
.

On Detailed Network Systems Configuration Management Automation

using Python

1ARMANDO ELEZI, 1,2DIMITRIOS A. KARRAS
1Canadian Institute of Technology, Tirana, ALBANIA

2National and Kapodistrian University of Athens (NKUA), GREECE

Abstract: - In nowadays, communications are expanding in very high rates. New technologies are being born

and some of them are taking so much importance in people’s lives. In a situation where people’s needs are

getting more complicated and everybody’s lifestyle is advancing to another level, bigger and better

infrastructure is needed. Managing all this process can’t be anymore a step by step process. It is strictly needed

to evolve in automated process. Network configuration and reconfiguration may be a repetitive process, time

consuming, and error prone process. To address this problem this paper is going to shed light on the benefits of

an automated configuration and topology verification process. To this end, a proof of concept system, Netmiko,

has been used in a case study. Netmiko scripts are able to read the current network state, can apply predefined

configurations loaded from text-files or csv files, and automatically verify the network state. The goals of this

paper are to demonstrate the development of Netmiko scripts, to illustrate the simplicity in the implementation,

to compare the automated network system reconfiguration to a fully manual one, and, finally, to discuss

potential pros and cons in switching to an automated network configuration process in everyday practice. A

simple Packet Tracer simulation in joint with a GNS3 simulation are involved to evaluate this proof of concept.

In Packet tracer a manual network configuration is performed while in GNS3 an automated network

configuration is developed.

Key-Words: - network configuration management, automated configuration management, computer networks,

packet tracer, GNS3, Cisco IOS XR, Python, Netmiko Library.

Received: May 15, 2022. Revised: January 6, 2023. Accepted: February 14, 2023. Published: March 17, 2023.

1 Introduction
In the area of network communications, automation

is related to the configuration of network devices

and components that realize the communication

between different users and services (Red Hat and

Sisay Tadesse, Claire Naiga Serugunda Fabrizio

Granelli et. al. (2021)). This is challenging, difficult

and requires hard work, because not only one needs

to verify the configuration of a device, but also the

entire network component configuration that results

the connection of all the devices together. When

working with automated network configuration tools

or scripts it is therefore, important to detect bugs in

the software, that may lead to delays in committed

configurations.

Many network automation engineers have stated

that today’s systems must be able to detect errors

and must be able to auto-correct themselves in a way

that they restore the system’s stability. To detect

such changes or deviations, automation capabilities

include the concept of knowing and understanding

of a "steady state" where the system fulfills the

requirements of a system in health.

A steady state requires that firstly the interfaces

and ports must be properly configured, desired

protocols are enabled and properly configured on

devices and the desired function in a correct way.

This could be done in many ways, but the main

most used ones are: (i) return the device

configuration to previous configuration, (ii) correct,

or smartly correct the actual configuration and

restore the “steady state” of the device so that it may

connect successfully to the rest of the network and

complete correctly all of its assigned tasks.

The goal of this paper is to: use and evaluate a

tool that automates network configuration, compares

the automated process to a completely manual

network configuration with regards to factors, like

time and costs, and discuss potential benefits or

problems in a manual network configuration

transition to an automatic network configuration.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 1 Volume 22, 2023

The proposed automated network configuration

scripts should be easy to implement, should be able

to generate accurate network desired configurations,

and should be easily understandable. The aim of this

paper is to obviously state the potential pros and

cons in automating network configurations

processes.

1.1 Challenges
The number of possible states that appear in real

networks is huge, and it is hard to predict and handle

all these states in advance and mitigate actions for

the future (Sisay Tadesse, Claire Naiga Serugunda

Fabrizio Granelli et. al. (2021)). Verification of the

correctness of network automation processes is

required, hence their systematic execution appears to

be a big challenge. First, the large number of devices

in a real environment that need to be configured

might affect the time required to configure the entire

network. Second, the type of each device for

example: CISCO, Juniper, Fortinet, Checkpoint,

affects the design and implementation of the

automation process. For example, if the automated

tool has to support a wide range of devices such as

Cisco, Juniper, HP, Alcatel- Lucent, and Aruba, it

affects the implementation effort, time and labor

needed to be spent to make the whole schema

workable. Third, the scripts may be prone to bugs

which need to be fixed, a time-consuming task,

almost always need efficiency improvements, and

there is always the need to make sure that they can

be adapted for many other network configuration

cases. Fourth, the type of configuration that needs to

be managed on the devices also affects the

completion time of the configuration process,

because not all protocols have the same converging

time.

