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Abstract: - A new algorithm is formulated for MIMO Radar system where positions of target along with that of 
the transmitter and receiver antennas are unknown. This algorithm considers a widely separated antenna MIMO 
setup and can be used when transmitters and receivers are either stationary or moving at a very low velocity. 
Here, the algorithm estimates the location of target with respect to the location of the first transmitter. The 
TDOA and AOA available for LOS path between the transmitters and receivers along with the reflection path 
from the target are utilized here. AOA is used only for initialization of antenna positions and target location. 
Furthermore, accurate estimation using Davidon-Fletcher-Powell (DFP) Algorithm is performed. The paper 
introduces a new algorithm to compute velocity of a target. Here, first the FDOA is estimated using a novel 
approach and then velocity is estimated from the FDOA obtained. The velocity estimator for FDOA given 
tracks CRLB and FDOA estimation tracks its corresponding CRLB upto -12dB. The algorithm uses target and 
antenna locations to estimate velocity that can be found out from the algorithm introduced in paper. 
 
Key-Words: - Target Localization, Velocity Estimation, MIMO Radars, DFP Algorithm, Antenna Positions 
Estimation. 
Received: September 12, 2021. Revised: April 17, 2022. Accepted: May 15, 2022. Published: June 28, 2022.
 
 
1 Introduction 
MIMO radar have attracted significant attention in 
last few years over conventional radar for the 
superior performances in higher spatial resolution 
[1], enhanced parameter identifiability [2], more 
degrees of freedom (DOFs) [3], detection diversity 
gain [4], better spatial coverage [5] and possibility 
of direct application of adaptive array techniques 
[6]. Two types of MIMO setup have been discussed, 
MIMO with colocated antennas [7] and with widely 
separated antennas [8]. 

MIMO radar with co-located antennas is better 
for parameter estimation and beam-forming 
performance as it has more effective spatial 
degrees of freedom, since its transmitter and 
receiver antennas are sufficiently close to observe 
signals reflected from the target. MIMO radar with 
widely separated antennas, also known as statistical 
MIMO radar, exploits the diversity of the 
propagation path, thus can be used where better 
detection and estimation resolution is needed. 

In a Radar system, the detection and 
estimation of target parameter is the prime 
application. The parameters of target into 
consideration are location, velocity, acceleration, 
Doppler frequency, Radar Cross 
Section(RCS).etc. Several methodologies have 

been introduced for target detection [9] and 
localization. Detection techniques in clutter is 
also discussed [10],[11]. Several different 
approaches have been adopted to estimate target 
location and velocity, based on time of arrival 
(TOA) [12], time difference of arrival (TDOA) 
[13], angle of arrival (AOA) [14] or frequency 
difference of arrival (FDOA) [15]. 

There is a rapid growth in literature on 
MIMO radars. In [16], a method for estimating 
target location when transmitter and receiver 
location are known was proposed which tracks 
Cramér-Rao lower bound (CRLB). In [16], the 
problem of target localization is modeled in 
MIMO radars using TDOA and AOA 
measurements. This method solves the maximum 
likelihood (ML) estimation problem of target 
position with arena divided into grids and uses 
steepest descent algorithm (SDA) to further 
enhance accuracy while maintaing complexity 
low. In [17] method for estimation of velocity is 
introduced. It also discusses optimal antenna 
placements. The paper [18] discuses improvement 
in performance of estimators when number of 
antennas are increased. In [19] spare support 
recovery is used to infer target properties both 
position and velocity. Optimal Energy allocation 
is also discussed. 
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All the available methods stand valid only 
when the transmitter and receiver position are 
accurately known beforehand. Thus, the 
antennas have to be relatively stationary and the 
positions have to found manually which could 
consume considerable setup time and if at all by 
any cause the antenna positions are changed, then 
the system would have to be setup again. There fore 
to conceptualize a portable MIMO Radar 
system, an algorithm is vital which can elude the 
setup time. We have come up with a new method 
which estimates the antenna positions and target 
positions at the same time. Here for example, if 
we consider a MIMO radar setup where the 
antennas are kept on a movable mount, then even 
when the antennas change positions we do not have 
to pause and obtain the coordinates of antennas, but 
the algorithm estimates the target position with 
respect to the first transmitter even when the 
antennas are in motion. 

In the proposed algorithm, Cartesian plane is 
fixed and the transmitter and receiver positions 
are initialized used TDOA and AOA 
measurements. Once transmitter and receiver 
locations are initialized, the target position is 
localized to grids by solving ML estimation, 
inspired from [16], then for precise estimation of 
all unknown positions Davidon-Fletcher-Powell 
(DFP) from [20] is used. 

This paper also introduces a new algorithm to 
estimate velocity. Here first FDOA is estimated 
and then using FDOA as input a new algorithm, 
inspired from methodology in [16] is used to 
estimate velocity. The velocity domain is discretized 
to grids and the grid with nearest velocity values are 
found using sparsity aware ML estimator. 

