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Abstract: - The growths of online Social Networks in scale and amount of information are immense in recent 
years. The analyses of the structure of online social networks have thus drawn much research interests. Before 
the analyses, the information and the characteristics of the structure have to be obtained. However, the 
complexity of today’s web technologies imposes challenges for collecting the data. In this paper, we discuss the 
design and implementation of a crawler for online social networks, and propose countermeasures to the 
technical challenges when crawling the networks in practice. Then, the crawled data is visualized and analyzed 
in graphs. 
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1 Introduction 
The increasing popularity of online social networks 
(OSNs) has gathered hundreds of millions of users. 
OSNs have become a platform for people to easily 
communicate and share information, particularly 
with the sophisticate smartphones [1]. Since the 
structures of OSNs will be able to reflect the real-
life society in certain extend, the structure and the 
information shared in OSNs are of interests for 
different communities [2,3,4,5]. For instance, 
sociologists regard OSNs as a venue for collecting 
relationship data and study online human behaviors. 
Marketers, in contrast, seek to exploit information 
about how messages spread so as to design viral 
marketing strategies. For network engineers, 
understanding OSNs improves the design of 
interconnected systems so as to provide better user 
experience. 

In order to analyze the structure of an OSN, 
information regarding the network structure is 
needed. Since OSN operators will not disclose their 
network structures (completely or partially) to the 
public, writing a crawler is a common way to obtain 
the data. A crawler in a social network is a program 
that starts with a list of user’s page to visit. As the 
crawler visits these pages, it identifies all the friend 
pages embedded in the current page, and then 
follows those just identified pages to discover more 

new pages. This process continues until some 
criteria are met. 

However, there are many challenges when 
crawling OSNs. For example, the complexity of 
today’s web technologies (e.g., JavaScript and Ajax) 
makes it challenging when interpreting the content 
of a page. And, the access restrictions of most OSN 
services (e.g., login requirements, limited view, API 
query limits) impose difficulty to crawl the network 
with sufficient amount of samples. On the other 
hand, the privacy control policies do not allow a 
crawler to access the entire online social network. 
The objective of this paper is to design and 
implement a crawler for Facebook and provide 
practical recommendations to tackle the challenges 
during the crawling process. 

One of the objectives of our work is to design 
and implementation of a crawler for OSNs, which is 
an automated program that systematically collects 
data on OSNs. The data collected can be used to 
rebuild the network topology, for statistical 
analyses, etc. The second objective is to provide 
practical recommendations to tackle the challenges 
during the crawling process. Another objective is to 
visualize and analyze the structure of the crawled 
network. 

Note that our crawler is only able to collects the 
public information on Facebook, There are no 
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ethical issues since Facebook’s user agreement 
states that all public information can be used by 

third-party organizations. We sent our crawlers to 
crawl a portion of the Macao Facebook graph.

The organization of this paper is as follow: 
background of our work is discussed in section 2. 
The design of crawling OSNs is presented in section 
3. The method of implementing a crawler is 
proposed in section 4. Technical challenges during 
the crawling are discussed in section 5. Social 
Network Analysis is briefly introduced in Section 6. 
After that, our result in crawling Facebook is 
illustrated, visualized and discussed in section 7. 
Finally, it is concluded in section 8. 
 
 
2 Background 
 
2.1 Related Work 
The task of extracting and analyzing data from 
online social networks has attracted the interest of 
researchers, as shown in [3,18,19]. The most 
popular social network, Facebook, naturally gets the 
most attention from researchers, who measured 
some large-scale network properties of the 
Facebook graph through sampling, crawling, and 
other methods to collect network data. In this 
section we review the preliminary work on social 
network crawling and social graph sampling and 
some relevant literature directly related to our 
approach. 

Although there are a large number of social 
network publications, few have been dedicated to 
the data collection process. Chau et al. [20] 
exploited Breadth-First-Search (BFS) algorithms 
and illustrated the use of parallel crawlers to crawl 
eBay profiles efficiently. Mislove et al. [21] 
analyzed the graphs of a number of popular online 
social networks, including Flickr, YouTube, 
LiveJournal, and Orkut. Their analyses confirm the 
scalability properties of OSNs, such as a power-law 
degree distribution, a densely connected core, and 
small average path length.  

