uplink. Simulation results have demonstrated that our proposed
iterative ALS procedure converges very fast to the unbiased
and accurate estimates of both the dispersive MIMO CIR
matrix and the MUs’ NHPAs. Simulation results have also
confirmed the effectiveness of the BSNN assisted space-time
equalization based MUD scheme, in terms of achievable BER
performance.
[1] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder
and decoder design for MIMO channels using the weighted MMSE
criterion,” IEEE Trans. Communications, vol. 49, no. 12, pp. 2198–2206,
Dec. 2001.
[2] Y. Jiang, J. Li, and W. W. Hager, “Joint transceiver design for MIMO
communications using geometric mean decomposition,” IEEE Trans.
Signal Processing, vol. 53, no. 10, pp. 3791–3803, Oct. 2005.
[3] S. Chen, A. Livingstone, and L. Hanzo, “Minimum bit-error rate design
for space-time equalization-based multiuser detection,” IEEE Trans.
Communications, vol. 54, no. 5, pp. 824–832, May 2006.
[4] S. Chen, L. Hanzo, and A. Livingstone, “MBER Space-time decision
feedback equalization assisted multiuser detection for multiple antenna
aided SDMA systems,” IEEE Trans. Signal Processing, vol. 54, no. 8,
pp. 3090–3098, Aug. 2006.
[5] S. Chen, A. Livingstone, H.-Q. Du, and L. Hanzo, “Adaptive minimum
symbol error rate beamforming assisted detection for quadrature ampli-
tude modulation,” IEEE Trans. Wireless Communications, vol. 7, no. 4,
pp. 1140–1145, Apr. 2008.
[6] S. Chen, W. Yao, and L. Hanzo, “Semi-blind adaptive spatial equalisa-
tion for MIMO systems with high-order QAM signalling,” IEEE Trans.
Wireless Communications, vol. 7, no. 11, pp. 4486–4491, Nov. 2008.
[7] W. Yao, S. Chen, and L. Hanzo, “A transceiver design based on uniform
channel decomposition and MBER vector perturbation,” IEEE Trans.
Vehicular Technology, vol. 59, no. 6, pp. 3153–3159, Jul. 2010.
[8] W. Yao, S. Chen, and L. Hanzo, “Generalised MBER-based vector
precoding design for multiuser transmission,” IEEE Trans. Vehicular
Technology, vol. 60, no. 2, pp. 739–745, Feb. 2011.
[9] S. Sugiura, S. Chen, and L. Hanzo, “Generalized space-time shift keying
designed for flexible diversity-, multiplexing- and complexity-tradeoffs,”
IEEE Trans. Wireless Communications, vol. 10, no. 4, pp. 1144–1153,
Apr. 2011.
[10] S. Gong, S. Wang, S. Chen, C. Xing, and L. Hanzo, “Robust energy effi-
ciency optimization for amplify-and-forward MIMO relaying systems,”
IEEE Trans. Wireless Communications, vol. 18, no. 9, pp. 4326–4343,
Sep. 2019.
[11] A. A. M. Saleh, “Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers,” IEEE Trans. Communications,
vol. COM-29, no. 11, pp. 17151720, Nov. 1981.
[12] M. Honkanen and S.-G. H¨
aggman, “New aspects on nonlinear power
amplifier modeling in radio communication system simulations,” in
Proc. 8th International Symposium on Personal, Indoor and Mobile
Radio Communications (Helsinki, Finland), Sep. 1-4, 1997, pp. 844–
848.
[13] C. J. Clark, G. Chrisikos, M. S. Muha, A. A. Moulthrop, and C. P. Silva,
“Time-domain envelope measurement technique with application to
wideband power amplifier modeling,” IEEE Trans. Microwave Theory
and Techniques, vol. 46, no. 12, pp. 2531–2540, Dec. 1998.
[14] C.-S. Choi, Y. Shoji, H. Harada, R. Funada, S. Kato,
K. Maruhashi, I. Toyoda, and K. Takahashi, “RF im-
pairment models 60 GHz band SYS/PHY simulation,”
Document IEEE 802.15-06-0477-01-003c, Nov. 2006.
https://mentor.ieee.org/802.15/dcn/06/15-06-0477
-01-003c-rf-impairment-models-60ghz-band-sysphy-
simulation.pdf
[15] 60 GHz impairments modeling, Document IEEE 802.11-09/1213r1, Nov.
2009.
[16] L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude
Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised
and Space-Time Coded OFDM, CDMA and MC-CDMA Systems. Chich-
ester, UK: John Wiley, 2004.
[17] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and
C. R. Giardina, “A robust digital baseband predistorter constructed using
memory polynomials,” IEEE Trans. Communications, vol. 52, no. 1,
pp. 159–165, Jan. 2004.
[18] D. Zhou and V. E. DeBrunner, “Novel adaptive nonlinear predistorters
based on the direct learning algorithm,” IEEE Trans. Signal Processing,
vol. 55, no. 1, pp. 120–133, Jan. 2007.
