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Abstract: – In the present paper, we consider a model that can be described as a “users – network applications” 

in local networks. The characteristic scales of the model are:  the number of users up to 1024, time of events 

from several seconds to hours, the transmitted data volume –10-10000Kb. This scale rise to a new model that 

appears between the packet-level and the global Internet level models. We introduce the notion of the elemen-

tary data flow from an Internet service and from a peer. By using these notions, we develop the “metrology” 

approach to the modeling of data flow in local networks. Examples are presented. 
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1 Introduction 
A usual presumption is that a mathematical model 

of any sort depends on the scale of the modeled 

process or system.  Most of the contemporary mod-

els for data networks use as basic variables the data 

volume and transmission time, which usually be-

longs to the following scales [1-3]:  

- Packet scale: here, the usual data volume is in 

the range 46 – 1500 bytes; the usual time unit is 

millisecond. This type of scale gives rise to 

queuing theory models and is used at the hard-

ware level.    

- Global network scale: here the usual data vol-

ume is vast. It can be estimated from the aver-

age network speed of 10 – 20 MBt/sec. The 

usual timescale varies from hours to months.  

This type of scale gives rise to stochastic pro-

cess models and is used at the level of large 

networks. 

In the present paper, we consider a model that can 

be described as a “users - network applications”, 

for which the basic variables are:  

- the number of users 1 – 1024 for local networks,    

-  time on the scale of seconds (a minimal time to 

start and use an application) to hours (up to 4 

hours as half a business day), 

- the transmitted data volume per internet session 

10-10000Kb. 

This naturally arising scale gives rise to a new 

model that appears between the packet-level mod-

els and the global Internet level models described 

above. This  model is visibly different from either 

packet-level or the global Internet level models. 

Our model is based on the fundamental, albeit sim-

ple, observation that data in local networks is gen-

erated in two distinct stages. First, a network peer 

(a human or a computer) starts a network applica-

tion. Then the application itself generates a data 

flow by its own rule (which may or may not be af-

fected by peer’s actions).  

This observation allows us to conclude that the 

overall process of network data flow generation has 

to be compounded from peer’s own activity and its 

applications’ individual data flows.  

 

1.1 Peer’s Own Activity 
The total traffic depends on the elementary data 

stream from every e-mail service as well every peer 

activity. The study of the peer’s activity is the sub-

ject of study of physiology, social and similar sci-

ences. As we see, the computation of the traffic is 

an interdisciplinary problem that should be based 

on the methods of both technical and socio-

economic sciences. Keeping in mind the methodo-

logical nature of this paper, we collected data on 

the peer’s activity in student groups. 
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Network peer’s activity is largely described by 

its start and end times of peer’s network applica-

tions, and is largely specific to peer’s business and 

daily routine. We have timed some standard work-

ing schedules for a network peer (a human user) 

working with the above mentioned applications. 

E.g., while using a search engine a user opens a 

new web-page each 30 seconds after the closing of 

the previous one, and then spends 6o-180 seconds 

browsing it. While using e-mail in intensive ex-

change mode, time interval between typing each e-

mail is 10 min and Time of typing an e-mail is 6-7 

min. 

 

1.2 Individual Data Flows from Network 

Applications 
The principal question here is whether a network 

application generates a data flow that is random 

and unpredictable enough, or data flow is  specific 

for a specific application  Our experiments corrobo-

rate the latter case. This allows us to introduce the 

notion of an elementary data flow, as a data flow 

that is specific to a given network application. After 

defining such a notion, one may describe elemen-

tary data flows generated by network applications. 

This may be done by experimentally collecting suf-

ficient amounts of raw data and its subsequent sta-

tistical analysis. In this note, we present results em-

ploying the output data flow only. All measure-

ments are collected by using TMeter software [4]. 

 

1.3 Data Flow Superposition  
The problem of data flows superposition necessari-

ly arises when the simultaneous activity of several 

peers is considered. The main question is: are data 

streams from different Internet services/peers addi-

tive? The existence of data compression implies 

that, generally, data has a variable volume (i.e. data 

is like a compressible gas, not an incompressible 

liquid). We will discuss this issue in detail below. 

 

 

2 Elementary Data Flows Generated 

by Popular Network Applications   
Below we present the above mentioned models 

stemming from our experimental data and statisti-

cal analysis. 

 

2.1 E-mail Client via Remote Server 

The corresponding elementary data flow 1 1 2( , )Z t t  

is depicted in Fig. 1 which shows a very character-

istic picture of a series of isolated impulses. Such a 

series is always finalized by a larger impulse I  as-

sociated with the transmission of the message. 

