the 

reformulation of a piecewise multi-classification 

model using a least squares framework. This 

formulation leads to a linear system of equations 

which is smaller in size than the proposed least 

squares piecewise multi-classification model by 

Oladunni & Trafalis [18]. Benefits of this 

formulation include the expression of a multi-class 

problem as a single and unconstrained optimization 

problem, the explicit expressions for the 

classification weights of the classifiers, its 

computational tractability in providing the optimal 

classification weights for multi-categorical 

separation, its ability to provide solutions without the 

use of specialized solver-software, and a reduced 

linear system of equations. 

The expression of the proposed method as a single 

optimization presents a less tiresome approach to 

attaining a solution to multi-class problems as 

opposed to solving several binary problems, which 

can be a time consuming effort. This approach offers 

a more succinct way to generating multi-class 

solutions. Furthermore, the proposed formulation 

leads to a strongly convex objective function that 

plays a key role in obtaining the optimal solution. In 

the proposed formulation, the fundamental change 

from other methods is the replacement of inequality 

constraints with equality. This modification, even if 

very simple, changes the nature of the optimization 

problem significantly. It turns out that one can write 

exact expressions/solutions to the problem in terms 

of the problem data as shown in the subsequent 

sections, whereas it is impossible to do that in the 

previous linear and quadratic programming 

formulations because of their combinatorial nature 

that require optimization solvers. 

This paper is organized as follows. In section 2, a 

short description of a piecewise multi-classification 

problem is presented. In section 3, a description of 

the proposed regularized least squares piecewise 

multi-classification machine (RLSM) model is given. 

In section 4, several data sets for numerical testing 

are described. In section 5, computational results are 

presented, and section 6 concludes the paper. 

 

 

2 Piecewise Multi-classification 

Formulation 

Consider m vectors in 
nR , belonging to k classes 

(k>2), where each class comprises of mi vectors such 

that 
1

k

i

i

m m


 . Assume that the set of vectors 

belonging to the k classes are piecewise-linearly 

separable, i.e., there exist 
i nw R  and 

i R   such 

that  

, , 1,..., ,i i i i i j j iA w e A w e i j k i j      , (2) 

where iA  is an 
im n  matrix whose rows are the 

input data points in the i
th
 class, e

i
 is a vector of ones 

with mi elements and the difference between w
i
 and 

w
j
 is the normal vector perpendicular to the optimal 

hyperplane. The location of the optimal hyperplane 

relative to the origin are determined by the difference 

value of γ
i
 and γ

j
. In canonical form  

( ) ( ) 1, , 1,..., ,T i j i i jx w w e i j k i j       . (3) 

The bounding plane separating classes i and j is (see 

Fig. 1) 

( ) ( )T i j i jx w w     .  (4) 

 

 
Fig 1: Piecewise-linear separator with margins for 

three classes [13] 

 

Adding a regularization term 
2

1

1

2

k
i

i

w


  to the 

objective function leads to the formulation of a 

piecewise linearly separable multi-classification 

problem (see Fig. 1): 
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 (5) 

To classify a new point x, compute ( )ig x  

( ) T i i

ig x x w   ,  (6) 

and find i  such that ( )ig x  is maximized, i.e., 

( )g x 
1,..,

max ( )i
i k

g x


, where ( )g x  is a decision 

function. 
 

 

3 Regularized Least Squares Multi-

classification Machine: Piecewise 

Formulation 
In this section, a regularized least squares multi-

category machine (RLSM) for linear and nonlinear 

classification is presented. The derivation of the 

RLSM is based on problem (5), where the norm is 

minimized simultaneously with the sum of square 

error and the relative location of the origin γ. The 

objective is to make a very simple, but very 

fundamental change in the formulation (5), 

specifically replace the inequality constraint by an 

equality constraint (see equation 7). 

This modification makes it possible to reduce the 

optimization problem to a linear system of equations, 

as well as derive explicit expressions for the solution 

parameters. Another interesting observation is the 

increase in margin, whereas it is a narrower margin 

for formulation (5). This happens because the 

hyperplane     1T i j i jx w w       associated with 

class i and     1T i j i jx w w       associated class j 

move closer to their respective data point cluster (see 

Fig. 2). 