2 Technical Background and Tools

Hierarchy needed for Network

Configuration Management
Remote administration is beneficial while seeking to

facilitate communications to devices and gadgets

which can be geographically distant, especially

when having to acquire access to many devices

without delay, not having to attach via cable every

tool and device (Jason Edelman, Scott S. Lowe,

Matt Oswalt (2018)). A CLI interface (Command

Line Interface) might be a way of interacting with

PC systems, like Operating Systems (OS) and

networks. Common protocols used for CLI based

total network management are for example Telnet

and SSH which both allow far from access to

community devices. Telnet runs on pinnacle of the

connection orientated Transmission Control Protocol

(TCP) while speaking with far flung devices and

presents more reliable communication than a

connectionless protocol, like User Datagram

Protocol. To manage Telnet limitations, the SSH

protocol is one of the various foremost recognized

protocols for stable remote community services over

an insecure community, supplying encryption,

cryptographic host authentication, and integrity

protection. A device is accessed through a remotely

located procedure via a stable channel provided by

using the SSH protocol. Like Telnet, SSH runs on

top of TCP, however with security measurements

providing a secure connection for tool management

over an insecure community, like the internet. Basic

issues involved in the herein planned remote control

for network configuration management are

• Accessing SSH terminals with paramiko

• Transferring files thru SFTP

• Transferring documents with the help of FTP

In the proposed herein project for automated

network configuration management several third

party packages, like paramiko, pysnmp, and so on

are involved, to facilitate developments using as a

platform secure shell python. (Eric Chou, Abhishek

Ratan, Pradeeban Kathiravelu (2019), M. O.

FaruqueSarker, Sam Washington (2015) , José

Manuel Ortega (2018) , Kirk Byers (2016))

SSH presents an exquisite encrypted

communications among sender and receiver , so

unrelated third-events can't see the content material

of the info in the course of the transmission medium.

Details of the SSH protocol are regularly discovered

in these RFC documents: RFC4251-RFC4254,

obtainable at http://www.Rfc-editor.Org/rfc/

rfc4251.Txt.

Python's paramiko library affords a clever support

for the SSH-primarily based network

communication. Python scripts could be used to

investigate the benefits of SSH-based remote

administration, just like the remote command-line

login, command execution, and consequently the

extraordinary steady community offerings among

networked computers. (https://pypi.Python.Org

pypi/pysftp/)

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 2 Volume 22, 2023

https://pypi.python.org/

The SSH may be used as a client/server protocol

where each of the parties use the SSH key pairs to

setup the communication link. Each key pair has one

private and one public key, as known in PKI

infrastructures. The SSH public and private keys are

regularly generated and digitally signed via an

outside or an inside certificates authority, but this

brings big overheads to a little enterprise. So,

instead, the keys are frequently generated

haphazardly via software tools, like ssh-keygen. The

general public key should be available to all or any

participating parties. As soon as the SSH patron

connects to the server for the first time, it registers

the general public key of the server on a special file

acknowledged as ~/.Ssh/known_hosts. Of course, if

you re-build the machines, just like the server

device, then the old public key of the server might

not in shape thereupon of the one stored within the

~/.Ssh/known_hosts report. So, the SSH client will

issue an exception and stop from connection.

We can use the paramiko module to make an SSH

patron and connect it to the SSH server. This module

will supply the SSHClient() elegance. The instance

of this client will robotically reject the unknown host

keys. So, the user will be capable of initiating a

coverage for accepting the unknown host keys. The

built-in AutoAddPolicy() method will add the host

keys as soon as they are discovered. In the sequel

the user could employ the

set_missing_host_key_policy() technique

collectively with the subsequent argument at the

ssh_client object as follows,

Ssh_client.Set_missing_host_key_policy(paramiko.

AutoAddPolicy()). It is additionally possible to add

the device host keys by means of the use of the

load_system_host_keys() approach.

It might be very interesting to intercept the network

packets change among the client and the server. To

this end we could use many commands but it’s easy

to use both the local tcpdump command and the

Wireshark tool to capture network packets. With

tcpdump, we'll be capable of specifying the target

network interface (-i lo) and also the port (port 22)

options. within the following packet exchange

session, where 5 packet exchanges are shown during

an SSH client/server conversation, as captured, also,

through Wireshark in the following screenshot:

Fig. 1 Inspecting Packets

After completion of the TCP handshake session, the

SSH packets that follow negotiate the relationship

between the client and the server and determine how

the client and the server negotiate the encryption

protocols. During this example, the client port is

#50768 and the server port is #22.

