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Abstract: - In this paper, we address an adaptive detection of range-spread targets or targets embedded in Gaus-
sian noise with unknown covariance matrix by the generalized detector (GD) based on the generalized appro-
ach to signal processing (GASP) in noise. We assume that cells or secondary data that are free of signal compo-
nents are available. Those secondary data are supposed to process either the same covariance matrix or the sa-
me structure of the covariance matrix of the cells under test. In this context, under designing GD we use a two-
step procedure. The criteria lead to receivers ensuring the constant false alarm rate (CFAR) property with resp-
ect to unknown quantities. A thorough performance assessment of the proposed detection strategies highlights 
that the two-step design procedure of decision-making rule in accordance with GASP is to be preferred with re-
spect to the plain one. In fact, the proposed design procedure leads to GD that achieves significant improvem-
ent in detection performance under several situation of practical interest. For estimation purposes, we resort to a 
set of secondary data. In addition to the classical homogeneous scenario, we consider the case wherein the pow-
er value of primary and secondary data vectors is not the same. The design of adaptive detection algorithms ba-
sed on GASP in the case of mismatch is a problem of primary concern for radar applications. We demonstrate 
that two-step design procedure based on GASP ensures minimal loss. 
 
 
Key-Words: - Generalized detector, additive Gaussian noise, detection performance, constant false alarm rate 
(CFAR), generalized approach to signal processing (GASP), high resolution radar, signal-to-noise ratio (SNR). 
 
1 Introduction 
High-resolution radar (HRR) can resolve a target in-
to a number of scattering centers, depending on the 
range extent of the target and the range resolution 
capabilities of the radar. In fact, measurements indi-
cate that the radar properties of several targets, such 
as aircraft, boats, etc. are well modeled as being due 
primary to reflection from a few isolated points. 
These specular reflections match quite well with 
physical features on the target [1]–[3]. In the follow-
ing, the discrete scattering centers of a target will be 
referred to as multiple dominant scattering centers. 
In particular, radar detection of distributed targets in 
white Gaussian noise of known spectral density le-
vel has been addressed in [4]. Therein, two detection 
structures have been proposed, and the results indi-
cate that properly designed HRRs allow significant 
enhancement of the detection performance.  
     The possible improvement depends upon two fa-
ctors, namely, 

 Increasing the range resolution of the radar 
reduces the amount of energy per cell back-
scattered by distributed clutter; 

 Resolved scatterers introduce less fluctuati-
on than an unresolved point target.  

However, this performance improvement is traded 
for a significant increase of the computational com-
plexity. Therefore, a more general issue arises, i.e. 
the suitability of HRRs for operation in the scan mo-
de, which is hard to implement at the current state of 
the art but may not be definitely ruled out in the ne-
ar future. This explains the increasing academic and 
industry interest on the design and the assessment of 
new receivers for HRRs with a two-fold goal. 
     In fact, from one side, it is important to determi-
ne the maximum gain, in terms of achievable perfor-
mance, with no complexity constraint, granted by 
HRRs on lower resolution radars. On the other side, 
one is interested to come up with suboptimum pro-
cessors, representing a compromise between detecti-
on performance and complexity, demonstrating the 
applicability of HRRs in the scan mode. Several res-
ults, established with reference to HRRs can be easi-
ly imported in the general theory of range-spread ta-
rget detection. It is needed well known that the point 
-target model may fail in many practical scenarios 
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wherein a low/medium resolution radar is employ-
ed. For example, a detection of large ships with coa-
stal radars and that of a cluster of point targets fly-
ing at the same velocity in close spatial proximity to 
one another. 
     The detection of the overall target set within the 
input data block is a way to combat signal combina-
tion of range cells in close spatial proximity with 
that under test and, hence, to reduce the correspond-
ing detection loss. The effects of the clutter reducti-
on in a single range cell and of a multiple dominant 
scattering target model on the target detection have 
been studied in [5], where was shown that the pro-
bability of detection of range-distributed  targets de- 
pends on the  signal bandwidth in the case of single 
pulse processing. The best performance is achieved 
when the radar bandwidth just resolves the individu-
al scatterers. Resolving the dominant scatterers intr-
oduces less fluctuation, but when the signal band-
width is further increased, the performance degrades 
as a consequence of the lack of knowledge about the 
position of the dominant scatterers within the exten-
sion of the target. This performance loss, which is 
referred to in the following as collapsing loss, is due 
to the presence of cells that contain mostly noise. 
       A possible way to circumvent this drawback is 
to resort to a Bayesian approach, namely, to assume 
some a priori statistical knowledge about the target 
[6]. Since the scattering geometry can differ signifi-
cantly from target to target, the above approach is 
not always realistic. The constant false alarm rate 
(CFAR) detection of distributed targets in Gaussian 
noise with unknown covariance matrix, based on the 
generalized likelihood ratio test (GLRT), has been 
addressed in [7]–[9]. Returns from different range 
cells are modeled as independent and identically di-
stributed (i.i.d.) Gaussian vectors with unknown co-
variance matrix. A set of independent secondary da-
ta that is free of signal components is available, and 
it is assumed that the covariance matrix is one and 
the same for all of the primary and secondary data 
vectors [10]. 
       The above scenario will be referred to in the fo-
llowing as homogeneous environment. In [11], the 
modified GLRT for adaptive detection of a target di-
stributed in range is derived, where the amplitudes 
of the desired target and the interference covariance 
matrix are modeled as unknown quantities, but the 
proposed strategy does not resort to secondary data. 
The distribution of the modified GLRT statistic, un-
der the hypothesis 0H – the noise only,– is dependent 
on the actual value of the covariance matrix and, he-
nce, does not have the desirable quality of being 
CFAR processor. The proposed algorithm can be 
made bounded CFAR [11], thus being a viable me-