 

 

 
Fig. 2: Least squares piecewise-linear separator with 

margins for three classes 

 

 

3.1 Linear Least Squares Piecewise Multi-

classification Machine 

Consider a problem of classifying data sets in 
nR  

that are represented by a data matrix im niA R


 , 

where 1,..,i k  ( 3k   classes). iA  is an 
im n  

matrix whose rows are the input data points in the i
th
 

class. This problem can be modeled through the 

following optimization problem (see Fig. 2): 

   
2 22

2, ,
1 1 1 1

1
min  

2 2

. .  ( ) ( ) 1

      , 1, ,    , 1, ,

imk k k
i i ij

t
w

i i i t

i i j i j ij

t t

i

w

s t A w w

i j k i j t m

 


 

  

   

 
  

 

    

  

  

, (7) 

where λ is the regularization parameter between 

minimizing the empirical error of the training set 

(data) and maximizing the margin (minimizing 

generalization ability), t denotes the t
th
 row of data 

matrix iA , and 
ij

t  is an error slack variable 

accounting for the empirical error of the training set. 

Here is a 3 classes problem (k = 3) rewritten in 

matrix notation. 
1 1 1 1

1 11 1

2 22 2

2 2 2 2

3 33 3

3 3 3 3

0 0

0 0

0 0

0 0

0 0

0 0

A A e e

A eA e

A eA e
A E

A A e e

A eA e

A A e e

    
   

    
   

    
    
   
    
          

, (8) 

where im niA R


  is matrix whose rows are input 

data belonging to a class, and 
1imie R


 , 1,..,i k  

( 3k   classes) is a vector of ones. So when k > 2, we 

simply adjust matrices A  and E . Here is a k class 

problem rewritten in matrix notation. 
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 
 
 
 
   

 (9) 

where im niA R


 . The matrix A  has 
1

( 1)
k

i

i

k m


   rows 

and kn columns. 
1 1

1
1

11

22

2 2

2 2

0 0 0

0 0 0

0 0

0 0

0 0

0 0 0

0 00

0 0

0 0

0 0

0 0 0

0 0

0 0
0

0

k k

k k

k k

e e

ee

ee

ee

e e

E

e e

e e

e e

e e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

, (10) 

 

where 
1imie R


  is a vector of ones. The matrix E  

has 
1

( 1)
k

i

i

k m


   rows and k columns. 

Below is the matrix expression for problem (7) 

2

2

2, ,
2

1
min  

2 2

. .  0

w

w

s t Aw E e

 






 

 
 

 

   

,  (11) 

where      1 2, ,....,
T

T T T
kw w w w 

  
, 

1 2, ,....,
T

k       , e is a vector of ones with 

appropriate dimension, and 

           12 13 1 21 23 ( 1), ,...., , , ,....,
T

T T T T T T
k k k        

  
. 

Problem (11) is a constrained optimization problem. 

Using the concept of penalty functions [21], problem 

(11) can be rewritten as an unconstrained 

optimization problem given below: 
2

2

2,
2

1
min ( , )  

2 2w

w
f w Aw E e




 



 
    

 
. (12) 

Setting   
T

T Tv w       

and defining H as:  





 EAH ,  (13) 

problem (12) can be written succinctly as:  

2 2

2 2

1
min ( )  

2 2v
f v v Hv e


   . (14) 

Problem (14) is an unconstrained optimization 

problem for piecewise linear multi-classification. The 

tradeoff constant   is run through a series or range 

of values to achieve the best result. If its value 

increases then the minimum norm is achieved, but at 

the expense of having a higher training residual error 

(empirical error). The first term of problem (14) 

ensures the smoothness of the function, i.e., similar 

inputs have similar outputs; the second term ensures 

that the data points in each class are as close as 

possible to each other.  

Problem (14) is a convex unconstrained 

optimization problem which has a minimum point. 

The minimizing point of problem (14) is the solution 

to the following optimality condition(s) of ( )f v  set 

to equal zero: 

0T Tdf
v H Hv H e

dv
    .  (15) 

From equation (15) the following expression is 

obtained for v : 

 
1T Tv I H H H e


  .   (16) 

Setting  
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TM I H H  , Tt H e ,  (17)  

the solution to problem (14) can be written succinctly 

as:   
1v M t ,   (18) 

and its corresponding linear system of equations is: 

  ,  where 
T

T TwMv t v     .   

 (19) 

To classify a new point x, compute  

( ) T i i

ig x x w   ,    

 (20) 

and find i  such that ( )ig x  is maximized, i.e., 

( )g x 
1,..,

max ( )i
i k

g x


, where ( )g x  is a decision 

function. 

Assuming the matrix M in Equation (18) is invertible 

then it provides a solution to the linear system of 

equations in (19). Methods for solving the linear 

system of equations include matrix decomposition 

methods and/or iterative based methods [21], [22]. Its 

solution involves the evaluation of a smaller 

dimensional matrix (M) of magnitude 

( ) ( )kn k kn k   . Below is procedure for the 

linear RLSM. 