Apart for SSH protocol, the tools needed to manage

this development project include, additionally,

involvement of the Cisco IOS® software. Cisco IOS

is a multitasking software bundle for Cisco-

primarily based community elements that provides

services, like routing, switching, internetworking,

and specific telecommunications features. consistent

with Cisco. IOS is presently working on numerous

active Cisco devices, making it the maximum

universally leveraged community infrastructure

software application, offering a set of commands to

configure Cisco devices. Cisco IOS presents

excellent configuration modes for various user

privileges. For international configuration mode

allows input of instructions with the flexibleness to

alternate the device configurations, while the setup

mode permits the configuration of greater unique

features, like interfaces and protocols, in an

interactive way (request-reply). Cisco network

elements may additionally even be configured via

loading a data document with configurations

immediately into the tool, instead of having to input

the complete configuration in the kind of

instructions. Based on Cisco IOS the OSFP routing

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 3 Volume 22, 2023

protocol in networking topologies between Cisco

devices can be easily configured.

Cisco IOS XR is a detail of the Cisco IOS family

that is made for building modular, and allotted

middle routers. Such routers are typically positioned

within the center or fringe of a backbone service

company network wherein more robust solutions of

device mirroring are required. The modularity is

shown into the memory control wherein IOS XR has

protected memory safety between processes, while

routing policies run in separate memory space. A

crashed BGP method will therefore no longer affect

a parallel OSPF way, consequently developing a

facilitating context for the multiple devices

manipulation that the central network of an ISP

requires. Additional functions supported thru IOS

XR are hardware redundancy support, packet based

software program distribution version, and optional

functions, permitting multicast routing and Multiprotocol

Label Switching (MPLS) to be configured at the same

time the router is even in commission, without

interrupting any functionality.

In IOS, the modifications you create to the

configuration of the networking devices are carried

out at once. IOS XR based devices have to be

committed (the use of the dedicate command) in

advance before being implemented. Syntax could

include commands for defining characteristic

abilities, as can be visible in Table 1 below, in which

common capabilities are indexed and defined. The

commits are saved regionally within the tool,

together with an autogenerated devote ID, and can

be displayed whilst strolling the configuration

commands listing. The commits in the database

involve rollback points, permitting preceding

configurations to be activated all over again with the

rollback command.¨

Table 1. Basic BGP configuration for Cisco IOS

routers and Cisco IOS XR.

The architecture and hierarch of tools needed to

implement the aforementioned problem of

automated network configuration management

includes, moreover Python scripting. Python is a

multi-functional programming language. Python

gives high-degree syntax that permits programmers

to precise standards in fewer traces of code than is

viable with other programming languages like Java.

The power of Python relies on the efficient use of its

specialized libraries with minimal effort using very

short scripting commands. The library used herein is

Netmiko. Python provides the Netmiko library,

which simplifies SSH manipulation of network

devices (Kirk Byers (2016) Linux Journal, Packet

Hub, Learning Oreilly), returns a rich text output to

the developer, permitting him to pay attention on the

configuration of the device in place in terms of low-

degree SSH details. Netmiko supports more than one

framework including a large set of Cisco

frameworks, HP and Juniper ones. From the

Netmiko library, a set of factory capabilities are

regularly imported, one being the ConnectHandler

class selecting the right Netmiko class based upon

the tool specified and being a library typical to

devices from multiple companies. The following

figure shows an example on a way to use the

Netmiko library to open an SSH connection at the

Cisco IOS tool and verify the connectivity thru

sending a command to spark off the variety of active

interfaces at the device, and for that reason verifying

connectivity with back output. As depicted in the

following Listing of fig. 2, the ConnectHandler

needs the tool type as an input, which in its familiar

way, is regularly set to an large variety of devices

from vendors, like Cisco IOS, Cisco IOS XR,

Juniper, HP and Huawei.

Fig. 2: SSH using Netmiko connection to a device,

via Python interpreter .

Cisco IOS (Router ID:

192.168.1.5)

Cisco IOS XR (Router

ID: 192.168.1.8)

router bgp 3402

no synchronization

bgp log-neighbor-changes

neighbor 192.168.1.8 remote-

as 3402

neighbor 192.168.1.8 update-

source Loopback0

no auto-summary

end

!! IOS XR Configuration

5.3.3 router bgp 3402

neighbor 192.168.1.5

remote-as 3402

update-source Loopback0

!

!

