
Design of a Crawler for Online Social Networks Analysis

Chi-In Wong1, Kin-Yeung Wong2, Kuong-Wai Ng3, Wei Fan4, Kai-Hau Yeung5

Computing Program, Macao Polytechnic Institute,
R. de Luis Gonzaga Gomes, Macao1,2,3

Engineering Science, the Open University of Hong Kong
30 Good Shepherd Street, Homantin, Kowloon, Hong Kong2

Department of Electronic Engineering, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong4,5

kazec.y.wong@gmail.com1, wood@ieee.org2, tenjoukouka@hotmail.com3, fanwei.fw@gmail.com4,
eeayeung@cityu.edu.hk5

Abstract: - The growths of online Social Networks in scale and amount of information are immense in recent
years. The analyses of the structure of online social networks have thus drawn much research interests. Before
the analyses, the information and the characteristics of the structure have to be obtained. However, the
complexity of today’s web technologies imposes challenges for collecting the data. In this paper, we discuss the
design and implementation of a crawler for online social networks, and propose countermeasures to the
technical challenges when crawling the networks in practice. Then, the crawled data is visualized and analyzed
in graphs.

Key-Words: - Social Networks, Network Analysis, Crawler, Software Design, Automated Agents, Network
Visualization.

1 Introduction
The increasing popularity of online social networks
(OSNs) has gathered hundreds of millions of users.
OSNs have become a platform for people to easily
communicate and share information, particularly
with the sophisticate smartphones [1]. Since the
structures of OSNs will be able to reflect the real-
life society in certain extend, the structure and the
information shared in OSNs are of interests for
different communities [2,3,4,5]. For instance,
sociologists regard OSNs as a venue for collecting
relationship data and study online human behaviors.
Marketers, in contrast, seek to exploit information
about how messages spread so as to design viral
marketing strategies. For network engineers,
understanding OSNs improves the design of
interconnected systems so as to provide better user
experience.

In order to analyze the structure of an OSN,
information regarding the network structure is
needed. Since OSN operators will not disclose their
network structures (completely or partially) to the
public, writing a crawler is a common way to obtain
the data. A crawler in a social network is a program
that starts with a list of user’s page to visit. As the
crawler visits these pages, it identifies all the friend
pages embedded in the current page, and then
follows those just identified pages to discover more

new pages. This process continues until some
criteria are met.

However, there are many challenges when
crawling OSNs. For example, the complexity of
today’s web technologies (e.g., JavaScript and Ajax)
makes it challenging when interpreting the content
of a page. And, the access restrictions of most OSN
services (e.g., login requirements, limited view, API
query limits) impose difficulty to crawl the network
with sufficient amount of samples. On the other
hand, the privacy control policies do not allow a
crawler to access the entire online social network.
The objective of this paper is to design and
implement a crawler for Facebook and provide
practical recommendations to tackle the challenges
during the crawling process.

One of the objectives of our work is to design
and implementation of a crawler for OSNs, which is
an automated program that systematically collects
data on OSNs. The data collected can be used to
rebuild the network topology, for statistical
analyses, etc. The second objective is to provide
practical recommendations to tackle the challenges
during the crawling process. Another objective is to
visualize and analyze the structure of the crawled
network.

Note that our crawler is only able to collects the
public information on Facebook, There are no

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 263 Volume 13, 2014

ethical issues since Facebook’s user agreement
states that all public information can be used by

third-party organizations. We sent our crawlers to
crawl a portion of the Macao Facebook graph.

The organization of this paper is as follow:
background of our work is discussed in section 2.
The design of crawling OSNs is presented in section
3. The method of implementing a crawler is
proposed in section 4. Technical challenges during
the crawling are discussed in section 5. Social
Network Analysis is briefly introduced in Section 6.
After that, our result in crawling Facebook is
illustrated, visualized and discussed in section 7.
Finally, it is concluded in section 8.

2 Background

2.1 Related Work
The task of extracting and analyzing data from
online social networks has attracted the interest of
researchers, as shown in [3,18,19]. The most
popular social network, Facebook, naturally gets the
most attention from researchers, who measured
some large-scale network properties of the
Facebook graph through sampling, crawling, and
other methods to collect network data. In this
section we review the preliminary work on social
network crawling and social graph sampling and
some relevant literature directly related to our
approach.

Although there are a large number of social
network publications, few have been dedicated to
the data collection process. Chau et al. [20]
exploited Breadth-First-Search (BFS) algorithms
and illustrated the use of parallel crawlers to crawl
eBay profiles efficiently. Mislove et al. [21]
analyzed the graphs of a number of popular online
social networks, including Flickr, YouTube,
LiveJournal, and Orkut. Their analyses confirm the
scalability properties of OSNs, such as a power-law
degree distribution, a densely connected core, and
small average path length.

