
Data Structures Comparison for Element Deletion Including Stack and

Queue

MAJA SAREVSKA

Faculty of Informatics,
 European University Skopje,

REPUBLIC OF NORTH MACEDONIA

Abstract: - This paper presents the analysis of element deletion in different data structures, like linked lists,
binary search trees, stacks, and queues. For random data sequence, we build the linked list and binary search
tree and we compare the element deletion procedure. We find the much more stable performance of the binary
search tree than that of the linked list. Additionally, we analyze the stack as a complex data structure and its
basic operations. We present the element deletion with the basic operations for array stack implementation and
we note the limitations. Also, we present the element deletion problem for a queue as a complex data structure,
implemented with an array. We present the element deletion with the basic queue operations and we point out
the limitations.

Key-Words: - Array, Linked List, Binary Search tree, Stack, Queue.

Received: April 25, 2024. Revised: October 26, 2024. Accepted: November 27, 2024. Published: December 27, 2024.

1 Introduction
One of the most important aspects of any
programming language is Data Structures (DS).
Data are organized and stored in DS to be efficiently
used for data operations. DS are arranged data in a
particular way, saved in the memory so it can be
retrieved to be used later, [1].

An array DS is a basic concept in programming,
it is a collection of items of the same data type
stored in contiguous memory locations, [2]. This DS
is efficiently used in programming for manipulating
and organizing data with access to any array
element using indices. An additional fundamental
DS in programming is a Linked List (LL), which is
made of a set of nodes, where each node is
represented with data and reference or link to the
next node. This DS efficiently adds and deletes
elements in the LL. A Binary Tree (BT) is a tree DS
where each node can have at most two children, and
these two nodes are referred to as the left child and
the right child. BTs have many applications in
computer science, like data storage and retrieval.
Also, they can be used to implement algorithms
such as searching, sorting, and graph algorithms,
[3]. A Binary Search Tree (BST) is a special type of
binary tree in which the left child has a value less
than the node’s value and the right child has a value
greater than the node’s value. This property
provides efficient application of various data
operations like deleting, searching, or inserting
elements in the tree and it is called the BST

property, [4], [5]. A stack is a linear data
structure where elements are stored in the LIFO
(Last In First Out) principle where the last element
inserted would be the first element to be deleted,
[4], [5]. A stack is an Abstract Data Type (ADT),
that is popularly used in most programming
languages. It is named stack because it has similar
operations as the real-world stacks, for example − a
pack of cards or a pile of plates, etc. Stack is
considered a complex data structure because it uses
other data structures for implementation, such as
Arrays, Linked lists, etc. A queue is a linear data
structure where elements are stored in the FIFO
(First In First Out) principle where the first element
inserted would be the first element to be accessed,
[4], [5]. A queue is an Abstract Data Type (ADT)
similar to a stack, the thing that makes a queue
different from the stack is that a queue is open at
both ends. The data is inserted into the queue
through one end and deleted from it using the other
end. Queue is very frequently used in most
programming languages.

The goal of this paper is to analyze the element
deletion in different DS, like array, LL, stack,
queue, and BST. Namely, BST can efficiently delete
and insert elements same efficiently like in LL for
random data sequences. This quantity is represented
by program steps in the programming language C.
Section 2 defines illustratively and with
programming code the appropriate DSs. Section 3
represents the array and BST comparison for

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 114 Volume 23, 2024

element search and LL and BST element deletion
comparison results for random data sequences.
Section 4 represents the analysis for stack and queue
implemented with arrays. And in Section 5 some
concluding remarks are given.

2 DSs in the Programming Language

 C
An array is a set of items of the same data type,
stored in contiguous memory locations that may be
accessed efficiently with indices, [4]. If the array is
sorted then applying the appropriate algorithm we
can do an element search in a very efficient and fast
way. Figure 1 presents the array illustratively.
Figure 1(a) presents the element deletion. First, the
element should be found, then removed from the
array, and afterward, all upper elements must be
moved down for one position.

Fig. 1: Array DS, illustratively and programming
code for definition in programming language C

Fig. 1(a): Array DS, element deletion

LL DS is a collection of elements called nodes,
where each node is represented with data and
reference or link to the next node. In this DS we can
efficiently add and delete elements, [4]. Figure 2
illustrates the LL DS. Figure 2(a) presents the
illustration of element deletion and the formation of
new links while deleting the element.

LL DS is very convenient for adding and
deleting a node, in our analysis we will focus only
on element deletion, although the conclusion may be
easily driven in the case of adding an element.

Fig. 2: LL DS, illustratively and programming code
for definition in programming language C

Fig. 2(a): LL DS, element deletion

BST is a special type of BT, where the value of
the left child is less than the value of the parent node
and the value of the right child is greater than the
value of the parent node, [4], [5]. Figure 3 illustrates
the BST DS. Figure 3(a) presents the element
deletion in the BST and node rearranging after
element removal.

