
Abstract: In this work, we propose a novel motor disorder diagnosis model based on graph neural networks
(GNNs). This model maximizes model performance by incorporating advanced preprocessing techniques such as
Fast Fourier Transform (FFT) and Wavelet Transform (WT). Conventional machine learning and deep learning
models such as CNN and SVM find it difficult to handle nonlinear high-dimensional data in motor disorder
diagnosis. On the other hand, GNN effectively handles these complex data structures, enabling more accurate
and reliable defect classification. Experimental results show that the GNN-based model combining FFT and WT
performed well in the diagnosis of motor disorder. Specifically, the FFT-based GNN showed high accuracy,
accuracy, and reproducibility at an F1 score of 0.95. The GNN model has lower misclassification rate and
higher reliability compared to other models, and ran consistently for various defect types. This is because
GNNs can capture complex relationships within frequency domain function (FFT) and time frequency domain
pattern (WT). For example, rotational imbalance defects are accurately classified thanks to the ability of GNNs
to model harmonic frequency relationships, and bearing defects are accurately classified thanks to the model
sensitivity to local frequency spikes that are effectively represented on nodes and edges of the graph. These
results suggest that GNN-based motor defect diagnostic systems not only improve diagnostic accuracy, but also
have significant potential for real-time applications in manufacturing environments. The system is expected to
reduce maintenance costs and improve operational efficiency. The proposed GNN model makes an important
contribution by providing practical solutions for the detection and prevention of motion disorders.

Key-Words: Motor failure diagnosis , Predictive maintenance , Failure prediction,Graph Neural
                    Networks,FFT,Wavelet Transform.
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1 Introduction
Graph neural networks (GNNs) show significant
improvements in various fields. For example, GNNs
are used in traffic prediction, weather forecasting,
and recommended systems [1], [2]. This development
highlights the scalability and efficiency of GNNs
in handling complex and interconnected data and
suggests they are also suitable for defect prediction
in motors. In recent work, GNNs have been
used to analyze motor current signals and improve
defect detection precision [3], [4]. These models
handle complex relationships in data better than
traditional machine learning models. Enabling
more accurate defect classification and incorporating
advanced preprocessing techniques such as Fast
Fourier Transform (FFT) and Wavelet Transform
(WT) into GNN models can significantly improve
defect diagnosis performance [5]. Since these

preprocessing methods extract relevant features in
the frequency and time-frequency domains, GNNs
can achieve higher accuracy than traditional machine
learning models.

Traditional motor failure prediction models
mainly use machine learning classifiers to provide
the benefits of simple interpretation and fast
prediction time. However, these models have
limited performance degradation due to nonlinear
and high-dimensional data [6], [7]. CNN models can
provide good performance from complex data, but
they require large datasets and have the disadvantage
of increasing training time. To address this problem,
this study proposes a motion defect prediction
model based on GNN. GNNs can effectively handle
complex data structures, overcome the limitations of
existing models, capture complex interactions within
the data, and provide more accurate predictions. By
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integrating advanced preprocessing techniques such
as FFT and Wavelet Transform, model performance
can be maximized by extracting important features in
the frequency and time frequency domains.

The process of proposing a motor defect
classification model using GNN is as follows.

• Analyzing existing research: Analyzing existing
motor disorder diagnostic studies to identify the
advantages and disadvantages of each approach.

• GNN recognition: Based on GNN’s data
processing capabilities and successful
applications in various fields, the GNN model
assumes that it is suitable for predicting motion
disorders. Item Configuration: Build a test bed
similar to the actual motor drive environment to
collect motor defect data.

• Integrating advanced preprocessing techniques:
Integrating advanced preprocessing techniques
such as FFT and wavelet transforms into
GNN models to extract relevant features in
the frequency and time frequency domains to
improve the accuracy of the model.

• The model is designed and tested as follows.
We design a model that combines GNN
and preprocessing techniques, validate the
performance of the model through various
experiments, and ensure that it achieves higher
accuracy than traditional machine learning
models.