In this paper, we will first discuss the data
collection techniques and the data collected using
these methods. Collected data are usually mapped
onto graph data structures with the goal of analyzing
their structural properties.

2.2 OSN Analysis
OSN analysis begins with the goal to understand the
organization of popular OSN. Facebook is one of
the most studied OSNs. According to
iStrategyLabs.com, its growth rate has been proved
to be the highest among all the other competitors in
the last few years.

Facebook allows a user to create a public profile
with pictures and other personal information such as
gender, date of birth, hometown, phone number,
school, employer, interests, and current GPS
location. Each user has a list of friends, but no more
than 5000 of them. Two users can establish a
friendship link by sending and accepting a
friendship request.

One important aspect to be considered for
representing the model of a social network is the
amount of information about its structure that we
have access to. The ideal condition would be to have
access to the whole network data, for example
acquiring them directly from the company managing
the social networking service. For very large OSNs,
such as Facebook, Twitter, etc., it is hard to collect a
complete sample of the network. The first limitation
is related to the computational overhead of a large-
scale Web mining task. In the case of Facebook, for
our case, to crawl the friend list Web page
(dimension ≈ 3MB) for the 250 thousands of users
in Macao, it requires to download more than
3MBx250,000 = 750 Gigabytes of HTML data.

3 Design of the crawling in an Online
Social Network

3.1 Limitation of Crawler
The structure of an OSN can be modeled as a graph
G = (V,E), where V is a set of nodes (users) and E is
a set of edges (friendships). In this case, G is
undirected because the friendship of two users in
OSN is undirected. In Facebook, the whole G is not
accessible for everyone due to the privacy control of
individual users. That is, users can set their
information to be only shown to their authorized
people (e.g., their direct friends) so others (including
our crawlers) are not able to get it. Therefore, in
general, we can only access the public part of G,
denoted as G’. Therefore, it has to be understood
that only G’ can be crawled in a legitimate way.

3.2 The Information to Collect
Before crawling an OSN, it is important to identify
the goal of crawling and understand what kind of
data is needed. The design of a crawler highly
depends on the types of data to be crawled. It also
affects the terminate condition during the crawling
process. For example, if only the topology of the
social network is required, the crawler just needs to
grasp the friend list in a page. However, it has to

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 264 Volume 13, 2014

crawl the pages of a particular user domain, then the
crawler may need to extract the information related
to the user domain, such as the country, age, or
interests of the user in the page. Extracting these
attributes requires format analysis and content
analysis in the HTML content. The more attributes
are required, the more technologies are needed.
Therefore, knowing what data to be crawled helps
optimizing the crawler program.

3.3 Choosing the Initial Node
Generally, choosing those users with many links to
others as the initial nodes will be helpful and able to
speed up the whole crawling process. Those highly
connected users can be identified by the number of
friends they have.

However, if the users in a particular region are
needed, you can identify them by using the OSNs’
search functions. For example, Facebook provides a
feature to show a number of randomly selected users
from a given regional network. If you want some
users from London, you can search them using the
keyword "London user" on Facebook. Submitting
this query several times can produce some seeds for
our crawl.

3.4 Search Algorithms
The crawling process of the social graph starts with
an initial node and explores iteratively. In each of
the iterations, we visit a node and discover its direct
neighbors.

There are two major ways for the exploration,
depending on which neighbor to visit next. The first
way is Breadth-First-Exploration (BFE). The BFE
first starts at the initial node and explores all its
neighbors. Then for each of those unvisited
neighbor nodes in turn, it explores their neighbors.
Another way is Depth-First-Exploration (DFE). The
DFE starts at the initial node and explores along
each branch as far as possible before returning.

In our implemented crawler (as will be discussed
in section 4), BFE is used. Before starting the
search, 1) initial node; 2) a queue (that stores the
nodes to be visited next); 3) a list (that stores all
visited nodes) are needed. The process is as follow:

1. Add the initial node to the queue.
2. Dequeue the first node in the queue and
explore its neighbors.
If no neighbors are found, repeat step 2 until the
queue is empty.
If neighbor(s) are found, enqueue its neighbors if
they are unvisited (by checking if the node is in
the list of visited nodes).
3. Add the node to the list of visited nodes.
4. Repeat Step 2.

a) Order of nodes to be visited by the crawler

b) Headless browser operation

Fig. 1 An example of Breadth-First-Exploration

Fig. 1 shows an example of Breadth-First-
Exploration. Fig. 1a) shows the order of search in
our algorithm, whereas Fig. 1b) shows the contents
in the queue of unvisited nodes and list of visited
nodes. The process of exploration is very similar to
Breadth-First-Search (BFS) in graph search.
However, the only aim of this search is to expand
the social graph as far as possible, not to find a
particular node. Therefore, the stop condition in
BFE is different from that in BFS.