In this paper, to estimate FDOA, a new 
approach using iterative use of Non-Uniform 
DFT is presented. It first finds the nearest 
frequency with respect to the resolution of the 
current iteration bandwidth and for next iteration, 
the bandwidth of interest is reduced and kept 
around the frequency obtained in the last iteration. 
This is repeated untill the bandwidth of the iteration 
matches the required precision. 

The paper is arranged as, Section 2 describes 
system model, describes various parameters of 
MIMO radar used in estimators. Section 3 
elaborates the new method. In Section 3.1 a new 
algorithm for estimating FDOA from signal is 
elaborated. Section 3.2 a new approach for 
approximating the velocity of target from FDOA 
is presented. Input to velocity estimator is antenna 
and target locations along with target doppler 
signature (FDOA). Section 3.3 is new procedure 
to estimate target position along antenna positions. 

Section 3.3.1 discuses initialization procedure and 
Section 3.3.2 elaborates methodologies adopted for 
more accurate estimation of target as well as 
antenna positions. Section 4 contains the 
Numerical simulations results for testing the 
proposed methods. Section 5 concludes the 
paper. 

 
2 System Model 
Let us consider a MIMO setup with M 
transmitters and N receivers distributed over a 2-
D surface. The surface is divided into K grid 
points for target localization. The positions of 
transmitter and receiver are denoted by 
xm=[xm,ym], m=1,2,..,M and xn=[xn,yn], 
n=1,2,..,N respectively. The position of a target is 
denoted by x=[x, y] and its velocity v=[vx, vy]. This 
is depicted in Fig.1 

 
Fig.1 Schematic of MIMO Radar system Arrangement 

 
It needs to be noted that, system considered is 2-D, 
but can be extended to a 3-D localization. 
Considering the wave propagation speed (that is, 
speed of light) by c, the noisy TDOA and AOA 
measurements due to LOS can be modeled as 

                  𝜏𝑚,𝑛
𝐿 =

1

𝒄
‖𝒙𝒎

𝑡 − 𝒙n
𝑟 ‖ + 𝜖𝑚,𝑛

𝜏                      
(1) 

                𝛼𝑚,𝑛
𝐿  =   tan−1 (

𝑦𝑚
t −𝑦𝑛

𝑟

𝑥m
t −𝑥𝑛

𝑟 ) + 𝜖𝑚,𝑛
𝛼                

(2) 
where 𝜏𝑚,𝑛

𝐿 and 𝛼𝑚,𝑛
𝐿  are respectively the measured 

TDOA abd AOA which contains noise. 
The target reflected path TDOA and AOA are 
 

              𝜏𝑚,𝑛 =  𝜏𝑚
𝑡 (𝒙) +  𝜏𝑛

𝑟(𝒙) +  𝑚,𝑛
𝜏         (3) 

                  𝛼𝑛 =   tan−1 (
y−𝑦𝑛

𝑟

x−𝑥𝑛
𝑟 ) + 𝑛

𝛼                     
(4) 
where 𝜏𝑚

𝑡 (𝒙)=1

𝒄
‖𝒙𝒎

𝑡 − 𝒙‖ for m=1, 2, … ,M and 

𝜏𝑛
𝑟(𝒙)=1

𝒄
‖𝒙𝒏

𝑟 − 𝒙‖ for n=1,2,…, N. TDOA and 
AOA measurements are disturbed by independent 
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zero mean Gaussian noises of 𝜖𝑚,𝑛
𝜏 , 𝜖𝑚,𝑛

𝛼 , 𝑚,𝑛
𝜏  and 

𝑛
𝛼 with the standard deviation of 𝑚,𝑛

𝜖 , 𝑚,𝑛
𝜖𝛼 , 

𝑚,𝑛
 and 𝑚,𝑛

𝛼 . Here, 𝑚,𝑛
𝜖 = 𝑚,𝑛

 =𝑚,𝑛
  and 𝑚,𝑛

𝜖𝛼 = 
𝑚,𝑛
𝛼 =𝑚,𝑛

𝛼 . Since all the measurements are obtained 
in same environment.  
The distance between transmitters and receiver 
antennas can be found from TDOA as 𝑑𝑚,𝑛

𝐿 = 𝜏𝑚,𝑛
𝐿 𝑐 

and the bistatic range with target as 𝑑𝑚,𝑚 = 𝜏𝑚,𝑛𝑐. 
The actual distance between transmitters and 
receiver antennas are Rm,n=‖𝒙𝒎

𝑡 − 𝒙‖+‖𝒙𝒏
𝑟 − 𝒙‖ for 

m=1,2,…,M and n=1,2,…,N. The Frequency 
difference of arrival (FDOA) can be modelled as 

