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Abstract: In this paper, by combining with the network structures of the twisted n cube and 
the crossed cube, the counterchanged crossed cube network is proposed, a rigorous recursive 
definition is made, and the network topology structure graph is offered. Basing on the 
definition of the counterchanged crossed cube, this paper also analyzes the basic properties of 
the network, proves that the network is n-regular and its connectivity is n, illustrates the 
recursion characteristics of the network and two important corollaries are obtained. Through 
the recursive properties of the counterchanged crossed cube, then we discuss the relationship 
between any two vertexes in the network, and finally prove that the network diameter is

( ) ( 1) / 2nCCQ nD = +   . 

 
Key words: the counterchanged crossed cube; interconnection network; network diameter; 
connectivity; network topology 
 

1. Introduction 

In a parallel processing system, the 
network interconnection structure often 
determines the the system performance. 
Among many of the existing 
interconnection network structures, the 
hyper cube[1] is one of the most classic and 
most widely applied network. The 
hypercube network has very excellent 
structure properties and is a hotspot of 
research on network topology. However, 
with the development of practical 
application and needs, it has been found that 
the structure of the hypercube is not always 
optimal. In order to give full play to the 
hypercube its superior properties, and to 
avoid the defects in the structure of its own, 
a variety of variant structures basing on the 

hypercube is proposed, i.e. the crossed cube 

[2-4], the twisted cube[5, 6], the Möbius cube[7, 

8], the twisted n-cube[9], the locally twisted 
cube[10, 11], etc. These variations optimize the 
performances of a certain aspects on the 
basis of the original hypercube, and were 
applied to solve practical problems. 

These network variations always 
achieve the optimization about some 
parameters on the basis of the original 
network model, such as network diameter, 
connectivity, etc. For example, among the 
variations of the hypercube, the network 
diameters of the crossed cube and the 
twisted n-cube are smaller than that in the 
hypercube. And they themselves also have 
some excellent properties, for example, the 
twist n-cube reduces the network 
communication diameter by removing 

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xinyang

E-ISSN: 2224-2864 279 Volume 14, 2015

http://en.scut.edu.cn/detail.jsp?id=40257
mailto:wxyyuppie@139.com
mailto:wxyyuppie@hotmail.com


disjoint edges in the hypercube and crossing 
them to form the twisted edges in the 
network. In document [9], Esfahanian and 
others have proven that there are two 
disjoint n-1 dimensional hypercubes in the 
twisted n-cube, the twisted n-cube is 
n-regular, and routing time can be reduced 
from n to n-1 in the worst case; In addition, 
Kemal Efe in [2] introduced the routing 
algorithm and the broadcasting algorithm in 
the crossed cube, obtained the crossed cube 

network diameter  ( 1) / 2n + , approximately 

half of the hypercube, and proved the 
embedding properties of basic networks into 
the crossed cube. Combining with the 
natures of the above two networks, a new 
network structure,  the counterchanged 
crossed cube, is proposed and its primary 
network properties are carefully researched 
in this paper. 

This paper is organized as follows: 
section 2 introduces the related basic 
concepts of the graph theory and 
interconnection network; Section 3 defines 
the counterchanged crossed cube network 
structure and proves its edge connecting 
property; Section 4 presents the main 
topology properties of the counterchanged 
crossed cube; Section 5 proves the diameter 
of the counterchanged crossed cube; Section 
6 carries on a comparative analysis on the 
natures of the counterchanged crossed cube. 