3.5 Focused Crawling
Focused crawling or topical crawling refers to the
crawling process that attempts to access only user
profiles that are relevant to a pre-defined topic. A
focused crawler has a main function for relevance
judgment on URL crawled to decide which links to
follow for further crawling.

The way to evaluate focused crawling is to
measure the harvest ratio, which is the rate at which
relevant pages are acquired and irrelevant pages are
effectively filtered off from the crawl. The harvest
ratio increases as the crawling time increases.

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 265 Volume 13, 2014

3.6 Stopping Criteria
Considering the size of an OSN is huge, crawling
the entire OSN may not be necessary for the
crawling objective. The crawling process continues
until some criteria are met. Typically, the process
stops when the number of sample is sufficient or the
result of the crawled samples saturates.

There are several ways of evaluating if a crawl is
successful. The first and most common criterion is
the sufficient number collected samples. Required
sample size depends on the maximum desirable
error and the acceptable error risk such as
confidence level. We used the following formula to
estimate the number of samples required:

where n is sample size, X2 is Chi-Square for the
specified confidence level at 1 degree of freedom, N
is population size, P is population proportion, and E
is the desired margin of error. Sample size should be
used in quantitative research where the research
aims are to test hypotheses, look at cause and effect,
or make predictions.

On the other hand, saturation of the result of the
crawled sample is also a useful stop criterion. For
example, supposing that the average distance of a
network has to be obtained, when the result
saturates even thought more samples are collected, it
is an indication on the stop of the crawling process.

4 The implementation of Crawler
There are issues to consider when implementing an
OSN crawler. Nowadays a lot of websites use
JavaScript to load data only after the web page is
loaded (to hide data from robot programs). This
policy imposes difficulty for crawlers to access data
on their websites. In this section, we discuss the
problem with JavaScript and suggest a solution. We
then discuss the operations of a crawler and
demonstrate the design of our crawler.

4.1 The Problem with JavaScript
A lot of visible information shown on a Web page
does not directly appear as plain texts in the HTML
file. After loading the page, dynamic JavaScript
calls are made to retrieve the information from the
remote server, as shown in Fig. 2. For example, in
Facebook, the friend list of a user is not present in
the HTML source. It is dynamically loaded using
JavaScript after the page load. The DOM Tree of the
page is updated after the execution of JavaScript.
The key issue is that browsers do not show the
updated HTML content.

To grab the textual data on a web page, it is
desirable to obtain the HTML in which the
embedded JavaScript has been already executed. A
simple solution is to write a program to use a
headless browser. Users are allowed to execute
JavaScript on the page and obtain the updated
HTML content in the browser engine. After
obtaining the updated HTML content, we can
perform HTML scraping to extract the data
required.

a) Ordinary browser operation

b) Headless browser operation

Fig. 2 Ordinary browser vs. headless browser

4.2 The Use of Headless Browser
A headless browser is a full-feature web browser
with no graphical user interface (GUI). It only
accesses web pages but does not show them to user.
Headless browsers are used as a web page content
provider by other programs. Headless browsers
interact with human and other programs through
commands.

In our implementation, we used a headless
browser called PhantomJS [6]. PhantomJS is a
headless WebKit with JavaScript API. WebKit is an
open-source web browser engine that powers
popular browsers including Chrome and Safari.
Headless browsers do not include graphical user

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 266 Volume 13, 2014

interface, making it feasible for integrating with our
own programs/scripts. The JavaScript API allows us
to easily write scripts that interact with PhantomJS
in the language of the Web, allowing us to modify
the DOM.

4.3 The operations of a crawler
Suppose that we want to crawl all users belonging to
a particular region, say, Macao. The crawler first
picks some initial users. For the page of each user in
Facebook, the crawler performs the following:

1. Load the Friends page, extract the list of
friends in the parsed HTML code and retrieve all
the corresponding links.
2. In each retrieved links, access their profile's
attributes to check its location information.
3. For each link retrieved, repeat the process.

We first specify an initial user HTML page (we call
it root-page). The crawler then follows all links
found in root-page. It will lead to more links, which
will be followed again later. This process will result
in a tree-like searching graph, where the root of the
tree is the root-page. All links contained in that root-
page are direct children of the root, and subsequent
links then become the children of the previous
children.

For each link found, the crawler extracts the
profile page. The crawler then identifies the
elements by performing string matching. We check
if there is a text chunk of the targeted region to
determine if the link is associated with a right user
from the targeted region. To find the matching
locations we used XPath, which is a query language
used to locate a node in an XML document. It will
match a single node or will be generalized to match
a set of nodes. The XPath feature is supported in
PhantomJS.