               𝒇𝑚𝑛(𝒗) =  𝑓𝑚𝑛(𝑣𝑥 , 𝑣𝑦) + 𝜖𝑚,𝑛
𝑓            

(5) 

where 
𝑓𝑚𝑛(𝑣𝑥, 𝑣𝑦,) =  

𝑣𝑥

𝜆
𝐴𝑚𝑛 +

𝑣𝑦

𝜆
𝐵𝑚𝑛                      

(6) 
for m=1,2,…,M and n=1,2,…,N, is the actual 
frequency difference due to Doppler shift and 
where, 

𝐴𝑚𝑛 =  cos 𝜙𝑚
𝑡 + cos 𝜙𝑛

𝑟 
 

𝐵𝑚𝑛 =  sin 𝜙𝑚
𝑡 + sin 𝜙𝑛

𝑟 

𝜙𝑚
𝑡  =   tan−1 (

𝑦 − 𝑦𝑚
𝑡

𝑥 − 𝑥𝑚
𝑡 ) 

                        𝜙𝑛
𝑡  =   tan−1 (

𝑦−𝑦𝑛
𝑡

𝑥−𝑥𝑛
𝑡 ) 

and 𝜖𝑚,𝑛
𝑓 independent zero mean Gaussian random 

variables with standard deviation  𝜎𝑚,𝑛
𝑓 .  

Let ŝm(t) =  sm(t)ej2πfct, 0tT, is signal 
transmitted from the mth transmitter with total 
energy as E and fc is the center frequency. Then, the 
received signal at the nth receiver corresponding to 
the signal transmitted by the mth transmitter after 
reflection from target can be written as 

                 rmn(t)=sr(t)+mn(t)                                     
(7) 

for m=,2,…,M and n=1,2,…,N 

where 

  𝑠𝑟(𝑡) = √
𝐸

𝑀
𝜁𝑚𝑛𝑎𝑚𝑛𝑠̂𝑚(𝑡 − 𝜏𝑚𝑛)𝑒𝑗2𝜋𝑓𝑚𝑛(𝒗)𝑡 

and where 𝜁𝑚𝑛 is the unknown complex target 
reflectivity and 𝜏𝑚𝑛 is the time delay of the path Rmn 

and 𝑓𝑚𝑛  is the Doppler frequency detected by the 
nth receiver due to the mth transmitter. The 
observation interval T is assumed lengthy enough so 
that all transmitted signals can be observed, 

irrespective of their delay. That is, T>>max{𝜏𝑚𝑛} 
and the parameter 

                        𝑚𝑛 =  
1

𝑅𝑚𝑛
2 𝜌𝑚𝑛                              

(8) 

for m=1,2…,M and n=1,2,…,N. In this, ρmn =

 e−j2πfcτmn. The noise at the nth receiver for the 
signal from mth transmitter is denoted asmn(t) and 
is a white Gaussian process with mean zero and 
standard deviation .      

 
3 Proposed Method 
3.1 FDOA Estimation 

A novel approach to estimate frequency shift 
is introduced. Let W be the bandwidth of interest. 
For radar case, W must be chosen such that it can 
contain the Doppler shift caused by maximum 
velocity of the target under consideration. Now, the 
sampling period Ts must be chosen such that 
Ts1/2W  so as fulfill Nyquist criteria. Let Ns be 
the number of samples collected by sampling 𝑟𝑚𝑛(𝑡) 
at sampling period 𝑇𝑠. It is to be noted that 𝑇𝑠𝑁𝑠 >>
  max

𝑚,𝑛
(𝜏𝑛𝑚). We can write 

𝑅 =  [𝑟𝑚𝑛(0), 𝑟𝑚𝑛(𝑇𝑠), . . . , 𝑟𝑚𝑛((𝑁𝑠 − 1)𝑇𝑠)]        
(9)     

For the iterative algorithm to begin the following 
parameters are to be considered. 
                𝑓𝑚𝑖𝑛 =   𝑓𝑐 − 

∆W

2
                                       

(10) 

                 𝑓𝑚𝑎𝑥 =   𝑓𝑐 +  
∆W

2
                                   

(11) 

Now let us define vector w of size 𝑁𝑠 × 1  such 
that  
              𝑤 =  [𝑤0, 𝑤1, … . . , 𝑤𝑁𝑠−1

 ]                
(12) 
where 𝑤𝑖 = 𝑓𝑚𝑖𝑛  +  (𝑖 − 1) 

(𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛)

(𝑁𝑠−1)
           

(13) 
Let n be another vector 

            𝑛 = [0,1,2, … … . 𝑁𝑠 − 1]𝑇                            

(14)     

Now to form DFT basis, E =  e−j2nwTs  , 
then E can be written as 

WSEAS TRANSACTIONS on COMMUNICATIONS 
DOI: 10.37394/23204.2022.21.25 P. Palanisamy