In this paper, we will first discuss the data 
collection techniques and the data collected using 
these methods. Collected data are usually mapped 
onto graph data structures with the goal of analyzing 
their structural properties.  
 
2.2 OSN Analysis 
OSN analysis begins with the goal to understand the 
organization of popular OSN. Facebook is one of 
the most studied OSNs. According to 
iStrategyLabs.com, its growth rate has been proved 
to be the highest among all the other competitors in 
the last few years.  

Facebook allows a user to create a public profile 
with pictures and other personal information such as 
gender, date of birth, hometown, phone number, 
school, employer, interests, and current GPS 
location. Each user has a list of friends, but no more 
than 5000 of them. Two users can establish a 
friendship link by sending and accepting a 
friendship request.  

One important aspect to be considered for 
representing the model of a social network is the 
amount of information about its structure that we 
have access to. The ideal condition would be to have 
access to the whole network data, for example 
acquiring them directly from the company managing 
the social networking service. For very large OSNs, 
such as Facebook, Twitter, etc., it is hard to collect a 
complete sample of the network. The first limitation 
is related to the computational overhead of a large-
scale Web mining task. In the case of Facebook, for 
our case, to crawl the friend list Web page 
(dimension ≈ 3MB) for the 250 thousands of users 
in Macao, it requires to download more than 
3MBx250,000 = 750 Gigabytes of HTML data. 
 
 
3 Design of the crawling in an Online 
Social Network 
 
3.1 Limitation of Crawler 
The structure of an OSN can be modeled as a graph 
G = (V,E), where V is a set of nodes (users) and E is 
a set of edges (friendships). In this case, G is 
undirected because the friendship of two users in 
OSN is undirected. In Facebook, the whole G is not 
accessible for everyone due to the privacy control of 
individual users. That is, users can set their 
information to be only shown to their authorized 
people (e.g., their direct friends) so others (including 
our crawlers) are not able to get it. Therefore, in 
general, we can only access the public part of G, 
denoted as G’. Therefore, it has to be understood 
that only G’ can be crawled in a legitimate way.  
 
3.2 The Information to Collect 
Before crawling an OSN, it is important to identify 
the goal of crawling and understand what kind of 
data is needed. The design of a crawler highly 
depends on the types of data to be crawled. It also 
affects the terminate condition during the crawling 
process. For example, if only the topology of the 
social network is required, the crawler just needs to 
grasp the friend list in a page. However, it has to 
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crawl the pages of a particular user domain, then the 
crawler may need to extract the information related 
to the user domain, such as the country, age, or 
interests of the user in the page. Extracting these 
attributes requires format analysis and content 
analysis in the HTML content. The more attributes 
are required, the more technologies are needed. 
Therefore, knowing what data to be crawled helps 
optimizing the crawler program. 
 
3.3 Choosing the Initial Node 
Generally, choosing those users with many links to 
others as the initial nodes will be helpful and able to 
speed up the whole crawling process. Those highly 
connected users can be identified by the number of 
friends they have.  

However, if the users in a particular region are 
needed, you can identify them by using the OSNs’ 
search functions. For example, Facebook provides a 
feature to show a number of randomly selected users 
from a given regional network. If you want some 
users from London, you can search them using the 
keyword "London user" on Facebook. Submitting 
this query several times can produce some seeds for 
our crawl.  
 
3.4 Search Algorithms 
The crawling process of the social graph starts with 
an initial node and explores iteratively. In each of 
the iterations, we visit a node and discover its direct 
neighbors.  

There are two major ways for the exploration, 
depending on which neighbor to visit next. The first 
way is Breadth-First-Exploration (BFE). The BFE 
first starts at the initial node and explores all its 
neighbors. Then for each of those unvisited 
neighbor nodes in turn, it explores their neighbors. 
Another way is Depth-First-Exploration (DFE). The 
DFE starts at the initial node and explores along 
each branch as far as possible before returning.  