2. Relative Definitions 

This paper uses normative 
terminologies and notations in the graph 
theory to represent relative concepts and 
formulas. Let G be an undirected graph 
where V(G) and E(G) represent the vertex 
set and edge set of graph G, respectively. 
Vertices in graph G are denoted by binary 
numbers. e(u, v) denotes the edge that 
connects two adjacent vertices u and v; we 

call the length of the shortest path from 
vertex u to v the distance between u and v, 
denoted by d(u, v)，and call max{d(u,v) | u, v

V(G)} the diameter of graph G, denoted 
by D(G); deg(u) denotes the degree of 

vertex u; ( )Gδ and ( )G∆  represent the 

maximum degree and minimum degree of 
graph G; κ(G) and ( )Gλ  represent the 
vertex connectivity and edge connectivity of 
graph G, respectively; σ(u)=i denotes 
vertices u that un=un-1=…ui+1=0 and ui=1; 

for a binary string 1 2 1...n nu u u u u−= , iu

represents the i-th complementary bit of ui. 
Let x=x2x1, y=y2y1 be two binary strings, 

and we say x and y are pair-related if and 
only if (x, y) ∈
{(00,00),(10,10),(01,11),(11,01)}, denoted 
by x～y. If x and y are not pair-related, it is 
denoted by x /～ y. 
 Definition 1[9] For a 4-length cycle <u, 
v, y, x, u> in n-dimensional hypercube Qn, if 
delete the edges (u, y) and (v, x), and add 
edges (u, x) and (v, y), the obtained network 
structure is called twisted n-cube, denoted as 
TQn. 
 The network structures of Q3 and TQ3 
are shown in Fig 1. 

 
Fig 1 Q3 and TQ3 

 Definition 2[2] The n-dimensional 
crossed cube (CQn) is a n-label graph, it can 
be defined inductively as follows: CQ1 is K2, 
the complete graph of two vertices with 
labels 0 and 1; for n＞1, CQn consists of 
two (n-1)-dimensional crossed cube (0)

1nCQ −  

and (1)
1nCQ − , where  

∈

u v

y x

u v

y x

Q3 TQ3
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V( ( )
1

i
nCQ − )={xnxn-1…x1︱xn=i},(i=0,1) 

The vertex x=0xn-1xn-2…x1 in (0)
1nCQ −  

and the vertex y=1yn-1yn-2…y1 in (1)
1nCQ −  are 

adjacent in CQn if and only if: 
(1) xn-1=yn-1 if n is even, and  

(2) For 1≤i≤ ( 1) / 2n −   , x2ix2i-1 ～

y2iy2i-1. 
The network structures of CQ3 and CQ4 

are shown in Fig 2.  

000 010

100 110

111 101

001 011

0000 0010

0100 0110

0111 0101

0001 0011

1000 1010

1100 1110

1111 1101

1001 1011

CQ3 CQ4

Fig 2 CQ3 and CQ4 

 Definition 3 ∀ u, v∈V(CQn), if u and 

v are adjacent and ( )u v iσ + = , then we say 

u and v are adjacent in i-th dimension. 
 Definition 4[12] In graph G, two edges 
without public vertex are called independent 
edges. For two independent edges (u, v) and 
(x, y) in edge set E, delete the connections 
between the two edges and add new edges 
(u, y) and (v, x), then call the operation an 
X-counterchange. 
 The process of X-counterchange is 
shown in Fig 3. 

 
Fig 3 X-counterchange 

 It is observed that the degree of 
vertexes in the graph remains unchanged 
after X-counterchange. 

3. Definition of the Network 

The definition and network structure of 
the counterchanged crossed cube is as 
follows. 
Definition 5 The n-dimensional 
counterchanged crossed cube (CCQn) is a 
n-label graph, CCQ1 is K2, the complete 

graph of two vertices with labels 0 and 1; 
CCQ2 is a 4-length cycle <00, 10, 01, 11, 
00>; for n ≥ 3, CCQn consists of two 
(n-1)-dimensional counterchanged crossed 
cube (0)

1nCCQ −  and (1)
1nCCQ − , where  

V( ( )
1

i
nCCQ − )={xnxn-1…x1︱xn=i},(i=0,1) 

The vertex x=0xn-1xn-2…x1 in (0)
1nCCQ −  

and the vertex y=1yn-1yn-2…y1 in (1)
1nCCQ −  

are adjacent in CCQn if and only if: 
(1) xn-1=yn-1 if n is even, and  

(2) for 1≤i≤ ( 1) / 2n −   , x2ix2i-1～y2iy2i-1. 