The crawler starts by parsing a specified friend
list web page, then stores their friends' hypertext
links on that page which point to other web pages.
The crawler then parses those pages for new links,
recursively.

The crawler simply sends HTTP requests for
documents to Facebook, just like what a web
browser does when the user clicks on links. What
the crawler really does is to automate the process of
following links.

The crawl process can be regarded as processing
items in a queue. When the crawler visits a web
page, it extracts links to other web pages. There is a
queue used to store unvisited web pages, and a list
used to store visited web pages. The root-page
should be initially put in the queue. Based on the
algorithm we used to explore the Facebook social
graph, the crawler pushes the extracted URLs in a

web page at the end of the queue, and continues
crawling by popping the first URL in the queue. The
operation repeats until the social graph is fully
explored or the stop criteria are met. It is based on
the first-in-first-out basis since BFE (which is
described in Section 2) is used in our crawler. Table
1 shows the Pseudocode of our crawler.

initialization

function identifyFriendsLocation() {

 for each friend in friends list
 if this friend is in the list of visited nodes then
 ignore this friend
 end if
 Retrieve location of this friend
 if the location is the target region then
 add this friend to the queue of unvisited nodes
 store this link
 end if
 end for
 add the current node to the list of visited nodes
}

function extractFriends() {
 get list of friends
 identifyFriendsLocation();
}

function crawl() {
 if queue of unvisited nodes is empty then
 stop crawling
 end if
 pop the first node in the queue
 load the user profile page
 if friends pagelet exists then
 get number of friends
 estimate time needed to load the full friend list
 wait time estimated
 extractFriends();
 end if
 crawl();
}

login to facebook
crawl();
exit program

Table. 1 Pseudocode of our crawler

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 267 Volume 13, 2014

5 Discussions on technical challenges
and countermeasures
There are several challenges when attempting to
collect data from Facebook. In this section, we
discuss how we tackle the challenges during the
implementation of our crawler and the execution of
the crawling process.

5.1 Page Dimension Limitation
During the crawling process, a technical limitation
is imposed by Facebook on the dimension of the
web page showing the list of friends. To reduce
workload offered to the server, Facebook will only
show a batch of friends at a time (e.g., 100 friends).
When the browser detects that all the current batch
of friends has been loaded, asynchronous JavaScript
will be executed to fetch another batch of friends
from the server and show them on the same page.

To avoid this situation, we can enlarge the page
dimension in the WebKit browsing engine. In
PhantomJS, we can modify the page dimension by
setting the page's viewportSize property. It
effectively simulates the size of the windows in a
traditional browser. We can set the height as large as
we need for the layout process such that friends will
be retrieved directly from the web page. Doing this
can speed up the overall crawling process.

5.2 Asynchronous JavaScript and the delay
time setting
The execution of JavaScript takes time. We are not
able to know the exact time when it will finish.
Therefore, we cannot ensure when the page is
completely loaded. If a page we are trying to
download contains lots of JavaScript calls, normally
we get the HTML source that is not fully expanded.
For instance, when we are trying to load a big page
(e.g., when there are large number of friends), we
have to wait until the JavaScript is fully executed in
order to obtain the entire friend list. However, when
the execution of JavaScript terminates is unknown.
To solve that, for the crawler to decode a page, it
has to wait a time period, so that all the JavaScript
has been executed before it attempts to serialize its
DOM structure.

We can roughly estimate the waiting period
needed, which is based on the number of friends
shown in the page. Each time Facebook loads
additional friends to the friend list, it loads 20 more
friends, and the process take about 1 second. So, we
can estimate the waiting time by diving number of
friends by 20. For example, we have to set the
waiting time to 25 seconds for a person who has 500
friends in order to get the full friend list.

5.3 Obfuscated Web Page
The programming code of the Web pages by
Facebook has been obfuscated. For example, the
formats of the Friend Pagelet IDs are different for
the people shown in a page. To solve this, we first
use Firebug [7] to parse the obfuscated elements.
Firebug is a Firefox browser plugin that facilitates
the debugging, editing, and monitoring of web
page's HTML, CSS, DOM, and JavaScript. CSS
selectors [8] is a common tool to select the HTML
elements/nodes. However, since the Pagelet ID
formats are in a mess, it is inefficient to use CSS
selectors to select all the needed elements properly.
In this case, XPath selector is more desirable
because it provides better and more user-friendly
selection methods.

However, PhantomJS only have basic support of
XPath feature which makes the use of XPath
difficult. Therefore, we used CasperJS [9], a
PhantomJS plugin which provides better support of
XPath feature to do the heavy selector search. We
should use Firebug to extract the XPath pattern for
XPath filtering so as to filter the expected results.