In our implemented crawler (as will be discussed 
in section 4), BFE is used. Before starting the 
search, 1) initial node; 2) a queue (that stores the 
nodes to be visited next); 3) a list (that stores all 
visited nodes) are needed. The process is as follow: 

1. Add the initial node to the queue. 
2. Dequeue the first node in the queue and 
explore its neighbors. 
If no neighbors are found, repeat step 2 until the 
queue is empty. 
If neighbor(s) are found, enqueue its neighbors if 
they are unvisited (by checking if the node is in 
the list of visited nodes). 
3. Add the node to the list of visited nodes.  
4. Repeat Step 2. 

 
a) Order of nodes to be visited by the crawler 

 
b) Headless browser operation 

 
Fig. 1 An example of Breadth-First-Exploration 

 
 
 

Fig. 1 shows an example of Breadth-First-
Exploration. Fig. 1a) shows the order of search in 
our algorithm, whereas Fig. 1b) shows the contents 
in the queue of unvisited nodes and list of visited 
nodes. The process of exploration is very similar to 
Breadth-First-Search (BFS) in graph search. 
However, the only aim of this search is to expand 
the social graph as far as possible, not to find a 
particular node. Therefore, the stop condition in 
BFE is different from that in BFS. 
 
3.5 Focused Crawling 
Focused crawling or topical crawling refers to the 
crawling process that attempts to access only user 
profiles that are relevant to a pre-defined topic. A 
focused crawler has a main function for relevance 
judgment on URL crawled to decide which links to 
follow for further crawling. 

The way to evaluate focused crawling is to 
measure the harvest ratio, which is the rate at which 
relevant pages are acquired and irrelevant pages are 
effectively filtered off from the crawl. The harvest 
ratio increases as the crawling time increases. 
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3.6 Stopping Criteria 
Considering the size of an OSN is huge, crawling 
the entire OSN may not be necessary for the 
crawling objective. The crawling process continues 
until some criteria are met. Typically, the process 
stops when the number of sample is sufficient or the 
result of the crawled samples saturates. 

There are several ways of evaluating if a crawl is 
successful. The first and most common criterion is 
the sufficient number collected samples. Required 
sample size depends on the maximum desirable 
error and the acceptable error risk such as 
confidence level. We used the following formula to 
estimate the number of samples required: 

 
where n is sample size, X2 is Chi-Square for the 
specified confidence level at 1 degree of freedom, N 
is population size, P is population proportion, and E 
is the desired margin of error. Sample size should be 
used in quantitative research where the research 
aims are to test hypotheses, look at cause and effect, 
or make predictions. 

On the other hand, saturation of the result of the 
crawled sample is also a useful stop criterion. For 
example, supposing that the average distance of a 
network has to be obtained, when the result 
saturates even thought more samples are collected, it 
is an indication on the stop of the crawling process.  
 
 
4 The implementation of Crawler 
There are issues to consider when implementing an 
OSN crawler. Nowadays a lot of websites use 
JavaScript to load data only after the web page is 
loaded (to hide data from robot programs). This 
policy imposes difficulty for crawlers to access data 
on their websites. In this section, we discuss the 
problem with JavaScript and suggest a solution. We 
then discuss the operations of a crawler and 
demonstrate the design of our crawler. 
 
4.1 The Problem with JavaScript 
A lot of visible information shown on a Web page 
does not directly appear as plain texts in the HTML 
file. After loading the page, dynamic JavaScript 
calls are made to retrieve the information from the 
remote server, as shown in Fig. 2. For example, in 
Facebook, the friend list of a user is not present in 
the HTML source. It is dynamically loaded using 
JavaScript after the page load. The DOM Tree of the 
page is updated after the execution of JavaScript. 
The key issue is that browsers do not show the 
updated HTML content. 

To grab the textual data on a web page, it is 
desirable to obtain the HTML in which the 
embedded JavaScript has been already executed. A 
simple solution is to write a program to use a 
headless browser. Users are allowed to execute 
JavaScript on the page and obtain the updated 
HTML content in the browser engine. After 
obtaining the updated HTML content, we can 
perform HTML scraping to extract the data 
required. 

 
a) Ordinary browser operation 

 

 
b) Headless browser operation 

 
Fig. 2 Ordinary browser vs. headless browser 

 
 
4.2 The Use of Headless Browser 
A headless browser is a full-feature web browser 
with no graphical user interface (GUI). It only 
accesses web pages but does not show them to user. 
Headless browsers are used as a web page content 
provider by other programs. Headless browsers 
interact with human and other programs through 
commands. 