Here, 1t  and 2t  are, respectively, the start and end 

time of peer’s activity. The parameters v  and l  are 

the data transmission speed and the time interval 

between impulses (the values of v , l , and I  are 

solely determined by the e-mail client).  

 

2.2 Web-surfing 
A sequence of three elementary data flows corre-

sponding to three counts of consecutive web-page 

access is depicted in Fig.2. Each flow 2 1( )Z t  is 

characterized by the access time 1t  (which is de-

termined by peer’s activity). A usual flow’s shape 

is that of a step-function, in which each step has a 

random value V .  

 

2.3 Skype 
An elementary data flow from a Skype session is 

depicted in Fig. 3. This one is a continuous function 

3 1 2( , )Z t t , where 1t  and 2t  are the start and end 

times of the session (peer’s own activity). The data 

transmission speed W  is a random process.   

Figs 1-3 lead to the hypothesis that each net-

work application has its own form of data flow. 

Our statistical analysis of the obtained experimental 

measurements confirms this hypothesis and gives 

us empirical distribution densities for random vari-

ables v , l , V ,  W . Thus, we obtain models for el-

ementary data flows of the entire above mentioned 

network applications.  

 

 
Fig. 1: Output data flow of an e-mail client 

 
Fig. 2: Output data flow from web-surfing (access-

ing 3 web-pages) 
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Fig. 3: Output data flow of a Skype session: audio 

(left) and video (right) modes 

 

2.4 Model 
Our model of network data flow generation by a 

single peer is represented by the following process 

that is decomposed into distinct stages: first, a net-

work peer starts an application (or several applica-

tions) from a given set of software at random time 

1t , and then the corresponding application (or ap-

plications) generates their elementary data flows. 

An essentially non-homogeneous data flow is gen-

erated as the result, which we call a single peer’s 

elementary data flow.  

More formally, the model ( )iY t of a single 

peer’s data flow for the i -th peer (which is a dis-

crete time model with time-step  ) is the follow-

ing:  

- first, some random values 1 2, ,...t t (for 1Z and 

3Z ) are generated to be used as start and end 

times for the aforementioned network applica-

tions, as well as t  (for 2Z ) to be used as access 

times; 

- then we make time steps 0t  , t t   ;  

- if it t  then we start or stop generating the el-

ementary data flows iZ  ( 1 2( , )Z t t , 2( )Z t  or 

3 2( , )Z t t ) described above. 

 

Such kind model/ based on the experimentally 

measured elementary data flows was referred in  

[5]as based at the “metrology” approach to the data 

streams. It seems, the “metrology” approach is 

more closed to the classical traffic [6-11] and statis-

tical [12-15] approaches in teletraffic theory rather 

that the packet simulation models [16-20]. 

 

 

3 Flow Superposition. Conservation 

of Total Data Volume 
The topic considered in this section can be briefly 

described as a question about a “conservation law” 

for the total data volume in a network.  The exist-

ence of data compression [20] implies that, in gen-

eral, data has variable volume (i.e. data is akin to 

compressible gas rather than incompressible liq-

uid). However, a total volume conservation phe-

nomenon may be observed in some networks.  Such 

a property is equivalent to the statement that the da-

ta transmission speed is additive under data flow 

superposition (i.e. given two data flows 
1Z  and 

2Z generated simultaneously the total data flow 

equals 1 2Z Z .  

 

3.1 Data Flow Superposition for a Single 

Peer 
Flow superposition already takes place for elemen-

tary data flows generated by a single network peer. 

To this end, Fig. 4 illustrates an example of a peer 

browsing web-pages while having a Skype session, 

as shown by experimental measurements. 

In the picture, segment 1 shows the data flow 

from a Skype session alone, while segment 2 shows 

the data flow from browsing (3 web-pages were 

browsed without having Skype active). Then, seg-

ment 3 shows the data flow generated by having 

browsed the same 3 web pages during an active 

Skype session). Here we observe that the data flows 

add up (with a small margin of measurement error).   

 

 
Fig. 4:  Additivity of elementary data flows under 

superposition: 1 –  Skype session, 2 –  web-

browsing, 3 –  Skype session and web-browsing 

(experimental measurement with TMeter). 

 

3.2 Data Flow Superposition for Multiple 

Peers 
The total data flow from multiple peers in a local 

network, generating each a flow ( )iY t  can be very 

closely approximated by the sum 

1 2( ) ( ) ... ( )nY t Y t Y t   . This fact has been veri-

fied by experimental measurements for superposi-

tion of a large number (more than 100) of various 

data flows. Such a conclusion is legit if the total 

flow does not exceed the overall network capacity.  
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4 An Example. E-mail Clients 
Now, having created the necessary models for ele-

mentary data flows generated by network applica-

tions and having established data flow additivity, 

we can model the total data flow from an arbitrary 

number of peers by using a computer program. As 

an example, we present our numeric results for the 

peers using their e-mail clients. The calculation was 

carried out for the parameters described below. 