5.4 Incorrectly Formatted Characters
When we were trying to extract some inner text in a
web page, not all characters are in English. In our
case, we found a lot of Chinese characters. We have
to handle foreign or accented characters during html
scraping. Scraping information with non-English
characters does not always work. As a result, we
need to fix this issue by fetching readable Unicode
data (in UTF-8 format) while scraping. The script
file for the headless WebKit browsing engine should
be encoded in utf-8 format since Facebook is also
encoded in utf-8.

5.5 Location Identification
The majority of Facebook users belong to a certain
regional network, and most users do not modify
their default privacy settings. However, many
people do not fill in their location information or fill
it with the wrong location in their profile. Just
retrieving the place field of a Facebook user’s
profile to identify its location is insufficient and
inaccurate. For example, some people claim that
they are living in Mars although they actually live in
Macao. It causes difficulty when the crawling goal
involves the user location information.

To resolve it, three-party information can be
used. The website of SocialBakers provides
information to identify user location. We searched
SocialBakers for demographic facts. We can crawl a
regional network by accessing a large portion of

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 268 Volume 13, 2014

Facebook's user profiles. Facebook graph is divided
into networks that represent different schools,
institutions and geographic regions. Therefore, we
can use these data to attempt to identify their
location by checking SocialBakers.

5.6 Limited Access Rate
This challenge happens during the execution of the
crawl program. Facebook employs various rate-
limiting techniques to restrict the rate to access the
web site too frequently. These techniques typically
rely on limiting the number of user profiles a single
user account or IP address can access in a given
period of time. In the crawler, an account has to be
used to login Facebook so as to access other users'
profiles. After crawling the Facebook network for a
few hours, the account will be temporarily blocked
because our crawler has made sufficient high
number of access to Facebook. After the account is
blocked, phone verification is required to unblock it.
This verification process interrupts the crawling
process, making the large-scale crawling very
difficult.

To solve this problem, what can we do is to
create a number of Facebook accounts to gain
access using different IP addresses from different
computers.

5.7 Simultaneously Crawling
A crawler may require a number of visits to the
remote server to collect the information needed for
one user. Thus, a single crawler is inefficient for
crawling large OSNs. In order to shorten the data
collection time, multiple machines can be used. In
each machine, multiple crawlers can be run
simultaneously. And each crawler can use multiple
threads to process a number of pages concurrently.
There is a master process coordinating the progress
of the crawling among the crawlers.

5.8 Resource Constraints
Crawling consumes system resources: 1) network
bandwidth to download pages, 2) memory to
maintain the data for running the crawling
algorithm, 3) processing power to evaluate, select
and filter URLs, and 4) disk space to store the
content of the fetched pages. A powerful processor
and high amount of network bandwidth are
desirable.

6 Social Network Analysis
A crawler is designed with the objective of
collecting data for social network analysis (SNA).
SNA aims at measuring the network nodes (e.g., the

individuals in an organization) and their ties (e.g.,
friendship or partnership) in terms of graph theory.
SNA commonly requires the use mathematical
equations to calculate certain metrics, and typically
use some tools to help visualize the network.

SNA is important because it reveals how the
society functions and explains phenomena and
social behaviors in the society. It focuses on the
relations between individuals, groups and
organization rather than individuals and their
attributes.

In this section, we discuss the social network
analysis methodology and some basic techniques.
We also introduce tools for doing network analysis.

6.1 Metrics
In online social network analysis, after obtaining
data from a social network (e.g., by a crawler), the
network should be reconstructed based on the
entities and relationships so as to perform SNA.

There are three major types of metrics used
in SNA: 1) Connection, 2) Distribution and 3)
Segmentation.

6.1.1 Connection Metrics
1. Network Closure – A measurement of

completeness of the network. For example,
network closure can tell how many of your
friends are also friends themselves.

2. Multiplexity – A measurement of content-
forms contained in a tie. Also referred as
relationship strength. Nodes that have
multiple relationships simultaneously have
higher multiplexity. For example, if two
people are both friends and colleagues, they
have multiplexity 2.

3. Homophily – A measurement of how
similar or dissimilar nodes are tied. Also
referred as assortativity. Similarity is user-
defined (can be age, gender, education,
income, etc). If the majority of nodes
connect to similar nodes, the network have
high homophily.

4. Mutuality - A measurement in directed
network of how much the nodes reciprocate
their relationship, i.e. nodes are tied in both
directions. Also referred as reciprocity. For
example, A treats B as a friend (A links to
B), but B might not consider B as a friend of
his (B does not link back to A).