In our implementation, we used a headless 
browser called PhantomJS [6]. PhantomJS is a 
headless WebKit with JavaScript API. WebKit is an 
open-source web browser engine that powers 
popular browsers including Chrome and Safari. 
Headless browsers do not include graphical user 
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interface, making it feasible for integrating with our 
own programs/scripts. The JavaScript API allows us 
to easily write scripts that interact with PhantomJS 
in the language of the Web, allowing us to modify 
the DOM. 
 
4.3 The operations of a crawler 
Suppose that we want to crawl all users belonging to 
a particular region, say, Macao. The crawler first 
picks some initial users. For the page of each user in 
Facebook, the crawler performs the following: 

1. Load the Friends page, extract the list of 
friends in the parsed HTML code and retrieve all 
the corresponding links. 
2. In each retrieved links, access their profile's 
attributes to check its location information. 
3. For each link retrieved, repeat the process. 

We first specify an initial user HTML page (we call 
it root-page). The crawler then follows all links 
found in root-page. It will lead to more links, which 
will be followed again later. This process will result 
in a tree-like searching graph, where the root of the 
tree is the root-page. All links contained in that root-
page are direct children of the root, and subsequent 
links then become the children of the previous 
children. 

For each link found, the crawler extracts the 
profile page. The crawler then identifies the 
elements by performing string matching. We check 
if there is a text chunk of the targeted region to 
determine if the link is associated with a right user 
from the targeted region. To find the matching 
locations we used XPath, which is a query language 
used to locate a node in an XML document. It will 
match a single node or will be generalized to match 
a set of nodes. The XPath feature is supported in 
PhantomJS. 

The crawler starts by parsing a specified friend 
list web page, then stores their friends' hypertext 
links on that page which point to other web pages. 
The crawler then parses those pages for new links, 
recursively. 

The crawler simply sends HTTP requests for 
documents to Facebook, just like what a web 
browser does when the user clicks on links. What 
the crawler really does is to automate the process of 
following links. 

The crawl process can be regarded as processing 
items in a queue. When the crawler visits a web 
page, it extracts links to other web pages. There is a 
queue used to store unvisited web pages, and a list 
used to store visited web pages. The root-page 
should be initially put in the queue. Based on the 
algorithm we used to explore the Facebook social 
graph, the crawler pushes the extracted URLs in a 

web page at the end of the queue, and continues 
crawling by popping the first URL in the queue. The 
operation repeats until the social graph is fully 
explored or the stop criteria are met. It is based on 
the first-in-first-out basis since BFE (which is 
described in Section 2) is used in our crawler. Table 
1 shows the Pseudocode of our crawler. 
 
 
initialization 
 
function identifyFriendsLocation() { 
 
   for each friend in friends list 
      if this friend is in the list of visited nodes then 
         ignore this friend 
      end if 
      Retrieve location of this friend 
      if the location is the target region then 
         add this friend to the queue of unvisited nodes 
         store this link 
      end if 
   end for 
   add the current node to the list of visited nodes 
} 
 
function extractFriends() { 
   get list of friends 
   identifyFriendsLocation(); 
} 
 
function crawl() { 
   if queue of unvisited nodes is empty then 
      stop crawling 
   end if 
   pop the first node in the queue 
   load the user profile page 
   if friends pagelet exists then 
      get number of friends 
      estimate time needed to load the full friend list 
      wait time estimated 
      extractFriends(); 
   end if 
   crawl(); 
} 
 
login to facebook 
crawl(); 
exit program 

 
Table. 1 Pseudocode of our crawler 
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5 Discussions on technical challenges 
and countermeasures 
There are several challenges when attempting to 
collect data from Facebook. In this section, we 
discuss how we tackle the challenges during the 
implementation of our crawler and the execution of 
the crawling process. 
 
5.1 Page Dimension Limitation 
During the crawling process, a technical limitation 
is imposed by Facebook on the dimension of the 
web page showing the list of friends. To reduce 
workload offered to the server, Facebook will only 
show a batch of friends at a time (e.g., 100 friends). 
When the browser detects that all the current batch 
of friends has been loaded, asynchronous JavaScript 
will be executed to fetch another batch of friends 
from the server and show them on the same page. 