E-ISSN: 2224-2864 206 Volume 21, 2022



    (15) 
Algorithm 1  

Pseudo-code for FDOA Estimation 
while ∆w < 𝛿  do 
Generate w  rom (13) and take n from (14)  
Generate E from (15) 
Y=RE 
 𝑚 =  max

𝑖
(𝑌 (𝑤(𝑖)))  

𝑓𝑐  =  𝑤(𝑚)  −  𝑓𝑐 

𝑓𝑚𝑖𝑛
(𝑖+1)

= 𝑤(𝑚) − 
𝑓𝑚𝑎𝑥

𝑖 −   𝑓𝑚𝑖𝑛
𝑖

(𝑁𝑠 − 1)
 

𝑓𝑚𝑖𝑛
(𝑖+1)

= 𝑤(𝑚) + 
𝑓𝑚𝑎𝑥

𝑖 −   𝑓𝑚𝑖𝑛
𝑖

(𝑁𝑠 − 1)
 

∆w =  𝑓𝑚𝑎𝑥
(𝑖+1)

−  𝑓𝑚𝑖𝑛
(𝑖+1) 

end while 
Let ∆𝑤 be the instantaneous bandwidth for each 
iteration. Initially 𝑓𝑚𝑖𝑛

0 = 𝑓𝐶 − (
∆𝑤

2
) , 𝑓𝑚𝑎𝑥

0 = 𝑓𝐶 −

 (
∆𝑤

2
)  𝑎𝑛𝑑 ∆𝑤 =  𝑓𝑚𝑎𝑥

0 − 𝑓𝑚𝑖𝑛
0   Let δ be the 

resolution required for estimation. The iterations are 
performed till ∆𝑤 reaches𝛿. In each iteration the 
frequency band of interest i.e. 𝑓𝑚𝑖𝑛

𝑖  𝑡𝑜 𝑓𝑚𝑎𝑥
𝑖  is 

discretized into 𝑁𝑠 frequencies using (12) and peak 
magnitude in frequency response is found out. The 
bandwidth around this peak value becomes our new 
bandwidth of interest. After required number of 
iterations is performed, the value 𝑓𝑒 gives the FDOA 
estimation with resolution of 𝛿. 

3.2 Velocity Estimation 
Considering target at position x and moving with a 
velocity v as described in Section 2 and FDOA 
measurements obtained from 3.1. The actual FDOA 
without the noise is defined by (5). 

Let us form a vector F of measured doppler 
shifts (FDOA), i.e. 𝑭 =
[𝒇𝟏𝟏(𝒗), 𝒇𝟏𝟐(𝒗) … … 𝒇𝑴𝑵(𝒗]𝑻, F is noised added 
version of actual Doppler shift, 𝒇(𝒗) =
[𝒇𝟏𝟏

𝒂 (𝒗), 𝒇𝟏𝟐
𝒂 (𝒗), … . 𝒇𝑴𝑵

𝒂 (𝒗)]𝑻.  Here the assumption 
is that we know the target location x and antenna 
locations 𝑥𝑚

𝑡  𝑎𝑛𝑑 𝑥𝑛
𝑟 . This can be found using 

Section 3.3. Using FDOA instead of TDOA in [16], 
also not using AOA and making necessary changes, 
a new algorithm for estimating velocity is 
formulated. 

Select K number of grid points {𝑔𝑖}(𝑖=1)
𝐾 in 

velocity domain to compute the objective function of 
the ML estimation for all grid points and select the 

minimum one. Now we can form the matrix A by 
finding f (v) in different grid points. 

A1=[𝑓(𝑔1), 𝑓(𝑔2) … … . 𝑓(𝑔𝐾) ]                      
(16) 

Now, in order to obtain the velocity of a target, 
the values of f(v) is compared with the received 
measurements in all grid points. Thus, the target 
velocity estimation problem can be written in the 
sparse representation framework as 𝐅 = 𝐀𝟏𝐳 +  𝛆, 
where 𝛆 is a MN×1 vector containing the FDOA 
measurement noise, thus 𝛆 = [εf], where εf =

[ε1,1
f , ε1,2

f , … εM,N
f ]

T
. Vector z is a K×1 vector with 

(K-1) zeros and a one element which is 
corresponding to the index of the grid point where 
the target velocity is closest.  
Since 𝐅 = 𝐀𝟏𝐳 +  𝛆 has an in-deterministic nature, 
thus the conventional maximum likelihood (ML) 
estimation is not viable. Therefore, a simple solution 
for this problem is to compute the objective function 
of the ML estimation for all grid points and select 
the minimum one (brute force). This trivial method 
is of high complexity and limited positioning 
accuracy according to grid size in velocity domain. 
Instead, a compressed sensing technique can be 
considered taking the sparsity in target's velocity. 
Thus, the target velocity estimation problem can be 
expressed using the 𝑙1minimization. 