Fig 4 shows the network structures of 
1-4 dimension CCQn. 

According to Definition 5, the 
following theorem holds. 

Theorem 1 For n ≥ 2, any edge
( , )e x y= in CCQn, where 1 2 1...n nx x x x x−=

( {0,1}ix ∈ , i=1, 2, … , n-1), 1 2 1...n ny y y y y−=

( {0,1}iy ∈ , i=1, 2, … n-1), there exists 
m( 2 m n≤ ≤ ) such that at least one of the 
following situations holds: 
(1) If n nx y= , then 1 1 1 1... ...n n m n n mx x x y y y− + − +=

and m mx y= ; 

(2) When 1 ( 1) / 2i m≤ ≤ −   , there is

2 2 1 2 2 1i i i ix x y y− − . 
Proof: we make an inductive proof on 
n. 
(1) For situation (1), when n=2, m=1,   

u v

x y

u v

x y
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the theorem is true. 
Suppose the theorem is true for n=k, 

then when n=k+1, there is 1 1k kx y+ += , if 
σ(x+y)=L and let m=k+1-L+1, apparently 

m mx y= and 1 1 1 1 1 1 1 1 1 1... ...k k m k k mx x x y y y+ − + − + + − + − += , 
i.e. situation (1) is established; 

(2) For situation (2), 
①if n nx y≠ , then m=n，according to 

Definition 5, the conclusion holds; 
② if n nx y= , from situation (1) we 

know there exists the positive integer m 

( 2 m n≤ ≤ ) such that 

1 11 1 ...... n n mn n m y y yx x x α− +− + == , and m mx y= , 

it is easy to know that ( )
1 2 1...m

m mx x x x xα −=

and ( )
1 2 1...m

m my y y y yα −= are two vertexes of 

the edge ( ( )mx , ( )my ) in the counterchanged 
crossed cube. According to the conclusion 
in①, when 1 ( 1) / 2i m≤ ≤ −   , 2 2 1 2 2 1i i i ix x y y− − is 
true. In conclusion, the theorem is proven. ■ 

0 1

CCQ1

CCQ2 CCQ3 CCQ4

000 010

001 011
101 111

100 110

00 10

01 11

0000 0010

0001 0011
0101 0111

0100 0110

1010 1000

1011 1001
1111 1101

1110 1100

 
Fig 4 1-4 dimension CCQn 

From the proof of the above theorem, if 
vertexes x and y differs from the n-m+1-th 
bit from the left, then call the m-th bit the 
leftmost different bit between x and y, say u 
and v are adjacent in m-th dimension, 
denoted by u=Nm(v), and call the edge the 
i-dimensional edge between u and v, 
denoted by em(u,v). 

4. Structure Properties 

The network properties are determined 
by its structure, and these properties have 
important impacts on the performance of the 
network. This section will study properties 
such as the regularity, recursiveness, and 
connectivity. 

4.1.Regularity 

In a regular graph, each vertex has the 
same degree. If the degree of every vertex is 
k, the graph is a k regular graph. A regular 
network has a good symmetry nature, the 
transmission speed and network loads are 
balanced. From the definition of CCQn, it is 
observed that the degrees of vertexes in the 

network remain unchanged after the 
X-counterchange. The proof of CCQn 
regularity is shown as follows. 

Theorem 2 CCQn is a n-regular graph. 
Proof: According to the definition of 

CCQn and Theorem 1, vertexes in the 
network have one and only one 
i-dimensional neighbor vertex, where i=1, 2, 
3…n. Apparently, the degree of any vertex u 
in CCQn is deg(u)=n. On the definition of 
regular graph, CCQn is n-regular. 

4.2.Recursiveness 

From the CCQn network definition, 
CCQn is formed of lower dimensional 
subnets recursively, and the network 
structure is of recursiveness. The following 
will further research the subnet 
characteristics of the counterchanged 
crossed cube. 