5. Propinquity – A measurement of how nodes
are connected geographically.

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 269 Volume 13, 2014

6.1.2 Distribution Metrics
• Centrality – The measurement of

importance of a node or a group. There are
different method to measure centrality,
including degree centrality, betweenness
centrality, closeness centrality, eigenvector
centrality and alpha centrality.

• Density – The proportion of number of
existing ties and number of possible ties in
the network.

• Bridge – A node whose removal will
disconnect the network in two or more
parts.

6.1.3 Distance Metrics
• Distance – The maximum number to nodes

to travel between any two nodes in the
network.

• Average path length – The average of all
shortest path lengths in the network.

6.1.4 Segmentation metrics
1. Clique – In graph theory, clique is defined

as a fully-connected subgraph in the
network. In sociology, clique is referred as a
group of people who interact with each
other more frequently and intensely.

2. Clustering Coefficient – A measurement of
likelihood that nodes tend to cluster together
in the network.

3. Connectivity – The minimum number of
nodes whose removal will disconnect the
network. Also referred as cohesion.

In addition to basic statistics of the network,

network properties and network dynamics are also
of interest to researchers. The properties include,
small-world, scale-free, and preferential attachment.
The dynamical behaviors of the social network
include spreading behavior, robustness against
different types of attack, and synchronization.
However, these behaviors are difficult to be
observed from a (especially large) visualized
network. Computer programs are needed to aid the
analysis of dynamical behaviors of social network.
However, this is beyond the discussion of this paper.

6.2 Tools
In analysis for online social network, tools are
important and helpful for performing data analysis

and network visualization. There are various SNA
tools available that are powerful and free. The
popular tools are listed below.

1. Pajek [10] – A free program for analysis

and visualization of large-scale networks in
Windows platform. This software is well-
known for its comprehensive functions and
performance. The authors of Pajek proposed
a .net format network data file which is
commonly used in network analysis. There
are also books for Pajek available.

2. NodeXL [11] – An open-source network

analysis plugin for Microsoft Excel. This
tool is good for people who are familiar
with Excel data input.

3. Gephi [12] – An open-source and cross-

platform network analysis and visualization
tool written in Java. Gephi is sophisticated
and interactive. It also provides
library/toolkit for programmers to develop
their own program which incorporate
network analysis and/or network
visualization.

4. NetDraw [13] – A free network

visualization program in Windows platform.
Typically designed for social network.

5. UCINET6 [14] – A free program for

network analysis in Windows platform. It is
designed to be used in conjunction with
NetDraw.

In this work, we used Gephi to present our result

because it is cross-platform, free, powerful and easy
to use.

7 Crawling Result and discussion
We have run a crawling job on Facebook with the
objective of finding the social graph of the users
located in Macao. According to SocialBakers
Statistics [15], there are 243,860 registered
Facebook users in Macao as of Feb 2013. We
successfully obtained 156,297 nodes. The time to
perform the whole crawling process took about six
weeks by using three registered Facebook accounts
in three different machines. The stop criterion is the
sufficient number of samples obtained. The results

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 270 Volume 13, 2014

are useful for the analysis of the structure and other
behaviors, e.g., virus spreading [16,17].

SNA provides some useful techniques for
answering substantive questions about structures.
However, it is not trivial to discover models or
anomalies while dealing with huge amount of data.
The network graph should be visualized which helps
to simplify the work of analysis. However, it could
be tricky for the computational cost of very high
dimension of data. Analyzing large-scale network
becomes harder because of the overlapping
thousands of nodes, edges and other elements. For
these reasons we should analyze data and visualize
network by filtering and appropriating layout. The
statistics and visualized graph are based on the data
we crawled from Facebook.

7.1 Metrics and Measures
The measures for Macao SNA have been
standardized: average degree, diameter, radius,
density, modularity, connected components,
average clustering coefficient and average path

lengths are estimates based on the assumption
of nodes with 100-brace filtering in graph. A
short summary of some metrics is shown in
Table 2. Evaluation is done using statistic tools
in Gephi [12].

Graph Type: undirected
Nodes: 156,297
Edges: 6,058,992
Average Degree: 12.774
Network Diameter: 16
Radius: 1
Graph Density: 0.009
Modularity: 0.473
No. of Communities: 100
Connected Components: 83
Avg. Clustering Coefficient: 0.491
Avg. Path length: 4.634