     𝐳̂=argmin(A1z-F) 𝐶ε
−1(A1z-F)T + ||z||1               

(17) 

where λ is a regularization parameter that controls 
the sparsity of 𝐳 and 𝐂𝛆 is the covariance matrix of ε. 
Also consider a matrix W such that 𝑾𝑇𝑾 =

 𝐶𝜀
−1 𝑜𝑟 𝑾 =  √𝐶𝜀

−1 .  By applying this, (17) can be 
expressed as 

             𝐳̂=argmin||𝐴1̃𝒛 − 𝑭̃||2+||z||1                        
(18) 

where Ã𝟏 = 𝑾𝑨𝟏 𝑎𝑛𝑑 𝐅˜ = 𝑾𝑭. We can find a 
nearest grid index of the target velocity and 
initialize that as target velocity as 𝑣0.  

In grid-based localization, the target velocity 
which are not located on the grids i.e, off-grid are 
not accurately localized. In order to resolve this 
problem, an algorithm based on dictionary learning 
(DL) techniques can be used which is designed to 
minimize the following cost function.   

(v)=[F-f(v)]T𝑪𝜀
−1[F-f(v)]=||𝑓(𝑣) − 𝐹̃||2         

(19) 

where  F̃  is  the  column  of  Ã  1 which  corresponds  to  
the  estimated  target velocity on the grids in velocity 
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domain. It can be seen that he cost function is convex 
with respect to v. Thus, simple steepest decent 
(SDA) can iteratively estimate the true target’s 
velocity from the matrix A1. Note that, in the 
following method we just employ FDOAs in order to 
satisfy convexity condition. SDA iteration 
equation is written as 

              v(i+1)=v(i)-µ(i)v(v(i))                          
(20) 

In Appendix 5, the derivation for final recursion 
equation for updating the estimated velocity vector 
is explained. Thus, the velocity vector v at the 
(𝑖 + 1)𝑡ℎ iteration can be written as 

      𝒗(𝒊+𝟏) = 𝒗(𝒊)  − µ(𝑖)𝑒𝑇𝐶𝜀
−1𝜓                           

(21) 

where, eT=F-f(v(i)) and ψ = [ψ11, ψ12, … ψMN] 

         
(22) 

for m=1,2,..,M and n=1,2,…,N. 

The initial value v(0) of v is chosen from the estimate 
of v from previously. The value of µ(i)) is selected 
according such that 0 < µ(i) < 2

𝑚𝑎𝑥
(𝑖)   in which 𝑚𝑎𝑥

(𝑖)  is 

the maximum eigen value of 𝑓ˆ(𝑣𝑖)𝑓ˆ(𝑣𝑖)𝑇. To 
further clarify the velocity estimation procedure, 
following pseudo-code describes the estimation 
procedure in step by step. The Cramer-Rao lower 
bound (CRLB)) on the estimation error is 
summarized in Appendix B.1 . 

Algorithm 2   
Pseudo-code for Velocity Estimation 

for 𝑛 =  1: Number of blocks do 
𝑛𝑡ℎ block divided into K sub-blocks. 
Solve ML estimation for (18) and find the 
nearest block. 
end for 
Set 𝑣(0)from the previous estimated grid point 
and set 𝑣(1) = inf (very large value) 
while |𝑣(𝑖+1) −  𝑣(𝑖)| <  𝛿 do 
Compute 𝑣(𝑖+1) from (21) 
end while       

 

3.2 Target and Antenna Position Estimation 
3.3.1 Initialization 

Antenna Position 
Now, in order to fix a coordinate system, location x1

t  
i.e. position of the first transmitter is considered to 
be origin and the LOS path connecting x1

t  and x1
r 

(first receiver) as x-axs. That is, x1
t = [0,0]and y1

r =
0. 𝜏𝑚𝑛   and 𝛼𝑛 are target TDOA and AOA 
respectively. If M and N are number of transmitters 
and receivers considering only single target, then 
number of unknown quantities for 2-D case will be 
𝑁′ = 2(𝑀 +  𝑁 ) − 1. 
We use AOA information along with TDOA. 
Let us denote, 
            𝐷′ = [𝑑1,1

′ , 𝑑1,2,
′  , … … . , 𝑑𝑀,𝑁

′ ]                  (23) 

          𝛼 = [𝛼1,1
𝑢 , 𝛼1,2

𝑢 , … … . , 𝛼𝑀,𝑁
𝑢 ]                  (24) 

Let us define M vectors by rearranging D' and 𝛼 

         𝐷𝑚
𝑒 = [𝑑𝑚,1

′ , 𝑑𝑚,2,
′  , … … . , 𝑑𝑚,𝑁

′ ]               (25) 

         𝛼𝑚
𝑒 = [𝛼𝑚,1

𝑢 , 𝛼𝑚,2
𝑢 , … … . , 𝛼𝑚,𝑁

𝑢 ]             (26) 

where m = 1, 2,….,M Now let us initialize the 
receiver locations as 

             𝑥𝑁
𝑟0   =  𝐷1

𝑒[𝑐𝑜𝑠𝛼1
𝑒 , 𝑠𝑖𝑛𝛼1

𝑒 ]                 (27) 

It should be noted that 𝑦1
𝑟 must be forced to zero. 

