
Video-Like Lossless Compression of Data Cube for Big Data Query in
Wireless Sensor Networks

RAY-I CHANG1, YU-HSIEN CHU1, CHIA-HUI WANG2, NIANG-YING HUANG1

1Department of Engineering Science and Ocean Engineering, National Taiwan University,
No. 1, Sec. 4, Roosevelt Road, Taipei 10617, TAIWAN;

rayichang@ntu.edu.tw; d00525003@ntu.edu.tw; r99525049@ntu.edu.tw
2Department of Computer Science and Information Engineering, Ming Chuan University,

No. 5 Der-Ming Rd., Gwei Shan District, Taoyuan County City 333, TAIWAN
wangch@mail.mcu.edu.tw

Abstract: - Wireless Sensor Networks (WSNs) contain many sensor nodes which are placed in chosen spatial
area to temporally monitor the environmental changes. As the sensor data is big, it should be well organized
and stored in cloud servers to support efficient data query. In this paper, we first adopt the streamed sensor data
as "data cubes" to enhance data compression by video-like lossless compression (VLLC). With layered tree
structure of WSNs, compression can be done on the aggregation nodes of edge computing. Then, a parallel
processing algorithm is designed to well organize and store these VLLC data cubes into cloud servers to
support cost-effect big data query for machine learning and data mining. Our experiments are tested by real-
world sensor data. Results show that our method can save 94% construction time and 79% storage space to
achieve the same retrieval time in data query when compared with MySQL.

Key-Words: -Wireless sensor networks; Database storage; Video-like lossless compression; Parallel processing;
Streamed sensor big data; Edge computing.

Received: February 22, 2021. Revised: July 28, 2021. Accepted: August 6, 2021. Published: August 10, 2021.

1 Introduction
Wireless sensor networks (WSNs) consist of small
sensor nodes which have the capabilities of sensing,
computation, and wireless communication [1]. They
can be utilized for data collecting purposes in
emergency applications such as environment
monitoring, health monitoring, and structure
monitoring [2][3][4]. Sensor nodes can be organized
as an ad hoc network which can be widely used in
human life. However, they are usually equipped
with very limited resources of limited power and
small storage. Researches show that, in a sensor
node, the transmission of one single bit consumes
the energy which is the same as the cost of
executing more than one thousand operations in
CPU [5]. Data compression of sensor data has
become an important research topic [6][7].

Usually, two consecutive data that sensed by a
same node would be similar. This indicates that the
temporal correlation is preserved. Meanwhile,
nearby sensors commonly gather the related data
will also possess the spatial correlation of proximity.
As mentioned in [7][8], spatial and temporal
correlations are inherent in sensor data from most of
sensory environment. Different compression

methods were proposed to take advantages of
temporal and spatial correlations to further extend
life time of WSNs.

Fig. 1 Data server with parallel processing in database
subsystems.

To promise cost-effective access, the data server
is necessary to not only store sensor big data in
resource-saving, but also provide capability of
parallel processing of quick data query for
customers. As shown in Fig. 1, the data server with
parallel processing for sensor big data query is a
composition of several slave PCs (peer computers)
and their corresponding database subsystem. A
master PC in data server plays the role of a
supervisor. It determines the stored location of

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 139 Volume 20, 2021

query data and delivers commands to slave PCs to
process their database subsystems.

Fig. 2 Compressed sensor data is treated as linked object
in data server.

In this paper, the data server treats the
compressed sensor data as the linked object called
“data cube” (as shown in Fig. 2) to couple video-
like lossless compression (VLLC) to provide the
cost-effective big data query for WSNs with edge
computing. The remainder of this paper is organized
as follows. In Section 2, the related works of WSNs
data compression methods and data servers are
introduced. In Section 3, we describe the proposed
VLLC scheme with data cube storage structure for
big data query in WSNs. Experiments in Section 4
demonstrate the performance evaluation of our
proposed schemes. Conclusions and future works
are shown in Section 5.

2 Related Works
There are two types of compression: lossy and
lossless [9]. The lossy compression has better
performance in compression ratio and energy-saving
than lossless compression. But, the original
streamed sensor data can’t be recovered from lossy
compression because of the data distortion. [10]
applied an error-bounded lossy compression scheme
[11] for high performance computing (HPC) and
then used a machine learning technique to recover
the streamed sensor data of wireless body sensor
network (WBSN) within a given bounded error on
the edge node. Different from [10], without the need
to rebuild the lossy transmitted data on the edge
node, [7] uses lossless compression schemes to
consider data, spatial and temporal correlations
among bounded-error-pruned sensor data. The data
size in network transmitting and database storing are
minimized for energy saving and to prolong the
system lifetime.