 

ALGORITHM 3.1.1 - Linear RLSM: Given a data 

set in 
nR  that is represented by a matrix im niA R


 , 

where 1,..,i k  classes. Classification weights w 

and   for linear classifiers are computed as follows. 

Step 1: Define H by (13). 

Step 2: Compute M and t from (17). 

Step 3: Determine v from (18). 

Step 4: Classify a new point x by (20). 

 

Matrix methods or iterative methods are employed to 

obtain the solution in step 3. 

 

 

3.2  Nonlinear RLSM 
To formulate the nonlinear counterpart of the 

piecewise linear classification model, the primal 

variable w is replaced by its equivalent dual 

representation as shown below: 
Tw A  ,   (21) 

where   is the vector of dual variables. We have the 

following piecewise multi-classification Tikhonov 

regularization formulation for linear separation in 

dual space by substituting w in (21) into (12). 

2

2

2,
2

1
min ( , )  

2 2

Tf AA E e
 


   



 
    

 
,

   (22) 

where 

           12 13 1 21 23 ( 1), ,...., , , ,....,
T T T T T T

T k k k        
  

 

and 
1,...,

T
k      . 

However, to obtain nonlinear classifiers it is essential 

to carry out a nonlinear mapping from the input space 

to a feature space using a mapping function 

: nR F   [23], [24]. Since we do not know the 

mapping function , a kernel function is employed 

to implicitly compute the inner products of the input 

vectors in feature space. Depending on the specific 

kernel function chosen, the resulting kernel matrix 

defines the similarity or dissimilarity of the input 

vectors. The kernel function can define a distance in 

the input space. Two of the most widely used kernel 

functions are as follows [24]: 

 , ( 1)T P

i ik x x x x  , where p is the degree of 

polynomial for the polynomial (poly) kernel function. 

 
2

, exp( )
i i

k x x x x   , σ is the width or spread for 

the radial basis function (rbf) kernel function. 

     Given m nA R  and n kB R  , the kernel ( , )K A B  

maps m n n kR R  into m kR  . The kernel function 

satisfies Mercer’s condition and therefore the kernel 

matrix is a symmetric positive semi-definite (PSD) 

matrix [23], [24]. 

Problem (22) is a piecewise linear classification 

problem, because TAA  can be considered as a linear 

kernel. In order to generalize to piecewise nonlinear 

classifiers, the linear kernel is replaced by a general 

nonlinear kernel ( , )TK A A  and problem (22) 

becomes: 
2

2

2,
2

1
min ( , )  ( , )

2 2

Tf K A A E e
 


   



 
    

 

.   (23) 

Setting  
T

T Tc      , ( , )TK K A A   

and defining G as: 

  G K E    ,   (24) 

problem (23) can be written succinctly as: 

  

2 2

2 2

1
min ( )  

2 2c
f c c Gc e


   . (25) 
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Problem (25) is a convex unconstrained optimization 

problem for piecewise nonlinear multi-classification. 

The minimizing point of problem (25) is the solution 

to the following optimality condition(s) of ( )f c  set 

to equal zero: 

0T Tdf
c G Gc G e

dc
    .  (26) 

From equation (26) the following expression is 

obtained for c : 

 
1T Tc I G G G e


  .   (27) 

Setting  
TQ I G G  , 

Tz G e ,  (28)  

the solution to problem (22) can be written succinctly 

as:   
1c Q z .   (29) 

and its corresponding linear system of equations is: 

  ,  where 
T

T TQc z c      .  (30) 

Solving for w
i
 in summation notation we get: 

1 1 1 1

( ) ( )
ji

mmk k
i ij i T ji j T

t t t t

j t j t
j i j i

w A A 
   
 

   .  (31) 

Therefore to classify a new point x, compute  

   
1 1 1 1

( ) , ( ) , ( )
ji

mmk k
ij T i T ji T j T i

i t t t t

j t j t
j i j i

g x K x A K x A  
   
 

    ,

  (32) 

and find i  such that ( )ig x  is maximized, i.e., 

( )g x 
1,..,

max ( )i
i k

g x


, where ( )g x  is a decision 

function. Assuming the matrix Q in Equation (29) is 

invertible then it provides a solution to the linear 

system of equations in (30). Below is procedure for 

the nonlinear RLSM. 