ans to adaptively detect the range-spread targets em-
bedded in a highly nonstationary environment. 
     In [12] it is shown how additional data blocks 
that are free of signal components, can be used to 
construct a truly CFAR detector. GLRT for the ada-
ptive detection of Doppler-shifted, and range-distri-
buted targets embedded in noise with unknown, but 
structured, covariance matrix has been proposed in 
[13]. Such detector has been shown to be bounded 
CFAR via simulation. 
     In the present paper, we deal with the problem of 
detecting an extended target or targets (with un-
known amplitudes) embedded in Gaussian noise 
with unknown covariance matrix across a number of 
adjacent range cells which are also referred to in the 
following as a primary data. For estimation purpose-
es, we resort to a set of secondary data. We will co-
nsider the case wherein the power value of primary 
and secondary data vectors is not the same or more 
precisely, both groups of data separately satisfy the 
homogeneity condition, but the two covariance ma-
trices coincide only up to a scaling factor. This sce-
nario [14] is refereed as a partially homogeneous en-
vironment. 
     The design of the adaptive detection algorithms 
in the case of mismatch is a problem of primary co-
ncern for radar applications. Although most of the 
space-time adaptive processing detection schemes 
have been designed employing the assumption that 
interference returns were i.i.d. Gaussian vectors, ex-
perimental campaigns have demonstrated that such 
an assumption is not always verified [15]. In additi-
on, the analysis of several space-time adaptive pro-
cessing algorithms, mostly conducted assuming ho-
mogeneity of the secondary data, has shown that in-
homogeneities magnify the loss between the adapti-
ve implementation and optimum conditions [16]–
[18]. 
     Although other types of inhomogeneities are of 
interest, the design of GLRT-based detectors is not 
always feasible.Partially homogeneous environment 
is also a viable means to address a detection of sig-
nals buried in non-Gaussian disturbances. The Gau-
ssian assumption is no longer met for modelling 
HRR clutter as viewed at low grazing angles. More 
specifically, the disturbance is better described as a 
compound-Gaussian process. It is the product of a 
temporary and spatially slowly varying texture com-
ponent, accounting for the reflectivity of the illumi-
nated patch, times a more rapidly varying process, 
the so-called speckle Gaussian distributed process, 
due to the local validity of the central limit theorem 
[19]–[21]. 
     The spatial correlation of the texture is usually 
unknown and is thus a viable means to cope with 
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this a priori uncertainty. It relies on modelling, at 
the design stage, and returns as independent Gaus-
sian vectors with possibly different power values. 
This procedure has been followed in [22], where 
non-adaptive detectors for range-spread targets em-
bedded in the compound-Gaussian noise with possi-
bly varying texture from cell to cell have been intro-
duced and assesses. With this model in mind, partia-
lly homogeneous scenarios fit in situations where 
the maximum spacing between any two primary ra-
nge cells is small compared with the scale over 
which texture levels change, and the same holds true 
for secondary data. This case may apply, for instan-
ce, if the primary vectors are chosen from a set of 
adjacent range cells and similarly for the secondary 
data, but data under test are not in the immediate vi-
cinity of secondary gates. 
     Analysis of clutter recordings which are collec-
ted to emulate airborne radars, have shown that the 
partially homogeneous model well describes clutter 
for moderately low values of the number of primary 
and secondary data [23]. We derive the GLRT based 
on the generalized approach to signal processing 
(GASP) in noise [24]–[29] for a partially homoge-
neous environment. We devise simplified detection 
strategies following [30]–[31]. 
     This work is motivated by two main considerati-
ons. The GLRT-based generalized detector (GD) is 
very time consuming and, hence, difficult to imple-
ment for real-time applications. Additionally, the 
GLRT GD has no known optimality properties and, 
for homogeneous environment and point-like tar-
gets, simplified test statistics may achieve the higher 
detection probabilities [30]. In that case, the GLRT 
GD is not a uniformly most powerful (UMP) inva-
riant one, and actually, a UMP-invariant test does 
not exist, as shown in [32]. 
     In particular, in [30] the following two-step 
GLRT-based design procedure has been proposed. 
The first step is to derive the GLRT GD for the case 
where the covariance matrix of primary data M is 
known. The second step is to insert the sample cova-
riance matrix based on the secondary data in place 
of the true covariance matrix into the test. A possib-
le alternative has been conceived in [31], namely, 
the first step is to derive the GLRT for the case that 
only the structure Σ of the covariance matrix is 
known. A completely adaptive GD is obtained by 
plugging the sample covariance matrix, based upon 
secondary data in place of Σ into the previously de-
rived test statistic. 
     The remainder of the present paper is organized 
as follows. The problem statement, brief description 
of GD functioning principles, simple GD flowchart, 
principles of designing the one-step and two-step 