Now for transmitters 𝑥1
0 =[0,0]. 

 
  𝑥𝑚

𝑡𝑜 =  
1

𝑁
(𝑥𝑁

𝑟𝑜 − 𝐷𝑚
𝑒 [𝑐𝑜𝑠𝛼𝑚

𝑒  , 𝑠𝑖𝑛𝛼𝑚
𝑒  ]            (28) 

for m = 2,3, … . M 

Target Position 
For initializing target position x, the ML-Estimation 
concept from [16] is used. The antenna positions 
considered are xm

t0 and xn
r0 . K number of grid points 

{gi}(i=1)
K  in spatial domain. Now we can write the 

Bistatic Range 𝑅𝑚,𝑛 (𝑋) = ‖𝑋𝑚
𝑡 0

− 𝑋‖ +

‖𝑋𝑛
𝑟0 − 𝑋‖ and by taking TDOA received due to 

target reflection path 𝑑𝑚𝑛, where m = 2,3, … . M,
n = 2,3, … . N., We can represent 𝐻𝑅(𝑋) =
[𝑅1,1, 𝑅1,2, … , 𝑅𝑀,𝑁],𝐻𝐴(𝑋) = [𝛼1, 𝛼2, … , 𝛼𝑁]. 
Here, 𝐻(𝑋) = [𝐻𝑅(𝑋), 𝐻𝐴(𝑥)]𝑇 and the measure 
𝐵 = [𝑑1,1, 𝑑1,2, … . . 𝑑𝑀,𝑁]

𝑇
. Matrix A2 can be 

computed as, 
 
     𝐴2 = [𝐻(𝑔(1)), 𝐻(𝑔(2)), … . . 𝐻(𝑔(𝐾))]          (29) 
 

The problem of target localization can be 
expressed in the sparse representation framework 
given by 𝑩 =  𝐀2𝐳 +  𝛆 where ε is (𝑀 +  1)𝑁 𝑥1 
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vector containing the noises in measurement of 
TDOA and AOA, i.e., 𝛆 = [𝛆𝑅

𝑇 , 𝛆𝛼
𝑇 ], where,  

 𝛆R =  𝑐. [𝜔1,1
𝜏 , 𝜔1,2,

𝜏  , … … . , 𝜔𝑀,𝑁
𝜏 ]T 

and εa = [𝜔1
𝛼 , 𝜔2

𝛼 , … 𝜔𝑁
𝛼]T. Vector z is a K x 1 

vector with (K-1) zeros and a one at to the index 
which corresponds to the grid point where the target 
is located. 
Since 𝑩 = 𝑨𝟐𝒛 + 𝜺 has an un-deterministic nature, 
thus the conventional maximum likelihood (ML) 
estimation is not viable. Therefore, a simple solution 
for this problem is to compute the objective function 
of the ML estimation for all grid points and select 
the minimum one (brute force). This trivial method 
is of high complexity and limited positioning 
accuracy according to grid size in velocity domain. 
Instead, a compressed sensing technique can be 
considered taking the sparsity in target's location. 
Thus, the target localization problem can be 
expressed using the l1 minimization procedure. 

𝑧̂ = argmin (A2z-B) 𝐶𝜀
−1(A2z-B)T+ 𝜆‖𝑧‖1         (30)                      

where 𝜆 is a regularization parameter that controls 
the sparsity of z and 𝐶𝜀  is the covariance matrix of 
𝜀. A matrix W is so introduced such that 𝐖T𝐖 =

𝑪𝜺
−𝟏 𝑜𝑟 𝑾 =  √𝑪𝜀

−1 . Now, (30) can be rewritten as 

        𝑧̂ = argmin ‖Ã2𝑧 − 𝐵‖2
2 + 𝜆‖𝑧‖1                 

(31) 
 

where Ã2 =WA2 and 𝑩̃ = WB. We canfind a nearest 
grid location of the target and initialize that as target 
location as x0. 
 