End

[1] >>>net_connect=ConnectHandler(device
_type=’ cisco_ios’,ip=’10.10.10.227’

,

 username=’pyclass’,password=’p

sw’)

[2]>>>net_connect.send_command("show
ip int brief")

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 4 Volume 22, 2023

The ConnectHandler opens and keeps the SSH

session with the CLI tool. Moreover, the pyIOSXR

library is specialized to facilitate the communication

with Cisco IOS XR devices, thru using an

Extensible Markup Language (XML) agent. XML,

being a framework and community meta language,

facilitates the sharing of information among the

Cisco IOS XR factors and the Python language.

Fig. 3: Connecting to Cisco IOS XR, via Python

interpreter

The XML agent permits for exclusive processes of

sending instructions to devices, enabling commands, as

proven in Listing fig. 3, wherein the script first opens an

SSH connection to device, sets up the relationship within

the device variables (line one), after which enters XML

mode for the execution of the additional commands. The

commands in Listing fig. 3 first ensure that the

communication channel is open (line two), that a target

configuration from a specified route is setup (line 3),

comparing this to other configurations of the device (line

4), and finally committing the new configuration with the

device (line 5), keeping the specific parts and replacing

only the configurations that are not possible.

Fig. 4: SSH connection to a Cisco IOS XR

As depicted in the Figure 4, the messages

exchange session remains channeled via the lively

SSH connection,

to the device CLI, but the XML agent enables the

process development. Note that the CLI manages the

exchange session with the actual tool, as defined

above. For instance, the

device.Commit_replace_config(label=’labelname’)

method corresponds to the fusion of the dedicate

replace and devote label labelname. Cisco command

noted in the IOSXR framework corresponds to the

ConnectHandler feature used inside the Netmiko

library. The Netmiko and pyIOSXR connection

Handlers both lock the device under the entire

connection, assuring that no configuration

adjustments, by means of every other person, is

merged into the devote class.

Within this object oriented framework, involved

in defining the hierarchy and architecture of the

system of tools for automated network configuration

management.

JavaScript Object notation (JSON) plays a

significant role too. JSON is a compact, textual

content, language independent, layout used for

statistical analysis of transactions, which can be

written manually or as an instance generated from a

Java object. JSON permits for dependent facts sets

management, just like XML, and is considered to be

simpler to apply than its noted alternatives. This

concept is primarily based on that in JSON shorter

syntax is used with a simplified utilization of tags,

which makes it faster to realize and develop. With

regards to Python, the JSON library may be

imported, permitting parsing between documents in

JSON layout together with a Python dictionary or

listing.

3 Related Work and Technologies in

Automating Network Configuration

Management
Netmiko is used to establish SSH connections to the

devices and confirm that the connections have been

setup properly. The devices have been stored in

Python dictionaries corresponding to a community

tool. The script that applied all above instructions,

for a simple network topology, consisted of 93 lines

of code and required approximately 46 seconds to

execute Cisco IOS XR devices configuration as it

will be demonstrated in the next sections. Through

this computerized manner, decreasing tedious work

in repetitive protocol configurations is made

possible. If it is evolved and made everyday

practice, for general and non vendor specific

networking solutions, such scripting could serve as a

completely automatic BGP configuration machine.

Several technologies and protocols are herein

evolved and are presented in the sequel.

device = IOSXR(hostname=’ . 1 0 . 1 0 . 1 0 . 2 2

7 ’ , username=’ ∗∗∗ ’ , password= ’ ∗∗∗ ’ ,

port = ’ 22 ’ , timeout =120)

device . open()

device.load_candida

te_config(filename=’

/path/..’)

device.compare_rep

lace_config()

device . commit_replace_config(l a b e l=’ a r b i t

r a r y l a b e l ’)

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 5 Volume 22, 2023

3.1 Dynamic Host Configuration Protocol
Dynamic Host Configuration Protocol (DHCP) is a

community (network) protocol used to offer network

configurations to community elements with the aid

of allocating IP addresses in an automatic fashion.

Consequently, IP addresses will not be manually

configured on community devices inclusive of

workstations, printers, game consoles, and private

computers. The automatically dispensed IP

addresses are selected from a pool of addresses, set

with the aid of the server administrator and assigned

to the clients thru the DHCP scheme. The client

declares its presence inside the community through

broadcasting a Discovery message. The server sends

returned an Offer of an IP address and the client

responds by way of sending a Request to hold the

address. The address is taken in use by the client

first when receiving the Acknowledge message

dispatched via the server, ensuring that no other

device inside the network has claimed the deal with.

The purpose of the protocol is to deliver all

configuration statistics needed, for a computer or

network device, to access the community. This

computerized host configuration provides

dependable IP addresses coping with configuration,

hence minimizing the occurrence of configuration

mistakes inclusive of typographical errors.