Fig. 3: BST DS, illustratively and programming
code for definition in programming language C

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 115 Volume 23, 2024

Fig. 3(a): BST DS, element deletion, [6]

A stack allows all data operations at one end

only, [4]. At any given time, we can only access the
top element of a stack. A stack can be implemented
by means of Array, Structure, Pointer, and Linked
List. Stack can either be a fixed size one or it may
have a sense of dynamic resizing. Here, we are
going to implement a stack using arrays, which
makes it a fixed-size stack implementation.

Fig. 4: Stack representation and implementation in
C

Fig. 4(a):–Basic operations in a stack

Stack operations are usually performed for
initialization, usage and, de-initialization of the
stack ADT.

The most fundamental operations in the stack
ADT include push(), pop(), peek(), isFull(), and
isEmpty(). These are all built-in operations to carry
out data manipulation and to check the status of the
stack.

Stack uses pointers that always point to the
topmost element within the stack, hence called
the top pointer. Figure 4(b) presents the code for the
push operation, and Figure 4(c) presents the code
for the pop operation. The idea is to delete arbitrary
elements in the stack using these operations, which
will be explained in the next section

Fig. 4(b): push() operation in a stack

Similar to the stack ADT, a queue ADT can also
be implemented using arrays, linked lists, or
pointers, we will implement queues using a one-

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 116 Volume 23, 2024

dimensional array, [4]. Queue operations also
include initialization of a queue, usage and
permanently deleting the data from the memory.

Fig. 4(c): pop() operation in a stack

The most fundamental operations in the queue
ADT include: enqueue(), dequeue(), peek(), isFull(),
isEmpty(). These are all built-in operations to carry
out data manipulation and to check the status of the
queue.

Queue uses two pointers − front and rear. The
front pointer accesses the data from the front end
(helping in enqueueing) while the rear pointer
accesses data from the rear end (helping in
dequeuing). The enqueue() is a data manipulation
operation that is used to insert elements into the
stack. The following algorithm (5b) describes the
enqueue() operation more simply. The dequeue() is
a data manipulation operation that is used to remove
elements from the stack. The following algorithm
(5c) describes the dequeue() operation in a simpler
way. The idea is to delete an arbitrary element in the
queue using only these operations, which will be
explained in the next section.

Fig. 5: Queue DS and its implementation in C

Fig. 5(b,c): -enqueue() and dequeue() oparations in a queue

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 117 Volume 23, 2024

3 Array, Linked List, and Binary

 Search Tree
The simulation experiment is done on the following
data example, sorted array:
{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,
66}. For the array, we use the Binary Search
algorithm and we count the steps in the program.
For BST we shuffle the elements, build the tree, and
search for the appropriate element, and we also
count the programming steps. We make thousands
of trials and estimate the mean number of steps.
Then we compare the steps, by presenting them in
the chart in Figure 6.

For example, we may notice that the number of
programming steps to find the element 66 in the
array is 5 while for the BST is 3. Overall the values
are comparable.
For the programming code in C, the reader is kindly
asked to contact the authors. In the program, we
define function shuffle, which shuffles the elements
in the sorted array. This is done because in general
the items in the sequence are random when we build
the LL or BST. Then we define a function
find(item), that does the binary search for the
element in the sorted array. Namely, if the element
that should be found is greater than the middle
element then we continue the search in the upper
sub-half array. If not in the lower one. Iteratively we
repeat this procedure while we find the element.
Then we define the function insert(data), to build
the BST by adding the elements (nodes) one by one.
We define the function search(data). If the element
that should be found is smaller than the node value
we continue to search in the left sub-tree, else we
search in the right sub-tree. We repeat this
iteratively until we find the element. Then we define
the main() function where we do the binary search,
count the procedure steps while array binary search,
shuffle the elements, build the BST, do the element
search in the BST, and count the procedure steps.

To check the complexity of BST element
deletion for random data we first must generate the
data. We generate a random integer sequence of
length C with a maximal value of MAX. For the
programming code in C, the reader is kindly asked
to contact the authors. In the program, we define
function shuffle, which shuffles the elements in the
sequence. This is done because in general the items
in the sequence are random when we build the LL or
BST. We define the function insert(data), to build
the BST by adding the elements (nodes) one by one.
We define the function search(data). If the element
that should be found is smaller than the node value
we continue to search in the left sub-tree, else we

search in the right sub-tree. We repeat this
iteratively until we find the element. Then we define
a function minValueNode, which is necessary when
deleting the node. The node with minimal value in
the right sub-tree should replace the deleted node,
and other nodes should be rearranged. We define the
function deleteNode for node deletion. We defined
the function insertFirst(data) to build the LL by
adding the nodes one by one. Next, we define the
function delete to delete a node from the LL and
reorganize the links. Then we define the main()
function where we shuffle the elements, build the
BST and LL, do the element search in the BST, and
delete the desired element, do the element search in
the LL, and delete the desired element, and we
count the procedure steps. We do the shuffling of
the data sequence 1000 times and we estimate the
average programming steps and its standard
deviation. The results are presented in Figure 7.
The axis is presented by concrete data integer values
rather than their position in the sequence. We may
notice more stable results for the BST compared to
the LL. This is because there is a need for more
programming steps for element search in LL
compared to the BST.