[19] M.-C. Chiu, C.-H. Zeng, and M.-C. Liu, “Predistorter based on fre-
quency domain estimation for compensation of nonlinear distortion in
OFDM systems,” IEEE Trans. Vehicular Technology, vol. 57, no. 2,
pp. 882–892, Mar. 2008.
[20] S. Choi, E.-R. Jeong, and Y. H. Lee, “Adaptive predistortion with
direct learning based on piecewise linear approximation of amplifier
nonlinearity,” IEEE J. Selected Topics in Signal Processing, vol. 3, no. 3,
pp. 397–404, Jun. 2009.
[21] V. P. G. Jim´
enez, Y. Jabrane, A. G. Armada, and B. Ait Es Said, “High
power amplifier pre-distorter based on neural-fuzzy systems for OFDM
signals,” IEEE Trans. Broadcasting, vol.57, no. 1, pp. 149–158, Mar.
2011.
[22] S. Chen, “An efficient predistorter design for compensating nonlinear
memory high power amplifier,” IEEE Trans. Broadcasting, vol. 57, no. 4,
pp. 856–865, Dec. 2011.
[23] S. Chen, X. Hong, Y. Gong, and C. J. Harris, “Digital predistorter design
using B-spline neural network and inverse of De Boor algorithm,” IEEE
Trans. Circuits and Systems I, vol. 60, no. 6, pp. 1584–1594, Jun. 2013.
[24] S. Chen, S. X. Ng, E. Khalaf, A. Morfeq, and N. Alotaib, “Particle
swarm optimization assisted B-spline neural network based predistorter
design to enable transmit precoding for nonlinear MIMO downlink,”
Neurocomputing, vol. 458, pp. 336–348, 2021.
[25] C. A. R. Fernandes, Nonlinear MIMO Communication Systems: Channel
Estimation and Information Recovery Using Volterra Models. PhD
These, Universit´
e de Nice Sophia Antipolis, France, 2009.
[26] C. A. R. Fernandes, J. C. M. Mota, and G. Favier, “MIMO Volterra
modeling for nonlinear communication channels,” J. Brazilian Society
Neural Networks, vol. 8, no. 2, pp. 71–92, 2010.
[27] C. A. R. Fernandes, G. Favier, and J. C. M. Mota, “PARAFAC-
based channel estimation and data recovery in nonlinear MIMO spread
spectrum communication systems,” Signal Processing, vol. 91, no. 2,
pp. 311–322, Feb. 2011.
[28] S. Chen, S. X. Ng, E. Khalaf, A. Morfeq, and N. Alotaib, “Multiuser
detection for nonlinear MIMO uplink,” IEEE Trans. Communications,
vol. 68, no. 1, pp. 207–219, Jan. 2020.
[29] C. De Boor, A Practical Guide to Splines. New York: Spring Verlag,
1978.
[30] C. J. Harris, X. Hong, and Q. Gan, Adaptive Modelling, Estimation
and Fusion from Data: A Neurofuzzy Approach. Berlin: Springer-Verlag,
2002.
[31] X. Hong and S. Chen, “Modeling of complex-valued Wiener systems
using B-spline neural network,” IEEE Trans. Neural Networks, vol 22,
no. 5, pp. 818–825, May 2011.
[32] X. Hong, R. J. Mitchell, and S. Chen, “Modeling and control of
Hammerstein system using B-spline approximation and the inverse of
De Boor algorithm,” Int. J. Systems Science, vol. 43, no. 10, pp. 1976–
1984, 2012.
[33] X. Hong and S. Chen, “The system identification and control of
Hammerstein system using non-uniform rational B-spline neural network
and particle swarm optimization,” Neurocomputing, vol. 82, pp.216–223,
2012.
[34] S. Chen, X. Hong, J. B. Gao, and C. J. Harris, “Complex-valued B-spline
neural networks for modeling and inverting Hammerstein systems,”
IEEE Trans. Neural Networks and Learning Systems, vol. 25, no. 9,
pp. 1673–1685, Sep. 2014.
[35] X. Hong, S. Iplikci, S. Chen, and K. Warwick, “A model-based PID
controller for Hammerstein systems using B-spline neural networks,” Int.
J. Adaptive Control and Signal Processing, vol. 28, nos.3-5, pp. 412–
428, 2014.
[36] S. Chen, X. Hong, E. F. Khalaf, F. E. Alsaadi, and C. J. Harris, “Compar-
ative performance of complex-valued B-spline and polynomial models
applied to iterative frequency-domain decision feedback equalization of
Hammerstein channels,” IEEE Trans. Neural Networks and Learning
Systems, vol. 28, no. 12, pp. 2872–2884, Dec. 2017.
[37] J. M. Pena, “B-spline and optimal stability,” Mathematics of Computa-
tion, vol. 66, no. 220, pp. 1555–1560, Oct. 1997.
[38] T. Lyche and J. M. Pena, “Optimally stable multivariate bases,” Advances
in Computational Mathematics, vol. 20, nos. 1-3, pp. 149–159, Jan.
2004.
[39] E. Mainar and J. M. Pena, “Optimal stability of bivariate tensor product
B-bases,” J. Numerical Analysis, Industrial and Applied Mathematics,
vol. 6 nos. 3-4, pp. 95–104, 2011.
References
WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.20a