Table 2 Results of Overall Network Metrics

Network Users Crawled Links Rad. Diam. PathLen. C. Coef.
London, UK 1,241K 30,725K 11 15 5.09 0.170
Australia 1,215K 121,271K 10 14 5.13 0.175
Turkey 1,030K 42,799K 13 17 5.10 0.133
France 728K 11,219K 10 13 5.21 0.172
Toronto, ON 483K 11,812K 10 13 4.53 0.158
Sweden 575K 17,287K 8 11 4.55 0.157
New York, NY 378K 7,225K 11 14 4.80 0.146
Colombia 565K 10,242K 9 12 4.94 0.136
Manchester, UK 395K 11,120K 11 15 4.79 0.195
Vancouver, BC 314K 35,518K 9 14 4.71 0.170
Total/Average: 10,697K 408,265K 9.8 13.4 4.8 0.164
Macao 156K 6,058K 1 16 4.63 0.491

Table 3 Social Graph Measurements Comparing

Table 3 lists some statistics and social graph

measurements on the ten largest regional networks
in Facebook data set, as well as the totals for entire
data set, which are presented in [22]. We found that
the average path length of our crawled network (i.e.,
the Macao network) is 4.63, which is similar to
other regional networks (as shown in Table 3). The
radius is low but the diameter is high when
compared to other large network graphs. The
clustering coefficient shows graph neighborhoods of
users containing dense structure.

7.2 Network Visualization
A network graph can feature an overview of the
structure of the network, calling out cliques,
communities, and key participants. Drawings of
relational structures like social networks are only
useful if they effectively convey information to the
people that use them.

Network graphs with a large number of vertices
can easily get too dense and large to make out any
meaningful patterns. There are many obstacles like
vertice occlusions and edge crossings that can make
creating readable network graphs challenging.

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 271 Volume 13, 2014

Therefore, there should be an upper limit on the
numbers of vertices and edges that can be displayed
in on computer screens.

7.3 K-brace Filtering and Partition
To avoid dissatisfaction with suboptimal drawings,
we strive to find optimal layouts that the
information can thus be represented accurately.
Moreover, analyzing large graphs is not a trivial
problem, but the computational cost of visualization.
For this reason, our analysis relies on filtering data
calculating metrics for highlight important area and
displaying only relevant information.

We applied k-brace filter to deal with the full
sub-graph of all nontrivial components. Cohen [23]
defined the k-brace of a graph to be the sub-graph
formed by repeatedly deleting all edges of
embeddedness less than k and then deleting all
single node connected components. Fig.3 illustrates
k-core and the k-brace, delineating the connected
components of the 2-core and the 1-brace.

Fig. 3 1-brace filtering

We consider the components of the 100-brace,

which removes small components and severs un-
embedded edges and isolate “substantial” social
contexts.

We also use community detection to help
visualize network structure. Nodes are coloured by
modularity class in order to find relatively stronger
ties among subgroup members compared to non-
members. Nodes are sized by degree to let look like
the nodes with higher degree value is much bigger.

7.4 Macao Facebook Network Graph: Our
Visual Results
After filtering, several graph layout algorithms can
be used. Our result of applying these algorithms

varies depending on the size and topology of the
network. Fig. 4 shows the network graph visualized
by using the Fruchterman Reingold (FR) layout,
whereas Fig. 5 by the Yifan Hu (YH) layout and Fig. 6
by the ForceAtlas 2 (FA2) layout.

Different layouts provide different advantages
and disadvantages. The FR layout is optimized for
big graphs, which can prevent the mass particles
from overlapping. But it does not provide cluster
representation and it may produce confusing edge
connection. On the other hand, the YH layout uses a
fast algorithm and provides a good quality on large
graphs, but it shows coarse looking, and is unable to
reach a balanced position. Finally, the FA2 layout
can make clusters tighter, but it shows poor local
minima, and takes much computation time.

Fig. 4 Result visualized by the Fruchterman Reingold
layout

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 272 Volume 13, 2014

Fig. 5 Result visualized by the Yifan Hu layout

Fig. 6 Result visualized by the ForceAtlas 2 layout

8 Conclusion
In this paper, we present a practical design method
of building an efficient crawler to collect data from
Facebook. We discussed the key challenges during
the implementation and execution of the crawler.
We also provided suggested solutions to tackle the
challenges. We then discussed the operation design
of a crawler, the issues to consider, and methods to
evaluate if the crawl succeeds. We found that the
performance of crawler can be significantly
improved by parallelizing crawl tasks. We
implemented our own crawler and performed
crawling Facebook to obtain the structure of the
social network of Macao people. Then, we
discussed some commonly used social network
analysis techniques and visualized the crawled data
using different layout algorithms. We also compared
the network metrics of our graph with some
previous results. We believe that the design and
implementation of crawler we conclude here shed
light on future OSN studies, which will increasingly
rely on crawled sub-graphs.

Acknowledgements:
This work is supported by Macau Science and
Technology Development Fund numbered
039/2010/A.

References:
[1] Angus Wong, Cell phones as mobile computing

devices, IT professional, Vol.12, Iss.3, 2010,
pp. 40-45.