The data supplied by DHCP is IP addresses,

subnet mask, default gateway etc. The most effective

information to be given dynamically is the IP

address deal with the remaining facts nonetheless

needed to be manually configured on the DHCP

servers. If the guide configuration contains faulty

records, allotted to all of the community elements,

the devices will no longer be able to communicate.

For instance, if incorrect IP address is given to a host

by means of the DHCP server, the host will be no

longer capable of resolving DNS names due to the

use of wrong DNS servers, hence the host will not

be able to reach the ideal IP addresses.

Due to a centralized and automated TCP and IP

configuration, and the handling of modifications for

mobile devices, such as portable non-public

computers, DHCP reduces community

administration. This dynamic protocol is yet another

instance of automated community configuration that

reduces manual management and errors through the

tedious but statically assigning IP addresses process.

3.2 Network Configuration Protocol
In the early 21st century, it became clear that the

Simple Network Management Protocol (SNMP),

was used for monitoring networks mainly than for

managing them The Internet Architecture Board

and Members of the Internet Engineering Task Force

(IETF) found that the network control changed

through CLI scripting, which became, as noted,

restricted in dependent error management,

transaction management and susceptible to

changeable syntax of instructions. The Network

Configuration Protocol (NETCONF), was developed

to address the shortcomings of existing approaches,

imparting exclusive mechanisms to simplify the

installation, manipulation and deletion of

configuration on community devices, as compared to

SNMP.

NETCONF uses Remote Procedure Calls (RPC)

to permit a network administrator to change network

configuration facts with the managed devices. The

RPC based totally on messages exchange model

works in a request-reply way using XML, supplying

the NETCONF protocol with transport protocol

unbiased framing, and the usage of elements for the

communication between the client and the server.

The NETCONF protocol transactions allow error

handling of incomplete configurations that the Cisco

specific, non transactional approach does no longer

offer. In a Cisco-unique method, inclusive of the

OSPF configuration, an incomplete configuration

will not be defined as a mistake, but as an alternative

and the device will wait for extra instructions to

finish the configuration. In a transaction primarily

based communication, the inadequate configuration

may be described as an error and comments will be

provided to the administrator that the protocol isn't

properly configured. Thus, a transaction primarily

based framework will enable the network manager

to recognize the management of the services within

the network, as opposed to the management of

devices configurations. Provided that a Cisco device

involves the NETCONF protocol, a Cisco-unique

technique and NETCONF approach can be used

collectively, so long as the configurations aren't

contradictory.

3.3 Software-Defined Networking
Software-Defined Networking (SDN) is a modern

approach to manipulate and control networks, using

suitable software systems by abstracting network

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 6 Volume 22, 2023

and networking devices performance statistics and

managing all network factors. In SDN, the

manipulating planes of all community factors are

managed through a logically centralized SDN

controller, permitting configurations of big area

networks to be driven by managing network factors

in order to easily integrate, as an example, new

network services. The SDN controller communicates

as a network backbone with all the devices,

accordingly creating a control plane in the network

wherein all the devices may be managed through it.

There are specific software system standards

adapted for the management of the abstracted planes

of an SDN, as an example including NETCONF and

OpenFlow, which provides the capability for unique

OpenFlow enabled Switches to be controlled or

updated centrally and for that reason shaping an

integral SDN. McKeown et al. (McKeown et

al.2008) defines an OpenFlow Switch as consisting

of at least three components: "(1) A Flow Table,

with a specific action related to each entry, to inform

the switch the way to process the system component,

(2) A Secure Channel that connects the transfer of

control commands to an overseas control technique

(known as the controller), allowing instructions and

packets to be dispatched among a controller and the

relevant switch. (3) The OpenFlow Protocol that

offers an open and preferred way for a controller to

talk with a transfer." McKeown emphasizes that

through specifying the protocol in which entries

within the Flow Table are manipulated and defined

exactly, then, the switch itself does not have to be

programmed and configured and this can be easily

managed via the protocol.

Further, McKeown draws the belief that:

"OpenFlow may be a realistic compromise that

permits researchers to run experiments on

heterogeneous switches and routers in the course of

a uniform way, without setting the requirement for

providers to expose the internal workings of their

merchandise, or for researchers to code and install

vendor-unique manipulation software". This

statement regarding OpenFlow type protocols

implies clearly the facilitation of network

configurations on the basis of a uniformly defined

network, but, additionally, implies the significance

of the investigation for uniform network

configurations despite integration of vendor-specific

networking factors.