 

ALGORITHM 3.2.1 - Nonlinear RLSM: Given a 

data set in 
nR  that is represented by a matrix 

im niA R


 , where 1,..,i k  classes. Classification 

weights   and   for nonlinear classifiers are 

computed as follows. 

Step 1: Choose a kernel function ( , )TK K A A . 

Step 2: Define G by (24). 

Step 3: Compute Q and z from (28). 

Step 4: Determine c from (29). 

Step 5: Classify a new point x by (32). 

 

Matrix methods or iterative methods are employed to 

obtain the solution in step 4. 

 

 

4 Numerical Testing 
In this section, the description of three data sets 

trained on a regularized least squares multi-category 

machine (RLSM) for discriminating between k 

classes is presented. Below are the three data sets of 

interest: 

 

Table 1.  List of Datasets. 

 
 

     Admission Data for Graduate School of Business: 

The Admission data set
 
[17], [18], [32] uses the 

undergraduate grade point average (GPA) and 

graduate management aptitude test (GMAT) scores 

to help determine which applicants should be 

admitted to the school’s graduate program. There are 

85 instances (points) and 2 attributes (features), 43 

data points used as training samples and 42 data 

points used as test samples. The distribution of 

instances with respect to their class is as follows: 28 

instances in class 1 (not admitted), 26 instances in 

class 2 (borderline), and 31 instances in class 3 

(admitted).  

     Iris flower Data: The Iris data set
 
[32] uses the 

sepal length, sepal width, petal length, and petal 

width to help discriminate between three species of 

iris flower. There are 150 instances (points) and 4 

attributes (features), 75 data points used as training 

samples and 75 data points used as test samples. The 

distribution of instances with respect to their class is 

as follows: 50 instances for each of the three classes. 

Class 1 belongs to the iris setosa specie, class 2 is the 

iris versicolor specie, and class 3 is the iris virginica 

specie. 

     Wine Recognition Data: The Wine data set uses 

the chemical analysis of wine grown in the same 

region in Italy to help discriminate between three 

different cultivars. There are 178 instances (points) 

and 13 attributes (features), 90 data points used as 

training samples, 88 data points used as test samples. 

The distribution of instances with respect to their 

class is as follows: 59 instances belong to class 1, 71 
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instances belong to class 2 and 48 instances belong to 

class 3. The WINE data set were obtained from the 

UCI Repository of Machine Learning Databases and 

Domain Theories [33]. 

 

 

5 Computational Results 
In this section, the result of the analyzed data set is 

presented and discussed. The LRLSM and NRLSM 

models were used to train the data sets. A random 

sample validation was employed to validate the 

proposed models. In the random sample validation, 

fifty percent of the data set was drawn randomly and 

trained on both proposed models, while the other 

50% was used as test samples. Ten random samples 

of each data set were trained and tested, and the 

misclassification error for each test sample was 

recorded. The analysis of the NRLSM model was 

performed using a polynomial and RBF kernel 

functions.  

All classification analysis were implemented 

using MATLAB [34], and comparisons were made 

by evaluating a performance parameter 

(misclassification error) defined below: 

1
Total number of correctly classified points

error
Total number of observed points

 
 
 
 

, (33) 

where error represents the overall misclassification 

error rate, i.e., the fraction of misclassified points for 

a test sample of a given data set. For 100% 

classification or correctness, 0error  . Results of the 

data sets trained on the LRLSM (14) and NRLSM 

(25) models are shown in Tables 2 – 4. 

 

Table 2.  Test error rates of LRLSM and NRLSM 

on GPA, IRIS and WINE data. 

 
 

Table 2 presents the average test error rate results for 

the LRLSM & NRLSM models respectively, based 

on ten runs (random sample validation) for the GPA, 

IRIS, WINE data. The linear model (LRLSM) reports 

a better error rate than the nonlinear model 

(NLRLSM) in 2 out 3 three data sets. For the GPA 

data set, the NRLSM model reports the best error rate 

of 0.0238. It appears that either the polynomial or 

RBF kernel function will suffice in the classification 

of the GPA data set. The best error rate for the IRIS 

data set is 0.0533, which was attained by the LRLSM 

model. The best error rate for the WINE data set is 0, 

which was also attained by the LRLSM model. 