, ( )Gα βΓ  denote the subnets which 

consist of all the vertices that prefix withα
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or β in G, , ( )Gα αΓ is abbreviated as ( )GαΓ . 

These isomorphic subnets constitute higher 
dimensional CCQn subnets. 

Theorem 3 For 2n ≥ , there are 

0 1( )n nCCQ CCQ
−

≅Γ and 1 1( )n nCCQ CCQ
−

Γ ≅ . 

Proof: According to the definition of 
CCQn, n-dimensional CCQn consist of two 

(n-1)-dimensional (0)
1nCCQ − and (1)

1nCCQ − , and

(0)
1 1n nCCQ CCQ− −≅ , (1)

1 1n nCCQ CCQ− −≅ , the 

theorem is true. ■ 
Letα , β be two binary strings of the 

same length, if there exists a positive integer 
l such that ( )nu CCQα∀ ∈Γ , ( ) ( )l nN u CCQβ∈Γ , 
and ( )nv CCQβ∀ ∈Γ , ( ) ( )l nN v CCQα∈Γ , then 
call ( )nCCQαΓ and ( )nCCQβΓ two 
l-dimensional adjacent subnets, denoted by 

( ) ( ( ))n l nCCQ N CCQα βΓ = Γ . 
Theorem 4 Letα and β be two binary 

strings of the same length, and sα β= = , 

if two subnets ( )nCCQαΓ and ( )nCCQβΓ in 

CCQn satisfy ( ) ( ( ))n l nCCQ N CCQα βΓ = Γ , 
then  

(1)For l ≤ n – s, α β= and

, ( )n lCCQ CCQα βΓ ≅ ; 
(2)For l ＞ n – s, α β≠ and

, 1( )n n sCCQ CCQα β − +Γ ≅ . 

Proof: Since ( ) ( ( ))n l nCCQ N CCQα βΓ = Γ , 
If l ≤ n – s, according to the adjacent 

subnet definition, for ( )nu CCQα∀ ∈ Γ and

( )nv CCQβ∀ ∈ Γ , there is ( )u v lσ + = , soα β=

and 1 1 1 1n n s n s l n n s n s lu u u u v v v v− + − + − + − +=    , 
then in terms of the definition of CCQn, we 
have , ( )n lCCQ CCQα βΓ ≅ ; 

If l ＞ n – s, let the mapping

, 1: ( )n n sCCQ CCQα βϕ − +Γ → , such that

, ( )nu CCQα β∀ ∈Γ ,  

         1( ) l n su u u uϕ −=         (I) 

If ,, ( )nu v CCQα β∀ ∈ Γ , and u=Nj(v), then for j 

≤ n-s, , ( )
n

u v CCQ
α

∈ Γ or , ( )nu v CCQβ∈ Γ , 

and hence ( ) ( ( ))ju N vϕ ϕ= ; for j＞n-s, let

( )
n

u CCQ
α

∈ Γ , ( )
n

v CCQ
β

∈ Γ , according to 

formula (I), we have 1( ) ( ( ))n su N vϕ ϕ
− +

= , i.e. 
( )uϕ  and ( )vϕ  are adjacent in CCQn-s+1, 

so 
, 1

( )
n n s

CCQ CCQ
α β − +

Γ ≅ .   ■ 
 The following corollaries can be easily 
obtained from Theorem 4. 
 Corollary 1 If n (≥ 4) is even, then

00,10 1( )n nCCQ CCQ −Γ ≅ , 

11,01 1( )n nCCQ CCQ −Γ ≅ .  
 Corollary 2 If n ( ≥ 5) is odd, then

000,100 2( )n nCCQ CCQ −Γ ≅ , 001,111 2( )n nCCQ CCQ −Γ ≅ ,

011,101 2( )n nCCQ CCQ −Γ ≅ . 