GLRT GD are declared in Section 2. The probabili-
ty of detection as a function of the target and clutter 
parameters is derived through the signal-to-noise ra-
tio (SNR) in Section 3. Simulation results for the tar-
gets with non-random and random parameters are 
discussed in Section 4. Some conclusions are prese-
nted in Section 5. 
 
 
2 Problem Statement and GD Design 
We assume that data are collected from N sensors 
and deal with the problem of detecting the presence 
of a target across L range cells Lll ,,1, z . We 
suppose that the possible target is completely conta-
ined within those data and neglect range migration. 
As in [10], it is assumed that a secondary data set 

)1(,,1,  KLLll z is available and that each of 
such snapshots does not contain any useful target 
echo and exhibits the same structure of the covarian-
ce matrix as the primary data. 
     The rationale of the assumed setup is to emphasi-
ze the existing relationship between the target extent 
and cell size, and, also, radar resolution. If the radar 
resolution is increased by a factor L, the cell size is 
reduced by the same factor, and the number of seco-
ndary date increases, correspondingly. Hence, the 
proposed arrangement of the data allows us to com-
pare the performance at different resolutions, in par-
ticular, when the L range cells collapse into a larger 
one. The detection problem to be solved can be for-
mulated in terms of the following binary hypotheses 
test: 
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where p denotes the steering vector, and the ll   ,  
L,,1  , are unknown deterministic parameters ac-

counting for both the target and the channel effects. 
As for the noise vectors, we assume that ,1  , llw  

)1(, KL , are the independent zero mean Gaus-
sian vectors with the covariance matrices given by 

             )1(,,1     ,][  KLlE ll Mww          (2) 

for the homogeneous environment and 
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for the partially homogeneous environment with   
0 , where ][E denotes the mathematical expectati-
on and * denotes the conjugate transpose. Moreover, 
we suppose that the noise vectors lw possess the cir-
cular property usually associated with in-phase and 
quadrature pairs of a wide-sense stationary process 
[33].  
     According to the Neyman–Pearson criterion, the 
optimum solution to the hypotheses testing problem 
(1) is the likelihood ratio test based on GASP, but 
for the case at hand, it cannot be implemented since 
total ignorance of the parameters Mα ),,,( 1 L  , 
and possibly   is assumed. We resort to GLRT-ba-
sed decision schemes based on GASP. Strictly spea-
king, the GLRT-based on GASP is tantamount to re-
place the unknown parameters with their maximum 
likelihood estimates under each hypothesis based on 
entirely of data [34]. Processors that implement the 
plain GLRT will be referred to in the following as 
the one-step GLRT GD. Receivers implementing 
modified GLRT statistics derived following the two-
step design procedure will be referred to as the two-
step GLRT GD. 
     Subsequent developments require specifying the 
complex multivariate probability density function 
(pdf) of the )1( KL  vectors )1(1 ,, KLzz   at both 
hypotheses. Previous assumptions imply that the jo-
int pdf may be written in the following form: 

),,|,,( 0)1(1,, )1(1
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                        – the hypothesis 1H .                        (7) 

Description and explanation in detail of (6) and (7) 
and difference between the noise 

PFlw and 
AFlw are 

delivered below (see Subsection 2.1). Here )det(  
and )(tr  denote the determinant and the trace of a 
square matrix, respectively. Obviously   is to be set 
equal to one under homogeneous environment. 
 