 

4.1 Peer’s Network Activity 
While using a search engine, a user opens a new 

web-page each 30 seconds after the closing of the 

previous one, and then spends 6o – 180 seconds 

browsing it. The total time of uninterrupted net-

work activity is taken to be 4 hours (a standard half 

business day). The total number of peers varied 

from 2 to 1000.  
  

4.2 Elementary Data Flow 
An elementary flow generated by an e-mail client is 

depicted in Fig. 1. The statistical model of the ele-

mentary stream generated by the mail client, as 

well as the parameters of the model, were deter-

mined from experimental measurements. Detailed 

information about the elementary stream model 

generated by the mail client can be found in [5, 21]. 

 

4.3 Results of Computer Simulation 
The total output data flows are depicted in Fig.5 

and Fig.6. The abscissa shows the data transmission 

speed (Kb/sec), and the ordinate shows the corre-

sponding probability. The intervals labeled in Fig.5 

O correspond to zero data traffic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Number of peers: 2 Number of peers: 10 
Fig. 5: Empirical distribution density for the total data flow 

 
When the number of peers exceeds 20, the re-

sulting empirical distributions have a great prox-

imity to the Gamma-distribution, as shown in Fig.6. 

This observation has been confirmed by using 

Kolmogorov-Smirnov test [22] (details may be 

found in [5, 21]).  
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Number of peers: 20 Number of peers: 100 Number of peers: 1000  

Fig. 6: Empirical distribution density for the total data flow MO = average value,  

L is left “zero margin”, R is right “zero margin” 

 

When the number of peers exceeds 2000, the 

empirical distribution function rather approaches 

the Gaussian distribution (which is the usual law of 

large numbers). However, the total number of peers 

in a local network is limited to 1024.  

This is why it is absolutely necessary to use 

experimental measurements as an integral part of 

our model, which we call a combined model. This 

means that in our model, the initial experimental 

measurements for elementary data flows in a con-

crete instance of a local network are used for fur-

ther computer simulation.   

 

Table 1. Parameters of Gamma-distribution   and 

 , and average transmission speed (Kb/sec) in a 

local network as function of the number of peers n   

n 20 100 1000 

  3 9.9 71 

  1.8 3 4.1 

MO  5.4 29 290 

R MO  13.6 34 108 

 

4.4 Application: Estimating Required Net-

work Capacity 

Table 1 features the values of parameters ,   for 

the Gamma-distributions with the empirical density 

shown in Fig.6. The average transmission speed 

MO  equals  . Deviation to the right margin 

(see Fig.6) is R MO . The theoretical density of 

Gamma-distributions is 

11

( )

x

x e 

 





. 

 

Since the aforementioned data flows are de-

scribed by the Gamma-distribution with parame-

ters ,  , the required network capaci-

ty ( , )R R    has to exceed the right zero-

margin. This condition can be written as 

11
,

( )

R

R e 




 


 


 

where   is a small number (in our computations, 

0.002  ).  

By solving the above equation with respect to 

R , we find the required minimal network capacity 

as a function of the number of peers. Since the val-

ues of ,   in the above equation are given in Ta-

ble 1, solving it is a routine computation.  

This solution is legit for the case of using sole-

ly the e-mail client. If there are several applications 

employed by peers, we have to take into account 

how many peers are using each. This can be done 

with an analogue to the total probability formula. It 

is required, of course, to develop models for all el-

ementary data flows from all network applications 

used.  

 

 

5 An Example. Web-surfing  
Now, we present our numeric results for the case of 

multiple peers using web browser for the Web-

surfing. The calculation was carried out for the pa-

rameters described below.  

 

5.1 Peer’s Network Activity 
While using a search engine, a user opens a new 

web-page each 30 seconds after the closing of the 

previous one, and then spends 6o – 180 seconds 

browsing it. The total time of uninterrupted net-

work activity is taken to be 4 hours (a standard half 

business day). The total number of peers varied 

from 2 to 1000.  
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5.2 Elementary Data Flow 
An elementary flow generated by a web-page visit 

is depicted in Fig. 1. The statistical models of the 

elementary flow, as well as the parameters of the 

model, were determined from experimental meas-

urements. Detailed information about the elemen-

tary stream model generated by the mail client can 

be found in [21]. 

 

5.3 Results of Computer Simulation 
Figs 7-17 show the data transfer rates (experi-

mental) in Kb when clicking on hyperlinks (web 

pages), relative empirical frequencies and their dis-

tribution over intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 50. 

 

 
Fig. 8: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 100. 

 

 
Fig. 9: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 200. 