3.3.2 Precise Estimation 
For precise estimation of the required parameters we 
are using DFP algorithm. Let N' be the number of 
parameters to be estimated. Let F(X) be the cost 
function and 𝛻𝐹(X) the gradient of the cost 
function. Here Cγ is the covariance matrix of γ, 
where 𝛾 = [𝜔𝜏, 𝜀𝜏], 𝜔𝜏 =
[𝜔1,1

𝜏 , 𝜔1,2,
𝜏  , … … . , 𝜔𝑀,𝑁

𝜏 ] 𝑎𝑛𝑑  𝜀𝜏 =

 [𝜀1,1
𝜏 , 𝜀1,2,

𝜏  , … … . , 𝜀𝑀,𝑁
𝜏 ] . 

     𝐹(𝑥) = (𝒃 − ℎ(𝑿))
𝑇

𝐶𝛾
−1(𝒃 − ℎ(𝑿))           (32) 

where, 
X=[x,y,x2

t,y2
t,x3

t
,y3

t,…xM
t,yM

t,x1
r,y1

r,x2
r,y2

r,…xN
r,yN

r]
𝒃 = [𝑑1,1, 𝑑1,2, . . 𝑑𝑀,𝑁 , … 𝑑1,1

′ , 𝑑1,2
′ , … 𝑑𝑀,𝑁

′ ] 
ℎ(𝑿) = [𝑅1,1, 𝑅1,2, . . 𝑅𝑀,𝑁, … 𝑅1,1

′ , 𝑅1,2
′ , … 𝑅𝑀,𝑁

′ ] 
𝛻𝐹(X)𝑖𝑠 computed in Appendix 5 

Let us set a small value δ for limiting the 
convergence. Let 𝜑(𝜆)  = F(𝐱 − 𝜆𝐃𝛻𝐹(X)).  The 
iterations are carried out till ‖𝛻𝐹(X)‖ < 𝛿 . Initially 
Dj is set as an Identity matrix of order N'. Now, i is 

varied from 1 to N’ computing equation (33), (34), 
(35), (36) and (37). Thus N' iteration is performed to 
converge X. 

𝑑𝑗 =  −𝐃𝐣(𝛻𝐹(𝐗j))                             (33) 
𝑷𝑗 =  𝜆𝑗𝒅𝑗                                            (34) 
𝑿𝑗+1 = 𝑷𝑗 + 𝑿𝑗                                   (35) 
𝒒𝑗 =  𝛻𝐹(𝐗j+1 ) −  𝛻𝐹(𝐗j)                (36) 

𝑫𝑗+1 = 𝐷𝑗 +  
𝑷𝑗𝑃𝑗

𝑇

𝑃𝑗
𝑇𝑞𝑗

−  
𝑫𝑗𝑞𝑗𝑞𝑗

𝑇𝐷𝑗

𝑞𝑗
𝑇𝐷𝑗𝒒𝑗

            (37) 

Once the limiting condition is satisfied the 
parameters constituting vector X is precisely 
estimated. 
 

 
Fig. 2: Transmitters, receivers and target positions 
with respect to the in spatial domain 

Algorithm 3   
DFP Algorithm for Precise Estimation 

while ‖𝛻𝐹(X)‖ > 𝛿 do 
Set D0 = Identity(N’) 
for j<N’ do 

Solve 𝜆𝑗 for 𝜑(𝜆𝑗) = 0 
𝒅𝑗 =  −𝐷𝑗(𝛻𝐹(𝐗j))          
𝑷𝑗 =  𝜆𝑗𝒅𝒋         
𝑋𝑗+1 = 𝑃𝑗 + 𝑋𝑗   
𝑞𝑗 =  𝛻𝐹(𝐗j+1 ) −  𝛻𝐹(𝐗j)       

        𝐷𝑗+1 = 𝑫𝑗 + 
𝑃𝑗𝑃𝑗

𝑇

𝑃𝑗
𝑇𝒒𝑗

− 
𝑫𝑗𝒒𝑗𝒒𝒋

𝑻𝐷𝑗

𝒒𝑗
𝑇𝐷𝑗𝒒𝒋

 