 
2.1 Generalized detector (GD) 
For better understanding (1)–(7), we recall the main 
GD functioning principles. The simple GD scheme 
is represented in Fig.1. In this model, we use the fol-
lowing notations: MSG is the model signal genera-
tor (the local oscillator), the AF is the additional fil-
ter (the linear system), and the PF is the preliminary 
filter (the linear system). A detailed discussion of 
the AF and PF can be found in [24] and [26]. 
     Consider briefly the main statements regarding 
the AF and PF. There are two linear systems at the 
GD front-end that can be presented, for example, as 
the bandpass filters, namely, the PF with the impul-
se response ][mPFh  and the AF with the impulse re-
sponse ][mAFh . For simplicity of analysis, we think 
that these filters have the same amplitude-frequency 
characteristics or impulse responses by shape. The 
PF bandwidth is matched with the target return sig-
nal bandwidth. A resonant or central frequency of 
the AF is detuned relative to the PF resonant or cen-
tral frequency on such a value that the target return 
signal cannot pass through the AF. Thus, the PF and 
AF bandwidths are mismatched with respect to each 
other. The target return signal and noise can be app-
eared at the PF output and the only noise is appeared 
at the AF output. If a value of detuning between the 
AF and PF resonant or central frequencies or mis-
matching between the PF and AF bandwidths is mo-
re than af54 , where af is the target return signal 
bandwidth, the processes forming at the AF and PF 
outputs can be considered as independent and unco-
rrelated processes and, in practice, under this condi-
tion, the coefficient of correlation between the PF 
and AF output processes is not more than 0.05 that 
was confirmed experimentally in [35] and  [36]. 
     In the case of target return signal absence at the 
GD input, the statistical parameters at the AF and 
PF outputs are the same, because the same noise is 
coming in at the AF and PF inputs and owing to the 
fact that the AF and PF are the linear systems, we 
can believe that the AF and PF do not change the 
statistical parameters of the input process. By this 
reason, the AF can be considered as a generator of 
the secondary data with a priori information a “no” 
target return signal. 
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Figure 1. Principal flowchart of GD. 
 
 
     There is a need to make some comments regard-
ing the noise forming at the PF and AF outputs. If 
the discrete-time Gaussian noise ][nw  comes in at 
the AF and PF inputs (the GD linear input system 
front-end), the noise forming at the AF and PF out-
puts is the discrete-time Gaussian, too, because the 
AF and PF are the linear systems. In a general case, 
this noise takes the following form 
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     If the additive white Gaussian noise (AWGN) 
with zero mean and power spectral density 05.0 N is 
coming in at the AF and PF inputs (the GD linear 
system front-end), then the noise forming at the AF 
and PF outputs is Gaussian with zero mean and vari-
ance given by [26] 

                              8
2
002 ωNσw                                (9) 

where in the case if AF (or PF) is the RLC oscillato-
ry circuit, the AF (or PF) bandwidth af and re-
sonance frequency 0ω are defined in the following 
form: 

               ,1, 0 LC
  L

R
2 .              (10) 

     The main functioning condition of GD is an equ-
ality over the whole range of parameters between 

the model signal pl  at the GD MSG output for us-
er l and the expected signal pl  forming at the GD 

input liner system (the PF) output, i.e.  pp ll  . 
How we can satisfy this condition in practice is dis-
cussed in detail in [24] and [26, Chapter 6, pp. 611– 
621]. In the case of the target return signal presence 
(the hypothesis 1H ) the PF output can be defined as 
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Under the hypothesis 0H the PF output defined as 

                    ][][][0 nnwny lll PF
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is subjected to the Gaussian distribution with zero 
mean and variance 2

wσ . The AF output can be consi-
dered as the secondary data both under the hypothe-
sis 0H and under the hypothesis 1H . Taking into co-
nsideration (6), (7), (11), and (12) the decision stati-
stics at the GD output can be presented in the follo-
wing form [26, Chapter 3]: 
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     As follows from (13), under the hypothesis 0H  
the process forming at the GD output is the backgro-
und noise only. Under the hypothesis 1H the process 
forming at the GD output presents the target return 
signal energy plus the background noise. The back-
ground noise is a difference between the noise pow-
er forming at the PF output and the secondary data 
power forming at the AF output. 
 