In WSNs applications, customers can query the
decompressed data from data server no matter the
compression schemes applied were lossy or lossless.
Therefore, data server is responsible for collecting
and storing data sent from remote sensor nodes. It’s

also responsible for pre-processing of stored data
(e.g. compressed data) and sending query results to
customers. In data server, database subsystem can
manage and organize the large amounts of sensor
big data for customers’ queries The databases such
as Oracle [12], Microsoft SQL server [13], or
MySQL [14], gather and organize the data stored in
database server and provide query service for users’
computers and applications. Since these databases
are all needed to store big sensor data in cost-
effectiveness, the above-mentioned compression
schemes can be applied for these databases to
reduce storage cost for big sensor data.

Notably, database provides operations for users
to retrieve the collected data in many forms, and
these data transactions may come up with several
times of compression and decompression operations
for data query. Meanwhile, users may not only focus
in retrieving one data record but also a wide range
of data records. Query for a wide range data may
contain lots of sensor data and needs to perform lots
decompressing processes. Therefore, this paper
proposes a cost-effective compression scheme for
big sensor data query to adapt trade-off between
compression complexity and query performance for
customers in prevalent WSNs applications.

Fig. 3 Layered tree structure of WSNs with edge-
computing VLLC

3 Video-Like Lossless Compression
In our proposed VLLC compression scheme, we
apply a layered tree structure of WSNs as shown in
Fig. 3. It includes three layers including the end-
device of sensor nodes (with limited resources), the
aggregation super node (with more resources for
data aggregation and transmission of end-device),
and the edge-computing coordinator sink (at the top

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 140 Volume 20, 2021

of WSNs to data aggregation of super nodes).
Moreover, the coordinate sink usually wired with
edge-computing data servers.

Both aggregation super nodes and coordinator
sink are responsible for integrating the sensor data
from different end devices at different sensor
locations. Then, the edge-computing coordinator
sink will use VLLC to compress the input stream
data from aggregation super nodes and then
forwards the compressed data steam to data server.
The databases in data server will organize and
manage the forwarded sensor data streams. It also
allows customers to retrieve the stored data for
different types of data queries in diversified WSNs
applications.

Fig. 4 Unique ID assignment by the location coordinate
of end device.

The streamed sensor data from the end devices
will be divided into several slices based on their
recorded time intervals, and aggregation super
nodes and edge-computing coordinator sink will
integrate end-devices slices to a logical plane. To
meet the logical plane requirement, each end device
would need to be allocated with one unique ID.
Using the coordinate system to map unique ID is a
simple and fast way. As shown in Fig. 4,
Lookup.Table is the mapping table for sensor data
arrangement in the plane. Then, the edge-computing
coordinator sink will use VLLC to compress these
logical data planes of streamed sensor data and then
send the compressed sensor data to data server for
query later.

Fig. 5 Streamed sensor data structure applied in VLLC.

3.1 Proposed VLLC Scheme
As show in Fig. 5, a plane in a time interval is
composed of many data slices from their end

devices in the same interval. Data slices in a plane
can be divided into small groups called frames. The
cube is defined as the sequential frames from the
same data-slice group in time period of sequential
intervals. Therefore, the neighbouring data slices in
a single frame indicate their end-devices are
neighbors and they will preserve spatial correlations.
Meanwhile, the data slices in the same locations on
consecutive frames indicate the streamed sensor
data came from the same end-device with temporal
correlations. The inheritance of both temporal and
spatial correlations in streamed sensor data from
WSN motivates us to use VLLC for sensor big data
query

The next important step for VLLC is streamed
sensor data transformation to transform the raw
streamed sensor data into formatted images. RGB
color format is chosen in our VLLC method. One
pixel is represented by 24 bits as the value of one
sensor data. Each data is converted into 24 bits
complied with RGB format, as shown Fig. 6.

Fig. 6 Streamed sensor data transformation to RGB
format.