The results of the regularized piecewise multi-

class models were further compared with other 

results from other multi-class learning algorithms in 

the literature [13], [15] and [19]. The WINE data set 

results were compared to the piecewise multi-class 

learning algorithms from Bredensteiner & Bennett 

[13], which include the multi-class robust linear 

programming & k-class robust linear programming 

(M-RLP & k-class), and multi-class support vector 

machines & k-class support vector machines (M-

SVM & k-SVM). All three data set results were 

compared to regularized pair-wise models of 

Suykens & Vandewalle [15] least squares multi-class 

support vector machines and the multi-class learning 

algorithms from Oladunni & Trafalis [19], which 

include three Tikhonov regularization (TR) 

classification methods, linear multi-class TRSVM 

(LMTRSVM), nonlinear multi-class TR kernel 

machine (NLMTRKM), and reduced kernel multi-

class TR machine (RKMTRM) models. 

In Table 3 are the error rates reported in the work 

of Oladunni & Trafalis [19] (regularized pair-wise 

models) in comparison with the regularized least 

squares piecewise multi-class models. In bold are the 

lowest error rates. 

The regularized least squares piecewise multi-class 

models (LRLSM and NRLSM) reports a better error 

rate than the regularized pair-wise models in 2 out 3 

three data sets. Comparing the pair-wise multi-class 

algorithms, the nonlinear models outperform the 

linear models. For the GPA data set, the best error 

rate (0.0637) was obtained by the RKMTRM model 

and it is considerably worse than the piecewise 

models. For the IRIS data set, the best error rate 

(0.0178) was obtained using a NLMTRKM model and 

it is considerably better than the piecewise models. 

For the WINE data set, the best error rate (0.0152) 

was obtained using the NLMTRKM and it is 

considerably worse than the piecewise models, 

especially in the case of the LRLSM, which has a 

zero test error rate. 
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Table 3.  Comparison of test error rates for 

piecewise and pair-wise methods. 

Method GPA IRIS WINE 

LRLSM 0.0476 0.0533 0.0000 

NRLSM-RBF 0.0238 0.0933 0.1818 

NRLSM-Poly 0.0238 0.2000 0.0114 

LMTRSVM 0.0714 0.0222 0.0227 

LS-MSVM 0.0714 0.0222 0.0303 

NLMTRKM 0.0714 0.0178 0.0152 

RKMTRM 0.0635 0.0222 0.0227 
 

 

Table 4.  Comparison of WINE data set test error 

rates for piecewise methods. 

Method Error Rate 

LRLSM 0.0000 

NRLSM-RBF 0.1818 

NRLSM-Poly 0.0114 

M-RLP 0.0899 

k-RLP 0.0056 

M-SVM 0.0281 

k-SVM 0.0056 

LPPMSVM 0.0114 
 

 

In Table 4 are the error rates reported in the work of 

Bredensteiner & Bennet [13] (M-RLP, k-RLP, M-

SVM and k-SVM models) and Oladunni & Singhal 

[20] (LPPMSVM model) in comparison with the 

regularized least squares piecewise multi-class 

models. In bold are the lowest error rate(s). 

Although the k-class robust linear programming (k-

RLP) and k-class support vector machines (k-SVM); 

both with error rates of 0.0056, come close to the 

results obtained with the LRLSM model, analysis 

shows that the LRLSM model outperforms all the 

other models
1
. This demonstrates the potential of the 

regularized least squares piecewise multi-class 

models, and above all shows the potential of the 

linear piecewise classification functions over the 

nonlinear piecewise classification functions. 

 

                                                 
1
 This conclusion assumes similarities between the 

experimental setup used for analysis here and that used in 

the Bredensteiner & Bennet [13] paper. 

6 Conclusions 
In this paper, we have proposed two easy to 

implement regularized least squares multi-class 

models for linear and nonlinear piecewise multi-

classification. This was done by reformulating the 

MSVM using equality constraints and concept of 

penalty functions, which leads to the approximation 

problem arising from the minimization of a quadratic 

functional. These piecewise multi-class formulations 

are single unconstrained optimization problems for 

which solutions can be obtained via solving a linear 

system of equations.  

A computational study of the regularized least 

squares piecewise multi-class models were 

performed on three data sets. In general we found 

that all multi-class methods generalized. The 

nonlinear regularized least squares piecewise multi-

class model (NRLSM) performed best on the GPA 

data set. The NLMTRKM model which is a 

regularized pair-wise formulation performed best on 

the IRIS data set, and the linear regularized least 

squares piecewise multi-class model (LRLSM) 

performed best on the WINE data set, but the k-RLP 

and k-SVM models also performed well. 

In order to make computations of the nonlinear 

regularized least squares piecewise multi-class model 

more tractable, future work should include the 

investigation of a reduced kernel formulation for 

nonlinear classifiers for large scale problems. 
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