 
2.2 One-step GLRT GD 
This subsection contains a derivation of the GLRT 
GD for partially homogeneous environment.  Accor-
ding to the GLRT, we replace the unknown parame-
ters with their maximum likelihood estimates and 
consider the following decision-making rule: 
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     Substituting the multivariate Gaussian pdf (4) 
and (5) into (14), we obtain 
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Assume that NKL  )1( . Maximizing the numera-
tor and denominator over M, (15) can be rewritten 
in the following form [10]: 
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     As was shown in [37], it is possible to maximize 
(16) with respect to the complex vector α  assuming 

NLK  , i.e. 
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where )(min  arg α denotes the value ofα  that mini-
mizes the argument, and S is LK times the sample 
covariance matrix based on secondary data only, i.e. 
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     Hereafter, we set NLK  . Direct substitution of 
α̂  into (16) leads to the following expression for the 
GLRT-based GD decision-making rule: 
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     Plugging 1 in (19), we get the GLRT GD for 
homogeneous environment, i.e. 
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     The detector (22) has CFAR property with resp-
ect to M. Assuming that the radar is not able to res-
olve individual parts of a possible target and 1L , 
the detector (22) reduces to that proposed in [28] 
and [29]. It can be shown that the proposed test sta-
tistic (22) coincides with the GLRT with respect to 
the ,1 , ll   L, , and M when the noise is model-
led as a complex multivariate elliptically contoured 
distribution [38] and, in particular, as a spherically 
invariant random process [39] with all of the range 
cells sharing the same value of the texture. This re-
sult partially generalizes that derived in [38]. 
     In order to come up with the GLRT GD for a pa-
rtially homogeneous environment there is a need to 
minimize both the numerator and the denominator of 
(23) with respect to . As was shown in [37], if 

NLK  and denoting 1 K
NKm  the one-step GLRT 

GD (19) can be presented in the following form: 
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where  )1,0(  , ˆ jj , is the positive solution of equa-
tion 
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with },min{0 NL and the 00, ,,1 ,  ll denoting 

the nonzero eigenvalues of the matrix 5.0
0

5.0  SRS  
under the hypothesis 0H , and }1,min{1  NL and 
the 11, ,,1 ,  ll denoting the nonzero eigenvalues 

of the matrix 5.0
1

5.0  SRS  under the hypothesis 1H .     
     It is important to point out that the newly intro-
duced GLRT GD ensures the CFAR property with 
respect to the covariance matrix of both primary and 
secondary data. Due to complexity of the correspon-
ding statistics, the real-time implementation of the 
above GLRT GD can be a formidable task, even for 
a high-performance computer. It is thus of relevant 
interest to investigate the suitability of simplified 
structures. 
 
 
2.3 Two-step GLRT GD 
We first derive the GLRT GD based on primary da-
ta assuming that the covariance matrix M or its stru-
cture Σ  is known. Fully adaptive detectors are obta-
ined by substituting the unknown matrix by the sam-
ple covariance matrix based on secondary data only. 
 
2.3.1 Step 1  
The pdf of the first L vectors under the hypothesis 

0H  and 1H  is given by 
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                                                                             (27) 
     Denote M by ,4 4Σ where 44 is the (1,1)-th co-
mponent of the Toeplitz matrix M. The derivation is 
begun by writing the GLRT under assumption that 
the covariance matrix or its structure only is known. 
It is given by for known M 
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                                                                             (29) 

for known Σ , respectively. Substituting the multiva-
riate Gaussian pdfs (25) and (26) in the previous fo-
rmulas and performing required maximizations yie-
lds for known M and Σ , respectively 

                       







L

l

l

1
1

21

    ||

0

1

C
H

H

pMp
zMp  ,                  (30) 

              









L

l
L

m
ll

l

AFAF
1

1

11

21

    ||

0

1

C
H

H

wΣwpΣp

zΣp  .         (31) 

||  denotes the modulus of a complex number. There 
is a need to distinguish lz under the hypotheses 0H  
and 1H (1)–(3). Note that the left hand side of (30) is 
the sum of statistics corresponding to 1L over the 
cells under test. Note also that when Σ is known, the 
denominator of the left hand side of (30) is indepen-
dent of data. Construction of the left hand side of 
(31) is a bit different. To see the point, observe that 
it can be recast as 
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||||  is the Euclidean norm of an N-dimensional vect-
or over the complex field; ll Σ zυ 5.0 is the “white-
ned” version of lz ; ui is the unit vector parallel to the 
direction of the “whitened” version u of p; 