[2] D. M. Boyd and N. B. Ellison, Social Network
Sites: Definition, History, and Scholarship,
Journal of Computer-Mediated
Communication, Vol.13, Iss.1, 2007, pp. 210-
230.

[3] L. Garton, C. Haythornthwaite and B.
Wellman, Studying Online Social Networks,
Journal of Computer-Mediated
Communication, Vol.3, Iss.1, 1997, pp. 0.

[4] F. Schneider, A. Feldmann, B. Krishnamurthy
and W. Willinger, Understanding online social
network usage from a network perspective,
IMC '09 Proceedings of the 9th ACM
SIGCOMM conference on Internet
measurement conference, Chicago, IL, USA,
2009, pp. 35-48.

[5] C. Steinfield, N. B. Ellison and C. Lampe,
Social capital, self-esteem, and use of online
social network sites: A longitudinal analysis,
Journal of Applied Developmental Psychology,
Vol.26, Iss.6, 2008, pp. 434-445.

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 273 Volume 13, 2014

[6] PhantomJS headless WebKit with JavaScript
API [online]. Available: http://phantomjs.org/,
Last Accessed on 01/02/2013.

[7] Firebug (Mozilla Firefox browser plugin)
[online]. Available: http://getfirebug.com, Last
Accessed on 27/02/2013.

[8] CSS Selectors [online]. Available:
http://www.w3.org/TR/CSS2/selector.html,
Last Accessed on 18/03/2013.

[9] CasperJS: navigation scripting & testing utility
for PhantomJS [online]. Available:
http://casperjs.org/, Last Accessed on
09/03/2013.

[10] Program for Large Network Analysis
[online]. Available: http://vlado.fmf.uni-
lj.si/pub/networks/pajek/, Last Accessed on
19/05/2014

[11] NodeXL: Network Overview, Discovery
and Exploration for Excel [online]. Available:
http://nodexl.codeplex.com/, Last Accessed on
19/05/2014

[12] The Open Graph Visualization Platform:
Gephi [online]. Available: http://gephi.org/,
Last Accessed on 20/03/2013

[13] NetDraw Software for Network
Visualization [online]. Available:
https://sites.google.com/site/netdrawsoftware/h
ome, Last Accessed on 19/05/2014

[14] Ucinet for Windows: Software for Social
Network Analysis [online]. Available:
https://sites.google.com/site/ucinetsoftware/ho
me, Last Accessed on 19/05/2014

[15] Social Media Marketing, Statistics &
Monitoring Tools, Socialbakers [online].
Available:
http://www.socialbakers.com/facebook-
statistics/, Last Accessed on 25/03/2013.

[16] W. Fan, K.H. Yeung, and K.Y. Wong,
Assembly Effect of Groups in Online Social
Networks, Physica A: Statistical Mechanics
and its Applications, Vol.392, Iss.5, 2013, pp.
1051-1262.

[17] R. Pastor-Satorras and A. Vespignani,
Epidemic Spreading in Scale-Free Networks,
Physical Review Letters, Vol.86, 2001, pp.
3200-3203.

[18] R. Albert and A. Barabasi, Statistical
mechanics of complex networks, Reviews of
Modern Physics, Vol.74, Iss.1, 2002, pp. 47-97.

[19] S. Ye, J. Lang and F. Wu, Crawling Online
Social Graphs, In: Proceedings of the 12th
International Asia-Pacific Web Conference,
IEEE, 2010, pp. 236-242.

[20] D. H. Chau, S. Pandit, S. Wang, and C.
Faloutsos, Parallel crawling for online social
networks, WWW '07: Proceedings of the 16th
international conference on World Wide Web,
2007, pp. 1283-1284.

[21] A. Mislove, M. Marcon, K. P. Gummadi, P.
Druschel, and B. Bhattacharjee, Measurement
and analysis of online social networks, IMC
'07: Proceedings of the seventh ACM
SIGCOMM conference on Internet
measurement, 2007, pp. 29-42.

[22] C. Wilson, B. Boe, A. Sala, K. P. N.
Puttaswamy, and B. Y. Zhao, User Interactions
in Social Networks and their Implications, 4th
ACM European conference on Computer
systems, 2009, pp. 205-218.

[23] J. D. Cohen, Trusses: Cohesive subgraphs
for social network analysis, National Security
Agency Technical Report, Fort Meade, MD,
U.S., 2008

WSEAS TRANSACTIONS on COMMUNICATIONS
Chi-In Wong, Kin-Yeung Wong,
Kuong-Wai Ng, Wei Fan, Kai-Hau Yeung

E-ISSN: 2224-2864 274 Volume 13, 2014