 

WSEAS TRANSACTIONS on COMMUNICATIONS 
DOI: 10.37394/23204.2023.22.3 N. A. Filimonova, S. I. Rakin

E-ISSN: 2224-2864 37 Volume 22, 2023



 
Fig. 10: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 300. 

 

 
Fig. 11: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 400. 

 

 
Fig. 12: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 500. 

 

 
Fig. 13: The gamma function, normal density function, and the density, determined by using computer 

simulation. The number of users is 600. 
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Fig. 14: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 700. 

 

 
Fig. 15: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 800. 

 

 
Fig. 16: Computer simulated traffic (left) and gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 900. 

 

 
Fig. 17: Computer simulated traffic (left) and Gamma function, normal function, and the density, corresponding 

to the computer simulated traffic. The number of peers 1000. 

 

5.4. Justification of the Constructed Density 

of the Data Flow Rate 
Visually, there is a good match between the plots of 

the distribution functions determined from the 

computer simulations and the plots of the distribu-

tion density functions of the gamma distribution in 

Figs 7-17. We present the statistical justification for 

this conclusion. We propose the following hypothe-

sis: the data rate determined from our computer 

simulation has a gamma distribution with the pa-

rameters indicated in Table 2. 
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Table 2. Peer number n  and parameters of Gamma-distribution   and   

n  50 100 200 300 400 500 600 700 800 900 1000 

  4 8 15 20 30 37 43 52 59 67 70,1 

  25 25 26,4 29 25,9 26 26,8 26,4 26,4 26 27,4 

 
To verify/reject this hypothesis, we use the 

Kolmogorov-Smirnov test [22], which consists of 

the following: as a measure of the discrepancy be-

tween the theoretical and statistical distributions, 

the maximum value of the modulus of the differ-

ence between the statistical distribution function 

( )F x  and the corresponding theoretical distribu-

tion function 
*( )F x  is considered: 

    *max | ( ) ( ) |D F x F x  . 

The critical value of the Kolmogorov–Smirnov 

test is calculated by the formula D n  , where 

n  is the number of relative empirical frequencies. 

The probability ( )P  is determined from the table 

from [22] ( ( )P  is the probability that, due to 

purely random reasons, the maximum discrepancy 

between ( )F x  and 
*( )F x  will be no less than the 

one that is actually observed [22]). If ( )P   is 

close to 1, then the hypothesis of the gamma distri-

bution of the computer-simulated data transfer rate 

is accepted. At a value close to zero, this hypothesis 

is rejected, see [22] for details. 

The calculated values   and ( )P   are pre-

sented in Table 3. Since the probabilities ( )P   

from Table 3 are close to 1, then we accept the hy-

pothesis of the gamma distribution of the simulated 

frequencies. 

 

 

Table 3. Critical value of the Kolmogorov-Smirnov test   and ( )P  . 

n  50 100 200 300 400 500 600 700 800 900 1000 

  0,305 0,29 0,42 0,23 0,324 0,35 0,26 0,35 0,37 0,44 0,33 

 P   1 1 0,997 1 1 1 1 1 1 0,997 1 

 

Note that the hypothesis: the data rate deter-

mined from our computer simulation has a normal 

distribution with the density 
2

1

21

2

x a

e 

 

 
  

   

 

with the parameters indicated in Table 4 is also val-

id. The calculated values   and ( )P   for this hy-

pothesis are presented in Table 5. One can use 

Gamma-distribution or normal distribution, as it is 

more convenient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Peer number n  and parameters of normal distribution 

n  50 100 200 300 400 500 600 700 800 900 1000 

a 88 199 389 574 774 960 1152 1365 1496 1730 1920 

  45 68 99 121 135 150 173 183 220 210 230 
 

Table 5 Critical value of the Kolmogorov–Smirnov test   and ( )P  . 

n  50 100 200 300 400 500 600 700 800 900 1000 

  0,2 0,37 0,44 0,29 0,38 0,39 0,32 0,37 0,08 0,42 0,34 

 P   1 1 0,997 1 1 1 1 1 1 0,997 1 
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Data from Table 2 or Table 4 may be used for 

estimating required network capacity, see Section  

4.4 for details.  

 

 

6 Conclusion and Prospective  
The “metrology” approach presented in this paper 

is a new method most suitable for the modeling of 

data flow in local networks. It directly accounts for 

specific peers’ activity and specific characteristics 

of Internet services in use. This approach rise to a 

new model that appears between the packet-level 

and the global Internet level models. This approach 

is evidently integrated with the global Internet 

model. 

Progress in the area under discussion implies 

continued collection of information about the data 

streams generated by Internet services, and pro-

gress in the summation of functions distributed ac-

cording to the law of the Gamma distribution. 
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