AFmw is 

the component of 
AFmw orthogonal to the direction 

of u. 
     Thus, for ,1L the test statistic is obtained by no-
rmalizing that corresponding to a conventional inco-
herent processing based on GASP to the estimated 
clutter power based on data from the cell under test 
[38]. If 1L , the left hand side of (31) is not exact-
ly the sum of the statistics corresponding to 1L ov-
er the cells under test since the normalization factor 
of each term of the sum is now an estimate of the 
clutter power based on all of the   m

AFm ,w  L,,1 . 
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2.3.2 Step 2  
Remember that NLK  . We can make GD (30) and 
(31) fully adaptive by plugging the maximum likeli-
hood estimate of M based on the secondary date 

            )1(,,1    ,  KLLl
AFll wz ,         (33) 

i.e. 
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in place of M in (30) and of Σ in (31). Equivalently, 
we can substitute M and Σ by S. The resulting deci-
sion-making rules referred to in the following as the 
adaptive GD (AGD) and adaptive subspace GD 
(ASGD) are given by 
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respectively. The above results deserve some com-
ments. 
     Note that the AGD and ASGD reduce to the GD 
at 1L . It is also worth noting that the left hand side 
of (31) is invariant with respect to multiplication of 
Σ by a real constant, but such an invariance proper-
ty does not extend to the left hand side of (30). Be-
cause of this, AGD has the CFAR property in homo-
geneous environment only, i.e. with respect to M, 
whereas the ASGD is a CFAR detector in both ho-
mogeneous and partially homogeneous environm-
ents, i.e. with respect to M and to and M, respecti-
vely. We see that AGD and ASGD do not require 
the on-line inversion of the matrix. The ASGD is 
slightly more complex than the AGD since it requi-
res evaluation of the trace of matrix. It is apparent 
that the two-step GLRT GD detectors are faster to 
implement than the one-step GLRT GD for homo-
geneous environment. 
     Finally, the one-step GLRT GD implementation 
for partially homogeneous environment requires to 
solve (24) under both hypotheses, and, hence, an ad-
ditional computer cost with respect to the one-step 
GLRT GD for homogeneous environment. 
 
 
3 Detection Performance 
Probability of detection DP is a function of the target 
and clutter parameters Mp,,,,1 L   only through 
the signal-to-noise ratio (SNR) defined as 
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Following [10], we recast (35) and (36) in a more 
convenient form. Denote by U the unitary transfor-
mation aimed at rotating the vector pM 5.0 onto the 
direction of )0,,0,1(1 e  by )1(,,1,  KLll x , 
the transformed whitened data vectors, and by Ĉ  LK 
times the sample covariance matrix of the transfor-
med secondary data, i.e., 
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 Then, (35) and (36) can be rewritten in the follow-
ing form: 
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     We see that owing to independence of the nume-
rator and denominator in (39) and (40) (see Subsec-
tion 2.1), the denominator is a central chi-squared 
random variable with )1(2 NLK   degrees of fre-
edom [39] and the numerator is the Euclidean norm 
squared of the L-dimensional vector that under the 
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hypothesis 1H is a Gaussian vector with the mean 

vector αpMp 1  and  the covariance matrix  LI   

ηSη 1  )(  , where ),,( 1
 Lηηη  Introducing the 

unitary transformation 1U aimed at rotating the vec-
tor α  onto the direction of 1e , it follows that under 
the hypothesis 1H  we have the Gaussian vector with 

the mean 1
12

1
|| epMp 

L

l L and the covariance 

matrix  11 )( ηUSηUI 1
L . Note that we can re-

write the right-hand side of (40) in the following 
form: 
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     The probability of detection DP of GD (39) and 
(40) can be presented in the following form: 
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where   , 
,| 1

SNRF 
SηU

 denotes the conditional cu-

mulative distribution function (cdf) of the left-hand 
size of both tests. 
     In particular, previous notation highlights that the 
dependence of the conditional cdf on the ,1 , llη     

)1(, KL is confined to ηU1 and S . In order to 
determine the probability of detection DP  of GD, we 
can average out the Lll ,,1 , η  and then the ll  ,η    

)1(,,1  KLL  . Following this guidance, we 
get for GD (39) and (40) 
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respectively. We see that ηU1 is statistically equiva-
lent to η and independent of S . The similar result 
holds true for the detector (22). Moreover, simulati-
on results indicate that the GLRT GD should also 
possess this property. 
 
