Data from Table 2 or Table 4 may be used for
estimating required network capacity, see Section
4.4 for details.
6 Conclusion and Prospective
The “metrology” approach presented in this paper
is a new method most suitable for the modeling of
data flow in local networks. It directly accounts for
specific peers’ activity and specific characteristics
of Internet services in use. This approach rise to a
new model that appears between the packet-level
and the global Internet level models. This approach
is evidently integrated with the global Internet
model.
Progress in the area under discussion implies
continued collection of information about the data
streams generated by Internet services, and pro-
gress in the summation of functions distributed ac-
cording to the law of the Gamma distribution.
References:
[1] Liu, D.; Xu, X.; Liu, M.; Liu, Y. Dynamic
traffic classification algorithm and simulation
of energy Internet of things based on ma-
chine learning. Neural Comput. Appl., 33,
2021, 3967–3976.
[2] WłodarskI, P. Impact of Long-Range De-
pendent Traffic in IoT Local Wireless Net-
works on Backhaul Link Performance. In:
International Conference on Computational
Science—ICCS 2020; Springer: Cham, Swit-
zerland; Berlin/Heidelberg, Germany, 2020
pp. 423–435.
[3] Data Volume of Global Consumer Internet
Traffic from 2017 to 2022, by Subsegment.
Available online:
https://www.statista.com/statistics/267194/fo
recast-of-internet-traffic-by-subsegment/ (ac-
cessed on 1 June 2022).
[4] TMeter Freeware Edition. Available online:
http://tmeter.ru/ (accessed on 1 June 2022).
[5] Filimomova N.A, Kolpakov A.G, Rakin S.I.
“Metrology” Approach to Data Streams Initi-
ated by Internet Services in the Local Net-
works. Computers 2022, 11(9), 138.
[6] Erlang, A.K. Probability and telephone calls.
Nyt Tidsskr. Mat. B 20, 1909, pp33–39.
[7] Erlang, A.K. Losning af nogle problemer fra
sandsynlighedsregningen af betydning for de
automatiske telefoncentraler. Elektrotekni-
keren 13, 1917, pp 5–13.
[8] Pollaczek, F. Über eine Aufgabe der Wahr-
scheinlichkeitstheorie. Math. Z. 32, 1930,
64–100.
[9] Kendall, D.G. Stochastic processes occurring
in the theory of queues and their analysis by
the method of the imbedded Markov chain.
Ann. Math. Stat. 1953, 24, 338–354.
[10] Roberts, J.; Mecca, U.; Virago, J. (Eds.)
Broadband Network Teletraffic: Perfor-
mance Evaluation and Design of Broadband
Multiservice Networks, Final Report of Ac-
tion COST 242; Springer: Berlin/Heidelberg,
Germany, 1996.
[11] Akimaru, H.; Kawashima, K. Teletraffic:
Theory and Applications (Telecommunica-
tion Networks and Computer Systems), 2nd
ed.; Springer: New York, NY, USA, 2012.
[12] Mekid, S. Metrology and Instrumentation:
Practical Applications for Engineering and
Manufacturing; Wiley-ASME Press: Hobo-
ken, NJ, 2022.
[13] Crowder, S.; Delker, C.; Forrest, E.; Martin,
N. Introduction to Statistics in Metrology;
Springer: Cham, 2020.
[14] Loh, T.H. (Ed.) Metrology for 5G and
Emerging Wireless Technologies (Telecom-
munications); The Institution of Engineering
and Technology: London, 2022.
[15] Kurose, J.F.; Ross, K.W. Computer Network-
ing: A Top-Down Approach, 6th ed.; Pear-
son: Boston, MA, 2012.
[16] Hui, J.N. Switching and Traffic Theory for
Integrated Broadband Networks; Springer:
New York, 2012.
[17] Schmid, S.; Wattenhofer, R. Dynamic Inter-
net Congestion with Bursts. In: High Perfor-
mance Computing—HiPC 2006; Robert, Y.,
Parashar, M., Badrinath, R., Prasanna, V.K.,
Eds.; Springer: Berlin/Heidelberg, Germany,
2006.
[18] Jeruchim, M.C.; Balaban, P.; Shanmugan,
K.S. Simulation of Communication Systems:
Methodology and Techniques; Springer: New
York, 2000.
[19] Rorabaugh, C.B. Simulating Wireless Com-
munication Systems; Prentice Hall: Hoboken,
NJ, 2004.
[20] Dumas, J.G.; Roch, J.L. Foundations of Cod-
ing: Compression, Encryption, Error Correc-
tion; Wiley: New York, 2015
WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.3
N. A. Filimonova, S. I. Rakin