 We can see the recursive characters of 
CCQn from Corollary 1 and 2: when n (≥ 4) 
is even, CCQn is formed of four subnets 
prefixing with 00, 10, 01 and 11; when n (≥
5) is odd, CCQn is formed of eight subnets 
prefixing with 000, 100, 010, 110, 001, 111, 
011, 101. If we imagine these subnets as a 
node, then for n (≥ 4) is even and n (≥ 5) is 
odd, the connection methods of these subnet 
are show in Fig 5. 

(a)    n (≥4) is even (b)    n (≥5) is odd

Fig 5 the recursive connection methods of 
CCQn subnets 

4.3.Vertex/edge Connectivity 

In the actual network, there always 
exist failure nodes or edges due to various 
reasons. Connectivity is the minimum 
number of vertices or edges that need to be 
removed to make a graph unconnected. 
Connectivity reflects the tolerance degree 
towards fault, namely the ability of normal 
communication when there are failures in 
the network, which thus is a very important 
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property. 
Definition 6[9]. Let G1 and G2 be two 

graphs with the same vertex number: 
V(G1)= {u1,u2,…up}, V(G2)={v1,v2,…vp}. Let 
H=G1 ⊙ G2, where V(H)=V(G1) ∪ V(G2), 
E(H)=E(G1)∪E(G2)∪{(ui,vi)︱ui∈ V(G1), 
vi∈V(G2), 1≤ i≤ p}.  
 Lemma 1[9]. Let G1 and G2 be two 
connected graphs defined in Definition 6, 
and H=G1⊙G2, then:  

1 2( ) 1 min( ( ), ( ))H G Gκ κ κ≥ +  

Lemma 2[13] For any graph G, 

( ) ( ) ( )G G Gκ λ δ≤ ≤ . 

Theorem 5 ( ) ( )n nCCQ CCQ nκ λ= = . 

 Proof: According to Definition 5, 
CCQn constitutes of two subnets (0)

1nCCQ − and 
(1)

1nCCQ − , then from Definition 6 and Lemma 

1, we have ( 0 ) (1)

1 1n nnCCQ CCQ CCQ
− −

=  , and 

1 2( ) 1 ( ) 1 (1 ( ))n n nCCQ CCQ CCQκ κ κ
− −

≥ + ≥ + + ≥

1( 1) ( )n CCQκ− + . Since 1( ) 1CCQκ = , then

( )nCCQ nκ ≥ . And by Theorem 2 and Lemma 

2,we know ( ) ( ) ( )n n nCCQ CCQ CCQ nκ λ δ≤ ≤ = . 

In conclusion, ( ) ( )n nCCQ CCQ nκ λ= = , the 
theorem is proven.                   ■ 

5. Network Diameter 

Network diameter embodies the 
network communication delay, therefore a 
good network should keep the diameter as 
small as possible on the premise of 
connectivity. The following will study the 
diameter of CCQn network. 

Theorem 6 When n≥ 2, for∀ x，y∈
V(CCQn), the relationship between x and y 
must satisfy one of the following situations: 

(1) When n is even, x and y exist in the 
same CCQn subnet G, where 1nG CCQ −≅ or

2nG CCQ −≅ ; 
(2) When n is odd, x and y exist in the 

same CCQn subnet G, where 2nG CCQ −≅ or

3nG CCQ −≅ ; 
(3) The vertex x (or y) has an adjacent 

vertex 'x (or 'y ), such that 'x (or 'y ) and y 
(or x) exist in the same CCQn subnet G, 
where when n is even, 1nG CCQ −≅ ; when n 

is odd, 2nG CCQ −≅ .  
Proof: According to the recursiveness 

of CCQn and Corollaries 1 and 2, when n is 
even, CCQn is formed of four 
interconnected subnets which are 

isomorphic to 2nCCQ − ; when n is odd, 

CCQn is formed of eight interconnected 

subnets which are isomorphic to 3nCCQ − . 