4 A Proposed Methodology for

Automated Network Configuration

Management through Netmiko Python

Library
The proposed herein methodology is based on the

capabilities offered by the Netmiko python library.

Netmiko is a multi-dealing SSH Python library that

produces connectivity to community devices thru

SSH protocol. This library adds certain important

functionalities to the paramiko library, which is the

de-facto SSH library in Python. Netmiko simplifies

the connectivity to a networking community device

via SSH permitting the use of a smooth method for

issuing remote calls like the “send_command”, in

order to be able to execute sets of commands on a

device as well as to properly analyze the consistency

of its response with the tool being linked to python.

Netmiko is characterized as an open software supply

with all code publicly available on GitHub and it's

absolutely easy to start using it.

Netmiko facilitates a growing list of networking

products integration and configuration into complex

network topologies. Such lists could be found within

Netmiko documentation. Some providers offer

device control with a variety of different PC

application commands. As an instance, Holler

provides two kinds of such commands for the same

device: dell_force10 and dell_powerconnect; and

Cisco offers many software systems variations at

several product strains, like sidecisco_ios,

cisco_nxos and cisco_asa. The authentic Netmiko

code and documentation is at

https://github.Com/ktbyers/netmiko. Moreover, this

paper is extending the results of [16], presenting a

step by step methodology for automating network

configuration management using solely Netmiko ,

illustrating the corresponding framework in

implementation detail.

4.1 Login to the Router
Here’s a simple script to log in to the router (at IP

192.168.255.249 with a username and countersign

of cisco) and show the version:
from netmiko import ConnectHandler

device = ConnectHandler(device_type=’cisco_ios’,

ip=’192.168.255.249′, username=’cisco’,

password=’cisco’)

output = tool.Send_command(“show version”)

print (output)

tool.Disconnect()

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 7 Volume 22, 2023

https://github.com/ktbyers/netmiko

The output of the execution of code with regards

to a router is as follows. As we're going to see within

the pattern code, we name the ConnectHandler

characteristic based on the Netmiko library, which

takes four inputs (platform kind, IP address of tool

etc.)

Depending upon the selection of the platform

kind, Netmiko can understand the back spark off and

hence to issue the proper command through SSH

into the particular component. Once the relationship

is formed, we're going to send commands to the

component through the use of the send_command

approach.

Fig. 5: Retrieving records

4.2. Send Command
Once we get the return value, the value is saved in

the output variable as displayed below, thus, is saved

in the string output of the command that we sent to

the device, as the device response. The final line,

which makes use of the disconnect feature, ensures

that the connection is terminated clearly as soon as

the task ends. For configuration (for example, it is

desired to offer connection to the FastEthernet 0/0

router interface), we use Netmiko, as shown in the

subsequent example:

from netmiko import ConnectHandler

print (“Before config push”)

tool = ConnectHandler(device_type=’cisco_ios’,

ip=’192.168.255.249′, username=’cisco’,

password=’cisco’)

output = device.Send_command(“display walking-

config interface fastEthernet zero/zero”)

print (output)

configcmds=[“interface fastEthernet 0/0”,

“description my test”]

device.Send_config_set(configcmds)

print (“After config push”)

output = device.Send_command(“show walking-config

interface fastEthernet 0/zero”)

print (output)

tool.Disconnect()

As we are capable to see, for config push, we

don't need to perform any extra configurations but

simply specify the instructions in the same order as

we send them manually to the router through a

listing, and pass that list as argument to the

send_config_set feature. The output at Before config

push may be a direct output of the

FastEthernet0/zero interface, however, the output

under After config push (in the figure 6 below),

defines configurations managed using the input

listing of instructions. In an exceedingly similar

way, we are able to skip multiple instructions to the

router, and Netmiko will get into configuration

mode, write those instructions to the router, and exit

config mode.

If we would like to ensure that the router writes

the newly driven configuration to memory

configuration, we use the following command after

the send_config_set command:

device.Send_command("write memory")
.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 8 Volume 22, 2023

Fig. 6: Send Command Output

4.3 Network Configuration Management

through Templates Usage
With all the routers accessible and at hand via SSH,

it is permitted to configure a base template that

sends the Syslog to a Syslog server and additionally

ensures that simplest statistics logs are dispatched to

the Syslog server. Also, after configuration

management, a validation could be obtained to

make sure that logs are being sent to the Syslog

server.

The logging server information is as follows:

• Logging server IP: 192.168.20.5

• Logging port: 514

• Logging protocol: TCP

Additionally, a loopback interface (loopback 30)

is desired to be configured with the loopback

interface description.