end for 
end while 

 
4 Simulation and Results 
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m,n 

In this section, the proposed algorithms are tested 
using MATLAB. Fig.9 shows the performance of 
algorithm presented in Section 3.2. Here first 
FDOA is estimated as per Section 3.1 and then 
velocity is estimated. Fig.5 is a plot between MSE 
of estimated FDOA with respect to different SNR. 
Fig.6 shows MSE of estimated velocity with 
respect to noise variance in FDOA (σFDOA).  Here 
a 2×2 MIMO is tested.  The transmitters are at 
[(2.5712, 3.0642), (1.2968, 8.1879)] and receivers 
at [(3.1231, 6.6976), (0.8682, 4.9240)] in Kms. 
The signal energy is taken as 400 and M and N are 
both 2. Target position is considered [0, 0]. The 
velocity of target is considered [0.568, 
0.081]km/s. Thus, it is tested for higher velocity 
value.     
Fig.7 and Fig.8 shows estimated velocity for 1000 
Monte-Carlo trials for SNR=0dB and SNR= -
12dB respectively. The carrier signal is 
considered to be of frequency fc = 1GHz.  
Bandwidth BW = 50KHz and sampling period 
5µs. Number of samples collected is Ns = 400 and 
reflection coefficient ζmn = 1 is considered. 
Testing is done with two MIMO setups, 5×5 
and 3×3. In MIMO 5×5, transmitters are located 
at (0,0), (1,9), (5,5), (6,1) and (6,9), and receivers 
are 
placed at (5,0) , (2,5), (5,8), (7,7) and (7,3). For 
MIMO 3×3, transmitters are at (0, 0), (5, 8) and 
(9,  9) and receivers at (4,  0),  (1,  9) and (5,  5).  
Let us consider a target positioned at (3.54,6.23) in 
both cases. All the distances           are to be considered 
in Kms.  
Fig.2 shows antenna and target arrangement in 
spatial domain. The estimate of target’s position is 
shown in Figure 3 and Figure 4 for MIMO 5×5 
and MIMO 3×3respectively at σα= 5 deg. 

 

Fig.3: Plot between MSE of target position vs 
TDOA noise standard deviation σ𝑚,𝑛

𝑇  with MIMO 
5×5 
 

 
Fig.4: Plot between MSE of target position vs 
TDOA noise standard deviation σ𝑚,𝑛

𝑇  with MIMO 
3×3 
 

Performance of the proposed method is evaluated 
in the presence of TDOA and AOA noises. The 
MSE of the target’s position versus the standard 
deviation of TDOA noises was calculated using 
1000 - trial Monte-Carlo runs. It can be observed 
that the MMSE of y is less than that of x in Figure 
3. This is because the spatial distribution of 
antenna are better for y-coordinate than x-
coordinate (Figure 2). 
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Fig.5:  MSE Vs SNR for estimated FDOA  

 

 
Fig.6: MSE of velocity estimation Vs noise 𝜎𝐹𝐷𝑂𝐴 
with CRLB 
 
5 Conclusion 
In this paper, we formulated the problem of target 
localization in MIMO radars in widely separated 
framework with unknown antenna locations. The 
target localization is done considering that the 
transmitters and receivers are                       stationary or 
moving with a very low velocity such that its 
positions do not change much with in the 
estimation interval. Further a new approach for 
estimating velocity is introduced. Here FDOA is 
estimated first and then the estimated FDOA 
with noisy is used to estimate velocity. 
 

 
Fig.7: Estimated velocity for 1000 iterations at 
SNR = 0. 
 
 

 
Figure 8: Estimated velocity for 1000 iterations at 
SNR = −12 
 
Appendix A. 

Appendix A.1. Cost Function 
Simplification of 3.2 
By some mathematical manipulations, the cost 
function Γ(v) can be formed as: 
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Figure 9:  MSE (m2/s2) Vs SNR (dB) for a         MIMO 
2 × 2 Setup 

 

 
 
The derivation of the cost function with 
respect to vk , k = 1, 2 is as follows: 

 

For k = 1, 2 it can be written as 

 
for m=1,2,…,M and n=1,2,…,N. 
 
 

Appendix A.2. Simplification of Gradient 
of F (X) 
The cost function 𝐹 (𝑋) =  (𝒃 −

 ℎ(𝑋))
𝑇

𝐶𝛾
−1  (𝒃 −  ℎ(𝑋)).  If X is a vector of 

N number of variables then  
𝑋  = [𝑥−1, 𝑥−2, . . . , 𝑥𝑁′ ].  Then Gradient of 𝐹(𝑋) 
can be written as  

∇F(X) = [
𝜕F(X)

𝜕x1
 ,

𝜕F(X)

𝜕x2
, … ,

𝜕F(X)

𝜕x𝑁′
] 

Now,  

      
Here, 

 

 
Then, 

 

Computing each partial derivative 
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Appendix B. CRLB 
Appendix B.1. CRLB Derivation For 
Velocity Estimation 
We aim to derive the CRLB for velocity 
estimation. The velocity v is estimated from the 
FDOA observations. The CRLB can be 
calculated using the trace of the inverse of Fisher 
information matrix, denoted by I. For a 
Gaussian observations, with mean vector  µ and 
covariance matrix Cє,  then I can be written as, 
 

 
In the present study, µ = f (v) and Cє is 
independent of v. Thus the second term in above 
equation is equal to zero and the first term 
yields: 

 

CRLB can be plotted using 𝑡𝑟([𝐼(𝑣)]−1). 

 
Appendix B.2. CRLB Derivation for 
Combined Velocity Estimation from    
Signal Using Algorithm 
For retrieving noise variance from SNR 

 
Now the CRLB can be obtained as 

 
Let Cє be the covariance matrix of noise in 
rm,n(t). Then, 
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