The following will make corresponding 
discusses about the above situations: 

(1) When n is even, according to Fig 
5(a), if x and y exist in the same subnet G, 

then 2nG CCQ −≅ ; if x and y exist in two 

adjacent subnets, then these two subnets 
constitute a new subset G by 
interconnecting, and it is easy to know

1nG CCQ −≅ , situation (1) is true; 

(2) When n is odd, according to Fig 
5(b), if x and y exist in the same subnet G, 

then 3nG CCQ −≅ ; if x and y exist in two 

adjacent subnets, then these two subnets 
constitute a new subset G by 
interconnecting, and it is easy to know

2nG CCQ −≅ , situation (2) is true; 

(3) From Fig 5, we can see that the 
maximum distance among subnets is 2, i.e. 
any two non-adjacent subnets need at most 
one intermediate subnet to connect with 
each other. If x and y exist in two 
non-adjacent subnets, there must be a 
neighbor vertex 'x (or 'y ), such that 'x (or 'y ) 
and y (or x) are in the same subnet G. When 
n is even, from Fig 5(a), we have 

1nG CCQ −≅ ; when n is odd, from Fig 5(b), 
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we have 2nG CCQ −≅ , situation (3) is true.  
To sum up, the theorem holds.      ■ 

Theorem 7 1
( )

2n

n
CCQD

+
=  
  

. 

Proof: According to Fig 4, we have

1( ) 1D CCQ = , 2 3( ) ( ) 2D CCQ D CCQ= = , it meets 

the theorem. We make an inductive proof on 
k. Suppose when ( 2 1)k m n k≤ ≤ + , the 
theorem is true, then

2 2 1( ) ( ) 1m mD CCQ D CCQ m
+

= = + . The next 

will discuss the situations when k=m+1. 
(1) We first discuss the diameter of 

CCQ2m+2. If vertexes a and b exist in the 
same subnet, it conforms to situation (1) in 
Theorem 6, then from the assumption, we 
know ( , ) 1d a b m= + ; if a and b exist in two 
non-adjacent subnets, then a must has a 
neighbor vertex 'a , such that 'a and b are in 
the same subnet, which conforms to 
situation (3) in Theorem 6, then similarly 
from the assumption, we have

'( , ) 1d b ma = + , and '( , ) 1d a a = . 
According to the definition of network 
diameter, we have 2 2( ) 2mD CCQ m

+
= + ; 

(2) For the diameter of CCQ2m+3, like 
the proof process in (1), we similarly have 

2 3( ) 2mD CCQ m
+

= + . 
In conclusion, the assumption stands, 

i.e. 2 2 1( ) ( ) 1k kD CCQ D CCQ k
+

= = + . By 
transforming the express, we obtain the 

equivalent formula 1
( )

2n

n
CCQD

+
=  
  

, the 

theorem holds.    ■  

6. Comparison and Analysis  

Through the researches on CCQn 
network structure and properties, we can see 

that CCQn has the following superiorities 
than the twisted n-cube: 

(1) ( ) ( ) ( )=n n nCCQ CCQ CCQ nκ λ δ= = , 
compared to the twisted n-cube, CCQn has 
better connectivity and fault tolerance; 

(2) 1
( )

2n

n
CCQD

+
=  
  

, the diameter 

of CCQn is almost half of those of the 
hypercube and the twisted n-cube, which 
greatly reduces the network communication 
diameter and increases the network 
communication efficiency.  

7. Conclusion 

In this paper, by combining with the 
twisted n cube and the crossed cube, we 
propose a new network structure - the 
counterchanged crossed cube (CCQn) 
network, and make detailed discussions 
about the network structure characteristics 
and basic properties of CCQn, for example, 
CCQn is n-regular, it has excellent 
recursiveness and its connectivity is n. 
Through the recursive properties of the 
counterchanged crossed cube, we prove that 
the network diameter is

( ) ( 1) / 2nCCQ nD = +   , which is nearly 

half of that of the hypercube. Through 
comparison, it is found that CCQn is also a 
favorable network structure. The subsequent 
researches will focus on problems such as 
the network embedding properties, the 
routing algorithm, the fault-tolerance 
strategies and the optimal paths. 
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