The code traces for such a template are as

follows:

logging host 192.168.20.five delivery tcp port 514

logging lure 6

interface loopback 30

description " loopback interface"

To validate that the Syslog server is accessible for

the logs sent, we use the display logging command.

within the event with the output of the command

containing the text:

from netmiko import ConnectHandler

template="""logging host 192.168.20.5 transport tcp

port 514

logging entice 6

interface loopback 30

description " loopback interface""""

username = 'test'

password="test"

#step 1

#fetch the hostname of the router for the template

for n in range(1, five):

ip="192.168.20.".format(n)

device = ConnectHandler(device_type='cisco_ios',

ip=ip, username='test', password='test')

output = device.Send_command("show in hostname")

output=output.Split(" ")

hostname=output[1]

generatedconfig=template.update("",hostname)

#step 2

#push the generated config on router

#create a listing for generateconfig

generatedconfig=generatedconfig.Split("n")

tool.Send_config_set(generatedconfig)

#step 3:

#carry out validations

print ("********")

print ("Performing validation for :",hostname+"n")

output=device.Send_command("display logging")

if ("encryption disabled, link up"):

print ("Syslog is configured and reachable")

else:

print ("Syslog is not configured and NOT accessible")

if ("Trap logging: level informational" in output):

print ("Logging set for informational logs")

else:

print ("Logging not set for informational logs")

print ("nLoopback interface status:")

output=tool.Send_command("show in loopback

interface")

print (output)

print ("************n")

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 9 Volume 22, 2023

Fig. 7: Configure Loopback interface

5 Implementation Highlights of

Automated Network Configuration

Management Generic Cases
In this section we outline the implementation of

certain generic configuration instances

5.1 Single Device Configuration
In the figure below a simple script for configuring a

single network device is outlined.

Fig. 8: Configuring a single device

The script on using an object called cisco_device,

where all the information necessary to ssh

management is saved to the device. The main

information consists of the IP-address of the device,

the username and password to login and the port

needed for the connection.

The port in most cases used by the ssh protocol to

connect a device is frequently port 22

5.2 Multiple Device Configuration
On the figure below a multiple-device configuration

is shown, where device information and

configuration commands are hard-coded. Each

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 10 Volume 22, 2023

device has its own configuration table that may or

may not differ from the other devices. A for loop is

created to iterate through the device list and makes

the configurations, one by one.

Fig. 9: Configuring multiple devices

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 11 Volume 22, 2023

5.3 Configuring Multi-Vendor Devices

Figure 10. Configuring multi-vendor devices

In the above a script is shown where multi-vendor

devices can be configured at the same script,

illustrating that we are not obligated to use different

automation scripts for different device types.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 12 Volume 22, 2023

5.4 Configuring Multiple Devices without

Multi-Threading

Fig. 11: Configuring multiple devices without

multithreading

In the figure shown above, the script reads the IP

address from a file called devices and configures

devices one after the other. It finishes configuring

one device and then, starts configuring another from

the list of devices.

5.5 Configuring Multiple Devices using

Multi-Threading
In the figure below a script is shown to configure

multiple devices. The script reads the IP from a

device file and proceeds to configuring the devices

at the same time. It executes the first step of

configuration at one device then, continues to the

other device to execute the same step. After

finishing the first steps for all the devices, the script

passes to the second step of automated configuration

management and so on.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 13 Volume 22, 2023

Fig. 12: Configuring multiple devices using multithreading

6 Conclusions and Future Work
One of the areas where most organizations have

difficulties when it comes the moment to deal with

network automation is where to start such process.

It is herein strongly recommended that deployment

teams should consider starting on small, and most

common problems and issues. Using this strategy

helps to build the bases and clarify the ideas for a

network automation-strategy.

Beyond the start phase, many companies try to

push harder to the topic, by following big and risky

steps in the automation process. The so far results

from relevant reports indicated that these decisions

will make automation attempts far more difficult

than it is supposed to be, by wasting precious time

and money, and this may set back progress for

years.

Starting networking automation with the

proposed methodology based on Netmiko library

scripting can help groups manipulate their network

infrastructure throughout the complete production

lifecycle -- from building an initial infrastructure

and evolving it throughout integrating multi-dealer

products based new topologies and configurations,

to managing everyday network automation,

development and functionality services and tasks.

A few simple points to keep in mind when

beginning your network automation journey

include:

 Pick the right tool

 Make small steps but meaningful

ones

 Fight the ideas to fall back to

manual processes.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 14 Volume 22, 2023

 Define metrics to track success.