The proposed architecture of data server provides
parallel processing to several database subsystems
The streamed sensor data from WSNs can be
transformed to different cubes. As shown in the
right hand side of Fig. 5, a cube of sensor data in a
database subsystem, shows the GOP (group of
pictures) is 30 frames as the default. After our
streamed sensor data arrangement for VLLC, cubes
of streamed sensor data are compressed separately
in parallel, which can be maintained in different
database subsystems. Furthermore, we adopt H.264
scheme in VLLC, because it is a standard of lossless
video compression that can save large space
effectively. In intra-frame compression of H.264, a
single frame can be decompressed without refer to
other frames. This important feature is helpful for
the performance of data query.

3.2 Query Process in VLLC
All sensor data now are VLLC-compressed and
stored in data server. The stored compressed data

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 141 Volume 20, 2021

cubes like several video clips are distributed in the
database subsystems of data server. Query a single
sensor data on data server is just like fetching a
target frame of a specific video and the requested
data can be simply obtained in the target frame. In
Fig. 7, a single data query is performed in data
server and request the datai, which is recorded by
end-devicei at time ti. The master PC in data server
first check the location information of data from
Lookup.Table for nodei, then forwards the query to a
slave PC which contains the target data cube
according the location information of nodei. The
slave PC searches for the data cube in its database
subsystem, then Frame.offset is set to the number of
Framel so as to pick out the specific frame. A
specific pixel in this frame can be obtained after
decompression, and the requested sensor data is
obtained.

Fig. 7 Single data query in VLLC.

Users are interested in not only single sensor data
from an end device, but also some range of data
streams recorded from neighboring end-devices in a
period of time. Range data query for an end device
is similar to query sensor data in its own data cube
in a database subsystem, but range query for
neighboring end-devices will be involved.

Fig. 8 Range data query in VLLC.

As an range query example shown in Fig. 8,
range of (x1,y1) to (x2,y2) in a plane are residing in
different data cubes, it means that the sensor data
streams queried in this range are kept in different
database subsystems of data server. The master PC
first check the Lookup.Table for all end-devices, and
determine corresponding slave PCs where the sub-
queries are forwarded to. All the slave PCs
involving in the query range are searching their own
database subsystems, then set the Frame.offset from

Framei to Framej. These slave PCs then pick out the
target frames and decompress the frames to the
original sensor data. The master PC will merge the
independent query results from slave PCs to the
final range data query results for users.

3.3 Parallel processing in data server
Since operations for data modification and

deletion is hardly occurred in WSN databases, the
main performance issue on the WSN database can
be associated with the processing time of data
queries. Data server needs to provide query services
for different users to make different query requests
simultaneously. Since current computing devices
usually support multi-core CPU, the decompression
for different data cubes can be speed up by parallel
processing to reduce the decompression time and
increase the flexibility of data server for big sensor
data query.

Fig. 9 Quad-cored parallel decompression work for
frames in 4 data cubes.

Without loss of generality, we assume that our
data server provides quad-core CPUs in all master
and slave PCs. Upon the data query, the slave PC
first sets the Frame.offset and the queried interval of
time, then the following decompress work can be
parallel. As an example shown in Fig. 9, the data
query involves 4 different data cubes. Frames in 4
cubes can be evenly assigned to 4 processors (i.e. P1,
P2, P3, P4) in quad-core CPU for decompression
and transformation. However, if the number of data
cubes in sensor data query is more than the process
numbers (i.e. P1, P2, P3, P4) in slave PC, processor
assignment is needed to optimize the data query
performance.

As shown in Fig. 10(a), without processor
assignment optimization, 9 data cubes with different
sizes required to be decompressed in data query for
a quad-core slave PC. We assume the time of
decompress a single unit of data cube is tp. P1 takes
2 tp to finish its decompression work, P2 needs 4 tp
to finish, P3 needs 2 tp and P4 takes 1 tp. Overall
decompression task costs 4 tp time to complete the
decompression work in parallel processing on quad-
core slave PC.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 142 Volume 20, 2021

(a) (b)
Fig. 10 Parallel processing of decompression work for
frames in 9 data cubes. (a) Without improvement. (b)

With improvement.

After improvement, 4 processors will takes 1 tp , 3 tp,
3 tp and 2 tp separately for the same query as shown
in Fig. 10(b). The total compression time is 3 tp, and
it takes 1 tp less than the previous processor
assignment. We can have an improved performance
for completing the data query task by reordering the
data-cube decompression sequence of processor
assignment.

4 Experiments
In our experiments, the dataset is real-world data
[15] of daily global air temperature monitored
during 1950 to 1999. It contains both spatial and
temporal correlations with 8,190 sensor nodes in a
continuous range of latitude and longitude. Each
node monitored 177,380 days continuously. There
are totally 145,274,220 records of streamed sensor
data. We compare the performance metrics of space
savings, compression time and query time of data
cubes with different frame sizes.