To avoid this situation, we can enlarge the page 
dimension in the WebKit browsing engine. In 
PhantomJS, we can modify the page dimension by 
setting the page's viewportSize property. It 
effectively simulates the size of the windows in a 
traditional browser. We can set the height as large as 
we need for the layout process such that friends will 
be retrieved directly from the web page. Doing this 
can speed up the overall crawling process. 
 
5.2 Asynchronous JavaScript and the delay 
time setting 
The execution of JavaScript takes time. We are not 
able to know the exact time when it will finish. 
Therefore, we cannot ensure when the page is 
completely loaded. If a page we are trying to 
download contains lots of JavaScript calls, normally 
we get the HTML source that is not fully expanded. 
For instance, when we are trying to load a big page 
(e.g., when there are large number of friends), we 
have to wait until the JavaScript is fully executed in 
order to obtain the entire friend list. However, when 
the execution of JavaScript terminates is unknown. 
To solve that, for the crawler to decode a page, it 
has to wait a time period, so that all the JavaScript 
has been executed before it attempts to serialize its 
DOM structure. 

We can roughly estimate the waiting period 
needed, which is based on the number of friends 
shown in the page. Each time Facebook loads 
additional friends to the friend list, it loads 20 more 
friends, and the process take about 1 second. So, we 
can estimate the waiting time by diving number of 
friends by 20. For example, we have to set the 
waiting time to 25 seconds for a person who has 500 
friends in order to get the full friend list. 

 
5.3 Obfuscated Web Page 
The programming code of the Web pages by 
Facebook has been obfuscated. For example, the 
formats of the Friend Pagelet IDs are different for 
the people shown in a page. To solve this, we first 
use Firebug [7] to parse the obfuscated elements. 
Firebug is a Firefox browser plugin that facilitates 
the debugging, editing, and monitoring of web 
page's HTML, CSS, DOM, and JavaScript. CSS 
selectors [8] is a common tool to select the HTML 
elements/nodes. However, since the Pagelet ID 
formats are in a mess, it is inefficient to use CSS 
selectors to select all the needed elements properly. 
In this case, XPath selector is more desirable 
because it provides better and more user-friendly 
selection methods. 

However, PhantomJS only have basic support of 
XPath feature which makes the use of XPath 
difficult. Therefore, we used CasperJS [9], a 
PhantomJS plugin which provides better support of 
XPath feature to do the heavy selector search. We 
should use Firebug to extract the XPath pattern for 
XPath filtering so as to filter the expected results. 
 
5.4 Incorrectly Formatted Characters 
When we were trying to extract some inner text in a 
web page, not all characters are in English. In our 
case, we found a lot of Chinese characters. We have 
to handle foreign or accented characters during html 
scraping. Scraping information with non-English 
characters does not always work.  As a result, we 
need to fix this issue by fetching readable Unicode 
data (in UTF-8 format) while scraping. The script 
file for the headless WebKit browsing engine should 
be encoded in utf-8 format since Facebook is also 
encoded in utf-8. 
 
5.5 Location Identification 
The majority of Facebook users belong to a certain 
regional network, and most users do not modify 
their default privacy settings. However, many 
people do not fill in their location information or fill 
it with the wrong location in their profile. Just 
retrieving the place field of a Facebook user’s 
profile to identify its location is insufficient and 
inaccurate. For example, some people claim that 
they are living in Mars although they actually live in 
Macao. It causes difficulty when the crawling goal 
involves the user location information. 

To resolve it, three-party information can be 
used. The website of SocialBakers provides 
information to identify user location. We searched 
SocialBakers for demographic facts. We can crawl a 
regional network by accessing a large portion of 
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Facebook's user profiles. Facebook graph is divided 
into networks that represent different schools, 
institutions and geographic regions. Therefore, we 
can use these data to attempt to identify their 
location by checking SocialBakers. 
 
5.6 Limited Access Rate 
This challenge happens during the execution of the 
crawl program. Facebook employs various rate-
limiting techniques to restrict the rate to access the 
web site too frequently. These techniques typically 
rely on limiting the number of user profiles a single 
user account or IP address can access in a given 
period of time. In the crawler, an account has to be 
used to login Facebook so as to access other users' 
profiles. After crawling the Facebook network for a 
few hours, the account will be temporarily blocked 
because our crawler has made sufficient high 
number of access to Facebook. After the account is 
blocked, phone verification is required to unblock it. 
This verification process interrupts the crawling 
process, making the large-scale crawling very 
difficult. 