 
4 Numerical Results 
The probability of false alarm FAP and the probability 
of detection DP of GLRT GD are estimated by Monte 
Carlo technique based on 21 10

FAP and 21 10
DP  in-

dependent trials [40]. As a consequence, in order to 
limit the computational burden, we assume that the 
probability of false alarm is constrained, i.e., FAP   

410 . As for L, we observe that it is lower bounded 
by the ratio between the range extent of the target 
and the range resolution of the radar. We consider 
small values of L )20( L in order to save simulati-
on time. Finally, we suppose that if the radar resolu-
tion is increased by a factor L, i.e. the cell size is re-
duced by L, the noise power per cell 2

12  is decreas-
ed by the same factor, i.e., we set 122

1
 L . 

 
 
4.1 Targets with nonrandom parameters 
Before we discussed that the detection probabilities 
of the AGD and ASGD are independent of the actu-
al multiple dominant scattering model being in for-
ce. This subsection is devoted to the detection perfo-
rmance evaluation of the GLRT GD (22) and (23), 
the AGD, and the ASGD. 
     In Figs. 2–4, we consider a homogeneous enviro-
nment. In particular, in Fig.2, the probability of de-
tection DP of the GLRT GD (22), the AGD, and the 
ASGD are plotted versus SNR at ,16,8  KN and 
several values of L. Note that the case 1L  refers to 
unresolved targets. We see that increasing in the ra-
dar resolution capabilities and suitably exploiting 
them can produce a significant detection gain and 
the corresponding curves of the AGD and GLRT 
GD intersect, and, in particular, the AGD outper-
forms the one-step GLRT GD at high values of the 
probability of detection DP . For example, at 4L , 
the AGD outperforms the GLRT GD for all values 
of the probability of detection DP of practical inte-
rest )5.0( DP . The ASGD is poorer than the other 
two receivers, but the loss is less than 2.5 dB at the 
probability of detection less than 0.9, i.e., 9.0DP . 
This behaviour is valid if NLK 2 . 
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Figure 2. The probability of detection DP versus SNR of the GLRT GD (22), AGD, and ASGD 
         in homogeneous environment at ,16,8  KN 410FAP , and L as a parameter. 

 
    Finally, the loss of the AGD and ASGD with res-
pect to GLRT GD (25), namely, the one that posses-
ses perfect knowledge of the covariance matrix M 
of the noise, can be read off Figs. 3 and 4 at 8N , 
K as a parameter, 2L  and 4L , respectively. In 
Fig. 4 we plot the performance of the GLRT GD 
(18) and the ASGD in partially homogeneous envi-

ronment at ,16,8  KN and several values of L. In 
this case we do not consider AGD since it is not lon- 
ger CFAR. We see that the one-step GLRT GD and 
the ASGD achieve approximately the same perfor-
mance, but this is not true at 1L as can be shown 
by simulation for a properly reduced sample size. 
The ASGD performance and its loss with respect  to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. The probability of detection DP versus SNR of the GLRT GD (22), AGD, and ASGD 
         in homogeneous environment at ,16,8  LN 410FAP , and K as a parameter. 
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Figure 4. The probability of detection DP versus SNR of the GLRT GD (23) and ASGD in par- 
               tially homogeneous environment at ,16,8  KN 410FAP , and L as a parameter. 

 
the GLRT GD (30) can still be read of Figs. 2 and 3 
since the ASGD is invariant under scaling of the se-
condary data. For all cases presented in Figs. 2–4 we 
observe a superiority of the GD over the conven-
tional GLRT detector discussed in [7], [8], and [35]. 
 
 
4.2 Targets with random parameters 
We assess the performance of the AGD and ASGD 
when the unknown deterministic parameters accou-
nting for both the target and the channel ,1 , ll  

L, are the random variables. Obviously, the pro-
bability of false alarm FAP is unaffected by the actual 
characterization of the parameters l . Under the hy-
pothesis 1H , the pdf of either statistics is independent 
of phase characterization of the parameters 1, , ll   

L, . Thus, should only the phases are random, the 
probability of detection DP of GD would not be cha-
nged and hence, the curves of Figs. 2–4 would still 
be valid. If the amplitudes are random variables, due 
to the dependence of SNR (37) on the parameters l , 
different statistical characterizations of the target 
can result in significantly different probabilities of 
detection. It is customary to model the ,1,|| 2 ll   