To evaluate the performance in VLLC-enable
data server when sensor data are divided into
different frame resolutions (i.e. different number of
data cubes). As shown in Fig. 11, they have 1x1,
2x2 and 4x4 Cubes respectively. We split the raw
dataset into three different sizes for different frame
resolutions, which are 90x91, 180x182 and 360x364.
Due to the split on the same raw dataset, the number
of frames in a cube is in inverse proportion to the
Frame size. The Cube number can be taken as the
number of database subsystems. It also indicates the
parallel processing ability of query in data server.

Fig. 11 Different frame resolution settings for applied
dataset.

Our VLLC uses video codec of x264 [16] to
compress these Cubes built from raw dataset, and
use FFmpeg [17] software to do VLLC
decompression. The performance of different frame
resolutions in data cubes with different sizes is
shown in Table 1. The ratio of space savings is
calculated by Eq. (1).

_
_ _1

_ _
Space Savings

Compressed Data Size
Original Data Size

= -
(1)

Table 1 Performance of different frame resolutions.
Frame Size (m by n) (Pixels)

90 x91 180 x182 360 x364
Applied Dataset Size 5568.768MB
Number of Cubes 1x1 2x2 4x4

Total Frame Number 17738 4435 1109
Database

Construct Time 980.794s 866.586s 827.819s

Original Data Size 420MB 417MB 415MB
Compressed Data Size 206MB 198MB 195MB
Compression Time 53.02s 39.22s 33.43s
Space Savings 96.30% 96.44% 96.50%
Single Frame

Decompression Time 0.01(s) 0.125(s) 0.385(s)

As shown in Fig. 12, Frames with larger sizes
achieve better performance in both of compression
and construction time. They are dependent on the
number of frames in data cubes.

Fig. 12 Compression and construction time for different
frame resolutions in data cubes.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 143 Volume 20, 2021

Decompress single Frame from a small-sized
data cube would cost less time than the large one
are shown in Fig. 13. The single data query
performance for different frame resolutions in
different sizes of data cubes is shown in Fig. 14.

Fig. 13 Decompression time of single frame in different-
sized data cubes.

Fig. 14Average time for single data storing and fetching
via different numbers of data cubes.

In the second experiment, we compare our
VLLC-enabled data server with a well-known open-
source database MySQL (v5.5). In this experiment,
we use the same real-world dataset as used in
previous experiment and they are stored in only one
database for each scheme. These two databases from
different schemes are need to construct 145,274,220
counts of sensor data, and they are needed to be
retrievable. The cost of storage space and construct
time is shown in Table 2.

Table 2 Performance of MySQL and VLLC.
WSN Data Server Scheme

MySQL VLLC

Sensory Data Size 5568.768MB

Database Size 946.8MB 206.0MB

Space Savings 83.00% 96.30%

Construct Time 17121.000(s) 1033.814(s)

We assume the MySQL performance results as
the comparison base for performance metrics of
database size, construction time and space saving.
Our VLLC method saves approximately to 94% of
construction time compared to MySQL. Since our
method is not a relational database model, VLLC
still promote the space saving ratio to 96.30%. It is
over 13% more than conventional MySQL. After
normalization, the storage cost of VLLC-enabled
database is 79% less than MySQL.
Table 3 shows the experiment result in the query

performance of our method and MySQL. The unit of
retrieve data means how many data will involve in a
query at a time. In our method, the value of unit data
is binding to the frame size (90x91, 180x182 or
360x364). When we aim to retrieve the data in a
database with an unit data with size 90x91, it is
equal to retrieve size 8190 (=90x91) data in MySQL.
Experiment results show that our method takes 0.01
seconds to retrieve size 8190 (=90x91) data, and
MySQL need to take 0.022 seconds. It is over
double time.

Table 3 Data Retrieval Time of MySQL and VLLC.
Total retrieve data

Database Unit of
Retrieve Data

8190
=90x91

32760
=90x91x4

131040
=90x91x16

VLLC 90x91 0.010s 0.040s 0.160s
MySQL Any 0.022s 0.071s 0.351s

Estimated time

Note that the request for retrieve a frame with the
size of 180x182 can be achieved by retrieve 4
continues frames with size of 90x91. The estimated
time can be concerned as the evaluation for each
query request. It means that our method can achieve
the performance of data query as well as the
MySQL or even better than.