The results, discussions and conclusions drawn

from this research report shed light on the

advantages of an automated configuration

management and topology verification method.

The proposed methodology based on Netmiko

library, fulfills the paper’s goal of developing and

evaluating a method that automates network

configuration management.

Netmiko based methodology’s runtime

performance is in favor of any comparison with the

manual techniques discussed and its impact has

been herein analyzed. The proposed methodology

based on Netmiko library contributes to lowering

the manual hard work required by employers to

carry out the infrastructure reconfiguration. using

automated scripts like the above discussed.

An expensive and time consuming manual

configuration management system will eventually

be replaced by means of a procedure that causes

fewer mistakes, offering to the user the potential to

correct easily any mistake monitoring system

perfromance.

Network automation may be a solution for this

problem, it saves time, labor and costs. Network

automation combined with testing and verifications

can help and advance all the process of automation,

upgrading it to another level.

While automation is combined with testing and

verification, the wide variety of errors may be

notably reduced.

Several enhancements in this research effort

could be discussed and associated with two main

areas.

First, the scripts could be upgraded to do more

processes, to cover more aspects of the network

automation, like creating scripts that make

automatic check for the device software or

firmware, that find the best adaptive time to install

the updates, time that doesn’t affect the network

performance and ensures the network

sustainability.

Second the scripts could be rewritten or

enhanced partially to improve the efficiency of

execution. Also adding newer and better adapted

libraries to the scripts, could make the automation

process evolve even further in its coverage.

Moreover, towards these goals, the integration of

AI (Artificial Intelligence) in the automated

network management and its configuration

management relevant scripts could be the future of

network automation field.

References:

[1] Jason Edelman, Scott S. Lowe, Matt Oswalt

(2018) Network Programmability and

Automation: Skills for the Next-Generation

Network Engineer, O'Reilly Media, 2018

[2] Eric Chou, Abhishek Ratan, Pradeeban

Kathiravelu (2019) Python Network

Programming: Conquer All Your

Networking Challenges with the Powerful

Python Language, Packt Publishing Ltd,

2019

[3] M. O. FaruqueSarker, Sam Washington

(2015) Python Network Programming:

Learning Python Network Programming,

Packt Publishing Ltd, 2015

[4] José Manuel Ortega (2018) Mastering Python

for Networking and Security: Leverage

Python scripts and libraries to overcome

networking and security issues, Packt

Publishing (Sep 28, 2018)

[5] Kirk Byers (2016), Git HubNetmiko

scripting

website:https://github.com/ktbyers/netmiko

[6] Linux Journal Netmiko connecting

[7] website:

https://www.linuxjournal.com/content/use-

case-network-automation

[8] Packet Hub Python interacting with device

[9] website: https://hub.packtpub.com/using-

python-automation-to-interact-with-network-

devices-tutorial/

[10] Learning Oreilly, Mastering Python for

network and security website:

[11] https://learning.oreilly.com/library/view/mast

ering-python-for/9781788992510/b97d457f-

041a-424d-b75d-a7090d9de141.xhtml

[12] Red hat , Why start network automation

[13] website:

https://www.redhat.com/en/blog/network-

automation-why-organizations-shouldnt-

wait-get-started

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 15 Volume 22, 2023

https://www.redhat.com/en/blog/network-automation-why-organizations-shouldnt-wait-get-started
https://www.redhat.com/en/blog/network-automation-why-organizations-shouldnt-wait-get-started
https://www.redhat.com/en/blog/network-automation-why-organizations-shouldnt-wait-get-started

[14] Sisay Tadesse, Claire Naiga Serugunda

Fabrizio Granelli et. al. (2021), A Theoretical

Discussion and Survey of Network

Automation for IoT: Challenges and

Opportunity, August 2021IEEE Internet of

Things Journal 8(15):12021-12045, DOI:

10.1109/JIOT.2021.3075901

[15] McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson, J. Rexford, S. Shenker,

J. Turner, (2008)

http://doi.acm.org/10.1145/1355734.1355746

OpenFlow:, Enabling Innovation in Campus

Networks.

[16] Anne Golinski, (2017), Automating Network

System Configurations for Vendor-Specific

Network Elements., Technical report/Thesis,

KTH Royal institute of Technology,

Stockholm, Sweden.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2023.22.1 Armando Elezi, Dimitrios A. Karras

E-ISSN: 2224-2864 16 Volume 22, 2023

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present

research, at all stages from the formulation of the

problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