To solve this problem, what can we do is to 
create a number of Facebook accounts to gain 
access using different IP addresses from different 
computers. 
 
5.7 Simultaneously Crawling 
A crawler may require a number of visits to the 
remote server to collect the information needed for 
one user. Thus, a single crawler is inefficient for 
crawling large OSNs. In order to shorten the data 
collection time, multiple machines can be used. In 
each machine, multiple crawlers can be run 
simultaneously. And each crawler can use multiple 
threads to process a number of pages concurrently. 
There is a master process coordinating the progress 
of the crawling among the crawlers. 
 
5.8 Resource Constraints 
Crawling consumes system resources: 1) network 
bandwidth to download pages, 2) memory to 
maintain the data for running the crawling 
algorithm, 3) processing power to evaluate, select 
and filter URLs, and 4) disk space to store the 
content of the fetched pages. A powerful processor 
and high amount of network bandwidth are 
desirable. 
 
6 Social Network Analysis 
A crawler is designed with the objective of 
collecting data for social network analysis (SNA). 
SNA aims at measuring the network nodes (e.g., the 

individuals in an organization) and their ties (e.g., 
friendship or partnership) in terms of graph theory. 
SNA commonly requires the use mathematical 
equations to calculate certain metrics, and typically 
use some tools to help visualize the network. 

SNA is important because it reveals how the 
society functions and explains phenomena and 
social behaviors in the society. It focuses on the 
relations between individuals, groups and 
organization rather than individuals and their 
attributes. 

In this section, we discuss the social network 
analysis methodology and some basic techniques. 
We also introduce tools for doing network analysis. 
 
6.1 Metrics 
In online social network analysis, after obtaining 
data from a social network (e.g., by a crawler), the 
network should be reconstructed based on the 
entities and relationships so as to perform SNA.  

There are three major types of metrics used 
in SNA: 1) Connection, 2) Distribution and 3) 
Segmentation. 
 
6.1.1 Connection Metrics 
1. Network Closure – A measurement of 

completeness of the network. For example, 
network closure can tell how many of your 
friends are also friends themselves. 

2. Multiplexity – A measurement of content-
forms contained in a tie. Also referred as 
relationship strength. Nodes that have 
multiple relationships simultaneously have 
higher multiplexity. For example, if two 
people are both friends and colleagues, they 
have multiplexity 2. 

3. Homophily – A measurement of how 
similar or dissimilar nodes are tied. Also 
referred as assortativity. Similarity is user-
defined (can be age, gender, education, 
income, etc). If the majority of nodes 
connect to similar nodes, the network have 
high homophily. 

4. Mutuality - A measurement in directed 
network of how much the nodes reciprocate 
their relationship, i.e. nodes are tied in both 
directions. Also referred as reciprocity. For 
example, A treats B as a friend (A links to 
B), but B might not consider B as a friend of 
his (B does not link back to A). 

5. Propinquity – A measurement of how nodes 
are connected geographically. 
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6.1.2 Distribution Metrics 
• Centrality – The measurement of 

importance of a node or a group. There are 
different method to measure centrality, 
including degree centrality, betweenness 
centrality, closeness centrality, eigenvector 
centrality and alpha centrality. 

• Density – The proportion of number of 
existing ties and number of possible ties in 
the network. 

• Bridge – A node whose removal will 
disconnect the network in two or more 
parts. 

 
6.1.3 Distance Metrics 
• Distance – The maximum number to nodes 

to travel between any two nodes in the 
network. 

• Average path length – The average of all 
shortest path lengths in the network. 

 
6.1.4 Segmentation metrics 
1. Clique – In graph theory, clique is defined 

as a fully-connected subgraph in the 
network. In sociology, clique is referred as a 
group of people who interact with each 
other more frequently and intensely.  

2. Clustering Coefficient – A measurement of 
likelihood that nodes tend to cluster together 
in the network. 

3. Connectivity – The minimum number of 
nodes whose removal will disconnect the 
network. Also referred as cohesion. 

 
In addition to basic statistics of the network, 

network properties and network dynamics are also 
of interest to researchers. The properties include, 
small-world, scale-free, and preferential attachment. 
The dynamical behaviors of the social network 
include spreading behavior, robustness against 
different types of attack, and synchronization. 
However, these behaviors are difficult to be 
observed from a (especially large) visualized 
network. Computer programs are needed to aid the 
analysis of dynamical behaviors of social network. 
However, this is beyond the discussion of this paper. 
 