We performed a more wide analysis, using
different data sequence saizes and different maximal
integer value in the data. Here we present only the
small part of the results, But we can mention that
the time complexity is increased as we attempt to
delete the deeper element in the BST which are
actually the last elements in the data sequence while
building the tree. Also, we concluded that the value
of the maximum in the data sequence has no
influence on the complexity.

Fig. 6: Steps comparison between Array and the
BST

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 118 Volume 23, 2024

Fig. 7: programming steps with standard deviation

Fig. 8:Code for the element deletion in a stack

Fig. 9: code for the element deletion in a queue

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 119 Volume 23, 2024

4 Stack and Queue Element Deletion

 with Array Implementation
When we are talking about element deletion from a
stack we mean deletion of an arbitrary element,
using only stack operations as defined in Section 2.
We use array implementation as explained there.
For that purpose, we need an additional stack1 for
which we will define the operations push1() and
pop1() same as for the main stack but on the
additional array. Let's say we want to delete the nth
element in the stack. First, we pop() all n-1 elements
from the top of the stack, one by one, and push them
into the additional stack with push1() one by one.
Then we remove the nth element from the stack.
Afterwards, we return the n-1 elements from stack1
with push() operation into the stack The code of the
function is presented in Figure 8.

As we may conclude the time complexity is
proportional to C, the length of the stack and the
space complexity is proportional to 2C (doubled
size). All this makes array implementation very
inconvenient for element deletion for stacks.

We also implement a queue with an array as
explained in Section 2. To delete an arbitrary
element in the queue using standard operations in
the queue we do not need an additional queue as we
may use the same for element location. Let’s say we
want to delete the nth element. Then we remove n-1
from the front of the queue one by one and we insert
them at the back of the queue. When we reach the
nth element we just remove it. Afterward, we
remove the rest of the C-n elements from the front
and insert them at the back of the queue. As we may
notice the time and space complexity for element
deletion for a queue with an array is proportional to
the data size C. The programming code is presented
in Figure 9. This makes array implementation very
inconvenient for element deletion for queues.

5 Conclusion
We presented the analysis of element deletion in
different data structures, like linked lists, binary
search trees, stacks, and queues. For random data
sequence, we presented the linked list and binary
search tree and we compared the element deletion
procedure. We found a much more stable
performance of the binary search tree than that of
the linked list. Additionally, we analyzed the stack
and its basic operations. We presented the element
deletion with the basic operations for array stack
implementation and we noted the limitations. Also,
we presented the element deletion problem for a

queue, implemented with an array. We presented the
element deletion with the basic queue operations
and we pointed out the limitations. The future
analysis should focus on stack and queue
implementation with linked lists and pointers, where
we expect better performances in the sense of time
and space complexity for the element deletion
problem.

References:

[1] Rubi Dhankhar , Sapna Kamra , Vishal
Jangra,”Tree concept in data structure”, 2014

IJIRT, Vol. 1, Issue 7, ISSN: 2349-6002.
[2] Sthuti J, Namith C, Shanthanu Nagesh, “Data

Structures and its Applications in C”,
International Research Journal of Engineering

and Technology (IRJET), Vol. 08, Issue 4, Apr.
2021.

[3] Dimitrios Samoladas; Christos Karras;
Aristeidis Karras; Leonidas Theodorakopoulos;
Spyros Sioutas, “Tree Data Structures and
Efficient Indexing Techniques for Big Data
Management: A Comprehensive Study”. PCI
'22: Proceedings of the 26th Pan-Hellenic

Conference on Informatics, November 2022,
pp.123–132.

[4] Tutorialspoint. Data Structures and Algorithms
(DSA) Tutorial , [Online].
htps://www.tutorialspoint.com/data_structures_
algorithms/index.htm (Accessed Date: October
15, 2024).

[5] GeeksforGeeks. Data Structures Tutorial,
[Online]. https://www.geeksforgeeks.org/data-
structures/ (Accessed Date: October 15, 2024).

[6] Techie Delight, [Online].
https://www.techiedelight.com/ (Accessed
Date: October 15, 2024).

 Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting
Policy)
The author contributed in the present research, at all

stages from the formulation of the problem to the

final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The author has no conflict of interest to declare that

is relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2024.23.15 Maja Sarevska

E-ISSN: 2224-2864 120 Volume 23, 2024

htps://www.tutorialspoint.com/data_structures_algorithms/index.htm
htps://www.tutorialspoint.com/data_structures_algorithms/index.htm
https://www.geeksforgeeks.org/data-structures/
https://www.geeksforgeeks.org/data-structures/
https://www.techiedelight.com/