L, as chi-squared random variables. It would be 
interesting to evaluate the impact on the performan-
ce of a degree of correlation among the scattering 
centers of the target. To this end, we assume that the 

ll  ,|| 2    L,,1  are drawn from an exponentially 

correlated random sequence with the one-lag corre-
lation coefficient  .The procedure to generate 2|| l  
is discussed in [35] and we follow it. 
     In Fig. 5, we analyze an influence of the fluctua-
tion law at 0,4,16,8  LKN , i.e., the para-
meters ll |,|    L,,1 are independent of each 
other, the multiple dominant scattering target model 
1 from Table 1 [35], and m as a parameter. Any per-
mutation of scatterer positions among the cells und-
er test does not influence the performance, also due 
to assumption that the parameters Lll ,,1|,|   
are independent random variables. The AGD perfor-
mance (35) operating in a homogeneous environm-
ent is shown in Fig. 5. The performance depends on 
the actual multiple dominant scattering target model 
being in force. The probability of detection DP of GD 
can be obtained by averaging (45) and (46) with res-
pect to the SNR, respectively, and the distribution of 
the SNR (37) depends on the multiple dominant scat-
tering target model. Figures 2–5 show that the fluc-
tuation law significantly affects the performance on-
ly for high values of the probability of detection DP  
in the medium/high range. 
     In Fig. 6, we analyze the effect of correlation bet-
ween the target amplitudes for the AGD (the depen-
dences for the ASGD are little bit worse). We refer 
to 4,16,8  LKN , Rayleigh-fluctuating ampli-
tudes, the multiple dominant scattering target model 
1 from Table 1 [35], and several values of the one-
lag correlation coefficient  . Figure 6 highlights that
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Figure 5. The probability of detection DP versus SNR of the AGD in homogeneous environment at 
                ,16,8  KN ,10 4FAP and 4L with chi-fluctuating amplitudes and m as a parameter. 

 
the correlation between the Lll ,,1|,|  is respo-
nsible for an additional loss. This behaviour can be 
easily explained intuitively. In fact, when the recei-
ved signals from target scatterers are significantly 
correlated it may happen that all of them “fade at the  
 

same time” and this may cause missing of the detec-
tion. We note that Figs. 2–6 highlight that the GLRT 
GD, the AGD, and the ASGD outperform the con-
ventional GLRT detector discussed in [7], [8], and 
[35]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The probability of detection DP versus SNR of the AGD in homogeneous environment at 
                ,16,8  KN ,10 4FAP and 4L with correlated Rayleigh-distributed amplitudes and  

ρ as a parameter. 
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5 Conclusions 
In this paper, we have addressed the problem of ad-
aptive detection of range-spread targets in homoge-
neous and partially homogeneous environment. We 
designed and assessed the one-step and two-step 
GLRT GD that possesses the CFAR properties. We 
have shown that the AGD and ASGD have the 
CFAR property under a homogeneous environment 
and the one-step GLRT GD (23) and ASGD have 
the CFAR property under a partially homogeneous 
environment. 
     As to computational complexity, we have shown 
that the two-step GLRT GD are faster to implement 
than the one-step one, and the amount of work requ-
ired for their implementation grows linearly with the 
number of range cells L. 
     As to the detection performance, we have deri-
ved the analytical dependence of the probability of 
detection DP of GD on the target and the noise para-
meters and estimated the probability of detection DP  
of GD through the Monte Carlo simulations. 
     The cases of fluctuating and non-fluctuating tar-
gets are considered. We could find that: 

 the GLRT GD do not suffer collapsing loss; 
 the one-step GLRT GD (22) and AGD may 

have comparable detection performance un-
der the homogeneous disturbance at high 
values of LK; 

 the ASGD achieves the same performance 
of the one-step GLRT GD (23) in a partially 
homogeneous environment and has an acep-
table loss with respect to the one-step 
GLRT GD (22) in the homogeneous distur-
bance. 

     In the latter case, we have focused on the AGD 
and ASGD and have found that the fluctuation law 
of the target amplitudes strongly affects the probabi-
lity of detection DP of GD in the medium/high range. 
     We have evaluated the impact on the performan-
ce of a degree of correlation between the scattering 
centers of the target. We have found that the correla-
tion is responsible of an additional loss which is re-
levant for values of the probability of detection DP of 
GD in the medium/high range. 
     In conclusion we state that 

 increasing in the radar resolution capabiliti-
es and suitably exploiting them can produce 
a significant detection gain; 

 the modified GLRT GD is superior to the 
plain GLRT, as it leads to superior detection 
performance; 

 the ASGD is somewhat more robust than 
the AGD in that it guarantees CFARness 
under both scenarios. 

     We still must assess the capability of the propos-
ed receivers based on GASP in detecting the slightly 
mismatched signals while rejecting the unwanted si-
gnals, i.e. the side-lobe signals. This is a problem of 
primary concern in a surveillance system and is the 
object of current and future investigations. 
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