6.2 Tools 
In analysis for online social network, tools are 
important and helpful for performing data analysis 

and network visualization. There are various SNA 
tools available that are powerful and free. The 
popular tools are listed below. 
 
1. Pajek [10] – A free program for analysis 

and visualization of large-scale networks in 
Windows platform. This software is well-
known for its comprehensive functions and 
performance. The authors of Pajek proposed 
a .net format network data file which is 
commonly used in network analysis. There 
are also books for Pajek available. 

 
2. NodeXL [11] – An open-source network 

analysis plugin for Microsoft Excel. This 
tool is good for people who are familiar 
with Excel data input. 

 
3. Gephi [12] – An open-source and cross-

platform network analysis and visualization 
tool written in Java. Gephi is sophisticated 
and interactive. It also provides 
library/toolkit for programmers to develop 
their own program which incorporate 
network analysis and/or network 
visualization. 

 
4. NetDraw [13] – A free network 

visualization program in Windows platform. 
Typically designed for social network. 

 
5. UCINET6 [14] – A free program for 

network analysis in Windows platform. It is 
designed to be used in conjunction with 
NetDraw. 

 
In this work, we used Gephi to present our result 

because it is cross-platform, free, powerful and easy 
to use. 
 
7 Crawling Result and discussion 
We have run a crawling job on Facebook with the 
objective of finding the social graph of the users 
located in Macao. According to SocialBakers 
Statistics [15], there are 243,860 registered 
Facebook users in Macao as of Feb 2013. We 
successfully obtained 156,297 nodes. The time to 
perform the whole crawling process took about six 
weeks by using three registered Facebook accounts 
in three different machines. The stop criterion is the 
sufficient number of samples obtained. The results 
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are useful for the analysis of the structure and other 
behaviors, e.g., virus spreading [16,17]. 

SNA provides some useful techniques for 
answering substantive questions about structures. 
However, it is not trivial to discover models or 
anomalies while dealing with huge amount of data. 
The network graph should be visualized which helps 
to simplify the work of analysis. However, it could 
be tricky for the computational cost of very high 
dimension of data. Analyzing large-scale network 
becomes harder because of the overlapping 
thousands of nodes, edges and other elements. For 
these reasons we should analyze data and visualize 
network by filtering and appropriating layout. The 
statistics and visualized graph are based on the data 
we crawled from Facebook. 
 
7.1 Metrics and Measures 
The measures for Macao SNA have been 
standardized: average degree, diameter, radius, 
density, modularity, connected components, 
average clustering coefficient and average path 

lengths are estimates based on the assumption 
of nodes with 100-brace filtering in graph. A 
short summary of some metrics is shown in 
Table 2. Evaluation is done using statistic tools 
in Gephi [12]. 
 
Graph Type: undirected 
Nodes: 156,297 
Edges: 6,058,992 
Average Degree: 12.774 
Network Diameter: 16 
Radius: 1 
Graph Density: 0.009 
Modularity: 0.473 
No. of Communities: 100 
Connected Components: 83 
Avg. Clustering Coefficient: 0.491 
Avg. Path length: 4.634 
 

Table 2 Results of Overall Network Metrics 
 

 
 
Network Users Crawled Links Rad. Diam. PathLen. C. Coef. 
London, UK 1,241K 30,725K 11 15 5.09 0.170 
Australia 1,215K 121,271K 10 14 5.13 0.175 
Turkey 1,030K 42,799K 13 17 5.10 0.133 
France 728K 11,219K 10 13 5.21 0.172 
Toronto, ON 483K 11,812K 10 13 4.53 0.158 
Sweden 575K 17,287K 8 11 4.55 0.157 
New York, NY 378K 7,225K 11 14 4.80 0.146 
Colombia 565K 10,242K 9 12 4.94 0.136 
Manchester, UK 395K 11,120K 11 15 4.79 0.195 
Vancouver, BC 314K 35,518K 9 14 4.71 0.170 
Total/Average: 10,697K 408,265K 9.8 13.4 4.8 0.164 
Macao 156K 6,058K 1 16 4.63 0.491 

 
Table 3 Social Graph Measurements Comparing 

 

 
Table 3 lists some statistics and social graph 

measurements on the ten largest regional networks 
in Facebook data set, as well as the totals for entire 
data set, which are presented in [22]. We found that 
the average path length of our crawled network (i.e., 
the Macao network) is 4.63, which is similar to 
other regional networks (as shown in Table 3). The 
radius is low but the diameter is high when 
compared to other large network graphs. The 
clustering coefficient shows graph neighborhoods of 
users containing dense structure. 
 

