[6] W.T. Read, A Proposed High-Frequency
Negative-Resistance Diode, Bell System Tech.
J., Vol. 37, 1958, pp. 401-406.
[7] A.S. Tager, and V.M. Vald-Perlov, Avalanche
Diodes and Application on Microwave
Endineering, Sov. Radio, 1968.
[8] A.M. Zemliak, Difference Scheme Stability
Analysis for IMPATT Diode Simulation,
Izvestiya VUZ Radioelectronica, Vol.24, No.8,
1981, pp. 88-89.
[9] M.A. El-Gabaly, R.K. Mains, and G.I. Haddad,
Effects of Doping Profile on GaAs Double-
Drift IMPATT Diodes at 33 and 44 GHz Using
the Energy-Momentum Transport Model, IEEE
Trans., Vol.MTT-32, No.10, 1984, pp.1353-
1361.
[10] A.M. Zemliak, and A.E. Roman, IMPATT
Diode for the Pulsed-Mode, Izvestiya VUZ
Radioelectronica, Vol.34, No.10,1991, pp.18-
23.
[11] M. Curow, Proposed GaAs IMPATT Devices
Structure for D-band Applications, Electron.
Lett., Vol.30, 1994, pp. 1629-1631.
[12] K.V. Vasilevskii, Calculation of the Dynamic
Characteristics of a Silicon Carbide IMPATT
Diode, Sov. Phys. Semicond., Vol.26, 1992, pp.
994-999.
[13] R.P. Joshi, S. Pathak, and J.A. Mcadoo, Hot-
Electron and Thermal Effects on the Dynamic
Characteristics of Single-Transit SiC Impact-
Ionization Avalanche Transit-Time Diodes, J.
Appl. Phys., Vol.78, 1995, pp. 3492-3497.
[14] H.J. Kafka, and K. Hess, A Carrier
Temperature Model Simulation of a Double-
Drift IMPATT Diode, IEEE Trans., ED-28,
No.7, 1981, pp. 831-834.
[15] C. Dalle, and P.A. Rolland, Drift-Diffusion
Versus Energy Model for Millimetric-Wave
IMPATT Diodes Modelling, Int. J. Numer.
Modelling, Vol.2, 1989, pp. 61-73.
[16] V. Stoiljkovic, M.J. Howes, and V. Postoyalko,
Nonisothermal Drift-Diffusion Model of
Avalanche Diodes, J. Appl. Phys., Vol.72,
1992, pp. 5493-5495.
[17] O. Tornblad, U. Lindefelt, and B. Breitholtz,
Heat Generation in Si Bipolar Power Devices:
the Relative Importance of Various
Contributions, Solid State Electronics, Vol.39,
No.10, 1996, pp. 1463-1471.
[18] A. Zemliak, S. Khotiaintsev, and C. Celaya,
Complex Nonlinear Model for the Pulsed-
Mode IMPATT Diode, Instrumentation and
Development, Vol.3, No.8, 1997, pp. 45-52.
[19] A.M. Zemliak, and R. De La Cruz, Numerical
analysis of a double avalanche region IMPATT
diode on the basis of nonlinear model,
Microelectronics Reliability, Vol. 46, No. 2-4,
2006, pp. 293-300.
[20] A. Acharyya, and J.P. Banerjee, Design and
Optimization of Pulsed Mode Silicon Based
DDR IMPATT Diode Operating at 0.3 THz,
Int. J. Engineering Science and Technology,
Vol.3, No.1, 2011, pp. 332-339.
[21] A. Das, D. Chakraborty, M. Mukherjee, P.
Datta, and U.C. Ray, Chirp Bandwidth
Estimation of Pulsed IMPATT Oscillator at 94
GHz Window: A Simplified Approach, IETE J.
Research, Vol.58, No.4, 2012, pp. 266-271.
[22] A. Zemliak, F. Reyes, J. Cid, S. Vergara, and
E. Machusskiy, Comparative Analysis of DDR
and DAR IMPATT Diodes for Wide
Frequency Band, WSEAS Transactions on
Communications, Vol. 12, No. 6, 2013, pp.
261-270.
[23] P. De, Aspects of WBG 4H-Sic Over Si
IMPATT Diode at X Band, IOSR J. Applied
Physics, Vol.8, No.3, 2016, pp. 23-26.
[24] D.K. Pattanayak, A.K. Dash, and S.P.
Khadanga, Impatt Diode-The Future Source
For Terahertz Application-A Review, Int. J.
Scientific Research & Development, Vol.4,
No.10, 2016, pp. 724-725.
[25] A. Zemliak, F. Reyes, and E. Machusky,
Simulation and Optimization of High Power
IMPATT Diodes, International Journal of
Circuits and Electronics, Vol. 5, 2020, pp. 12-
18.
[26] W.N. Grant, Electron and Hole Ionization
Rates in Epitaxial Silicon at High Electric
Fields, Solid-State Electronics, Vol.16, No.10,
1973, pp. 1189-1203.
[27] V.I. Krylov, V.V. Bobkov, and P.I.
Monastyrski, Numerical Methods, Nauka,
1977.
[28] N.S. Bakhvalov, N.P. Zhidkov, and G.M.
Kobelkov, Numerical Methods, Nauka, 1987.
[29] L.H. Holway, Transient Temperature Behavior
in Pulsed Double-Drift IMPATT Diodes, IEEE
Trans., Vol.ED-27, No.2, 1980, pp. 433-442.
[30] A.A. Samarsky, About the Choice of Iteration
Parameters for Alternating Direction Method
for Dirichlet High order Accuracy Differential
Problem, Doklady Acad. Nauk USSR, Vol.179,
No.3, 1968, pp. 548-554.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.26