5 Conclusion and Future Works
A video-like lossless compression method for big
sensor data query is proposed to manage huge
amount of WSNs data. The compression method
geographically treat streamed data as many data
cubes with temporal and spatial correlations. The
data cubes can be distributed to different database
subsystems in data server for load-balancing and
parallel processing of the data queries. Experimental
results demonstrate that the trade-offs between
space saving and query time can be determined by
adopting different sizes of data cube. The proposed
VLLC method achieves much better performance
than MySQL in construct time and storage saving.
VLLC saves approximately 94% of construct time
compared to MySQL, and the storage cost of VLLC

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 144 Volume 20, 2021

is 79% less than MySQL.
Range query plays an important role in common

database operations. It provides users a convenient
way to request a large number of data for machine
learning and data mining [18]. There are future
works to enhance the performance of range query in
our system. (1) Cache the common requested data
on edge servers to reduce query time. (2) Duplicate
the database or data cubes to have better query
performance. (3) Improve the compression ratio by
using other video codecs such as H.265 and H.266.

References:
[1] C.F. García-Hernández, P.H. Ibargüengoytia-

González, J. García-Hernández, and J.A. Pérez-
Díaz, “Wireless sensor networks and
applications: a survey”, International Journal
of Computer Science and Network Security,
Vol.7, pp. 264-273, March 2007.

[2] D. Culler, D. Estrin, and M. Srivastava, “Guest
editors' introduction: overview of sensor
networks”, Computer, Vol.37, pp. 41-49.
August 2004.

[3] Chu, Yu-Hsien, et al. "UPHSM: Ubiquitous
personal health surveillance and management
system via WSN agent on open source
smartphone," 2011 IEEE 13th International
Conference on e-Health Networking,
Applications and Services. IEEE, 2011.

[4] R. Szewczyk, A. Mainwaring, J. Polastre, J.
Anderson and D. Culler, “An analysis of a
large scale habitat monitoring application,”
Embedded Networked Sensor Systems,
November 2004.

[5] Y. Liang and W. Peng, “Minimizing energy
consumptions in wireless sensor networks via
Two-Modal Transmission”, ACM SIGCOMM,
Vol.40, pp. 12-18, January 2010.

[6] K.C. Barr and K. Asanovic, “Energy-aware
lossless data compression,” ACM Transactions
on Computer Systems, vol. 24, pp. 250-291,
August 2006.

[7] Chang, Ray-I., et al. "Bounded-error-pruned
sensor data compression for energy-efficient
IoT of environmental intelligence." Applied
Sciences 10.18 (2020): 6512.

[8] Z. Zhang and O. Berger, “Cluster based data
query analysis and optimization for Wireless
Sensor Networks,” Advanced Communication
Technology, February 2008.

[9] Hamdan, Salam, Arafat Awaian, and Sufyan
Almajali. "Compression techniques used in
IoT: a comparitive study," 2019 2nd
International Conference on new Trends in
Computing Sciences (ICTCS). IEEE, 2019.

[10] Azar, Joseph, et al. "An energy efficient IoT
data compression approach for edge machine
learning." Future Generation Computer
Systems 96 (2019): 168-175.

[11] Di, Sheng, and Franck Cappello. "Fast error-
bounded lossy HPC data compression with
SZ." 2016 IEEE international parallel and
distributed processing symposium (IPDPS).
IEEE, 2016.

[12] Oracle, Available:
http://www.oracle.com/tw/index.html.

[13] SQL Server, Available:
http://www.microsoft.com/taiwan/sql/default.
mspx

[14] MySQL: The world's most popular open
source database, Available:
http://www.mysql.com

[15] SensorKDD-2009 Challenge, Available:
http://www.ornl.gov/sci/knowledgediscovery
/SensorKDD-2009/challenge.htm

[16] x264 Home Page, VideoLan Organization,
Available:
http://www.videolan.org/developers/x264.ht
ml

[17] FFmpeg, Available: http://www.ffmpeg.org/.
[18] Yu-Hsin Hung, Yi-Jie Wang, Ray-I Chang,

"Investigation of the effective use of
ensemble learning algorithms for cyber data
analytics," ACM International Conference on
e-Society, e-Education and e-Technology
(ICSET). ACM, 2020.

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2021.20.19

Ray-I Chang, Yu-Hsien Chu,

Chia-Hui Wang, Niang-Ying Huang

E-ISSN: 2224-2864 145 Volume 20, 2021

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