7.2 Network Visualization 
A network graph can feature an overview of the 
structure of the network, calling out cliques, 
communities, and key participants. Drawings of 
relational structures like social networks are only 
useful if they effectively convey information to the 
people that use them. 

Network graphs with a large number of vertices 
can easily get too dense and large to make out any 
meaningful patterns. There are many obstacles like 
vertice occlusions and edge crossings that can make 
creating readable network graphs challenging. 
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Therefore, there should be an upper limit on the 
numbers of vertices and edges that can be displayed 
in on computer screens. 
 
7.3 K-brace Filtering and Partition 
To avoid dissatisfaction with suboptimal drawings, 
we strive to find optimal layouts that the 
information can thus be represented accurately. 
Moreover, analyzing large graphs is not a trivial 
problem, but the computational cost of visualization. 
For this reason, our analysis relies on filtering data 
calculating metrics for highlight important area and 
displaying only relevant information.  

We applied k-brace filter to deal with the full 
sub-graph of all nontrivial components. Cohen [23] 
defined the k-brace of a graph to be the sub-graph 
formed by repeatedly deleting all edges of 
embeddedness less than k and then deleting all 
single node connected components. Fig.3 illustrates 
k-core and the k-brace, delineating the connected 
components of the 2-core and the 1-brace. 
 

 
Fig. 3 1-brace filtering 

 
We consider the components of the 100-brace, 

which removes small components and severs un-
embedded edges and isolate “substantial” social 
contexts. 

We also use community detection to help 
visualize network structure. Nodes are coloured by 
modularity class in order to find relatively stronger 
ties among subgroup members compared to non-
members. Nodes are sized by degree to let look like 
the nodes with higher degree value is much bigger. 
 
 
7.4 Macao Facebook Network Graph: Our 
Visual Results 
After filtering, several graph layout algorithms can 
be used. Our result of applying these algorithms 

varies depending on the size and topology of the 
network. Fig. 4 shows the network graph visualized 
by using the Fruchterman Reingold (FR) layout, 
whereas Fig. 5 by the Yifan Hu (YH) layout and Fig. 6 
by the ForceAtlas 2 (FA2) layout.  

Different layouts provide different advantages 
and disadvantages. The FR layout is optimized for 
big graphs, which can prevent the mass particles 
from overlapping. But it does not provide cluster 
representation and it may produce confusing edge 
connection. On the other hand, the YH layout uses a 
fast algorithm and provides a good quality on large 
graphs, but it shows coarse looking, and is unable to 
reach a balanced position. Finally, the FA2 layout 
can make clusters tighter, but it shows poor local 
minima, and takes much computation time. 

 
 
 

 

 
 

Fig. 4 Result visualized by the Fruchterman Reingold 
layout 
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Fig. 5 Result visualized by the Yifan Hu layout 
 
 
 

 
 

Fig. 6 Result visualized by the ForceAtlas 2 layout 

8 Conclusion 
In this paper, we present a practical design method 
of building an efficient crawler to collect data from 
Facebook. We discussed the key challenges during 
the implementation and execution of the crawler. 
We also provided suggested solutions to tackle the 
challenges. We then discussed the operation design 
of a crawler, the issues to consider, and methods to 
evaluate if the crawl succeeds. We found that the 
performance of crawler can be significantly 
improved by parallelizing crawl tasks. We 
implemented our own crawler and performed 
crawling Facebook to obtain the structure of the 
social network of Macao people. Then, we 
discussed some commonly used social network 
analysis techniques and visualized the crawled data 
using different layout algorithms. We also compared 
the network metrics of our graph with some 
previous results. We believe that the design and 
implementation of crawler we conclude here shed 
light on future OSN studies, which will increasingly 
rely on crawled sub-graphs. 
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