The purpose of this study is to propose amodel that
combines GNN (graph neural network) and advanced
preprocessing technology to improve engine failure
diagnosis performance and provide more accurate
and reliable prediction. As a result, engine failure
prediction becomes more efficient and applicable in
industrial environments. The core idea of this study
is to leverage GNN to improve the accuracy and
reliability of engine failure diagnosis. Combined
with GNNs, it extracts critical data in the frequency
and time frequency domains and learns complex
operating defect patterns. Since conventional
machine learning and deep learning models have
limitations in handling nonlinear or complex data
structures, this study focuses on the ability of GNNs
to effectively handle such data. Based on this
idea, this study aims to propose a better behavioral
anomaly classification model using GNNs. Research
shows that GNN-based anomaly diagnosis models
significantly outperform current machine learning
and deep learning models (CNN, SVM, random
forest, etc.). Specifically, the GNN model with FFT
and WT for preprocessing achieved high precision,
precision, reproducibility, and F1 scores in all

tests. For example, the F1 score of the FFT-based
GNN model outperformed the previous model with
0.95. This indicates that GNNs can effectively learn
key functions in the frequency and time frequency
domains, enabling more accurate classification of
error patterns. The GNN model also showed stable
performance across various engine failure types,
and the misclassification rate of each category was
minimal. This means that GNNs can capture and
process complex relationships in the data and solve
the constraints of existing models when processing
nonlinear data. In addition, the GNN-based fault
diagnosis system proposed in this study is expected
to be commercialized in the actual industrial field.
As it can be developed into a real-time monitoring
and prediction system, it is expected to help
reduce industrial site maintenance costs and improve
operational efficiency. These results not only
highlight the outstanding performance of GNN but
also show its practical application to engine error
diagnosis. This paper consists of five sections,
each of which describes the following topics. The
first Section 2 highlights the shortcomings of the
current engine failure diagnostic method and explains
why GNNs are used. The second section examines
existing studies of engine failure diagnostics to clarify
why GNNs are better than current methods. Section
3 introduces and describes a GNN-based diagnostic
model for malfunctioning operations that integrates
FFT and WT preprocessing techniques. Section
?? discusses experimental settings, datasets, and
evaluation methods and evaluates GNN performance
compared to existing models. Section 5 summarizes
the results, highlights the usefulness of the GNN
model, and discusses future research directions and
potential for real-time systems.

2 Related Work
2.1 Motor Fault Diagnosis
Diagnosing motor failures in industrial environments
is important in improving facility reliability and
reducing maintenance costs. With the recent
development of artificial intelligence and machine
learning technologies, the accuracy and efficiency
of fault diagnosis have been greatly improved [8].
Existing fault diagnostic methods are mainly based
on physical signals such as vibration analysis, noise
analysis, and temperature measurement. [9]. These
methods are useful for analyzing simple physical
properties, but are difficult to recognize complex
patterns and have limitations in processing nonlinear
or high-dimensional data. Machine learning models
such as support vector machines (SVMs), decision
trees (decision trees), and random forests (random
forests) were introduced to recognize complex
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patterns based on data and enable rapid prediction.
However, these models still have limited performance
with high-dimensional data. Deep learning models
such as Convolution Network (CNN) perform well to
process complex data such as image data, but require
large data sets and high computational resources.
Combining old physical signal analysis techniques
with the latest machine learning and deep learning
methods is essential for effective fault diagnosis. This
recognizes complex patterns, diagnoses and prevents
failures in the early stages, increases facility stability,
and reduces maintenance costs. Motor failures can be
caused by a variety of causes, and the main types of
failures are:

1. Bearing defects: Bearing is an important part
of the engine’s rotational motion. Defects can
be caused by wear, lack of lubrication, physical
damage, etc. A bearing defect may appear as an
increase in the amplitude of a particular natural
frequency in the frequency spectrum.

2. Rotational Imbalance: When the rotor of the
motor is unbalanced, it can cause vibrations.
This can be due to manufacturing imbalance,
component wear or damage, or improper
installation. Rotational imbalance results in
large amplitudes at the rotational frequency and
its harmonic frequencies.

3. Mechanical Defects: Defects in the motor’
s mechanical components, such as gears,
couplings, and shafts, caused by wear,
deformation, or corrosion, may present as
periodic patterns in the vibration signals.

4. Shaft Defects: Defects due to shaft cracks,
wear, or misalignment. Such defects can cause
significant changes in amplitude within the
frequency spectrum of vibration signals.

To accurately diagnose and prevent motor fault
types, data from various sensors measuring vibration,
noise, temperature, etc., are collected. Initially, noise
removal and normalization processes are conducted
to transform the data into a form suitable for
analysis. The collected data is then transformed
from the time domain to the frequency domain using
Fast Fourier Transform (FFT), enabling the analysis
of the frequency spectrum to identify abnormal
frequencies. In this course, various machine learning
and deep learning models such as Support Vector
Machine (SVM), Decision Tree, Random Forest,
Convolutional Neural Network (CNN), etc. are used
to recognise complex patterns and classify failures.
Based on real-time data analysis, a warning system
for early failure diagnosis and prevention can be built
to increase equipment reliability and ensure proper

maintenance before failure occurs. This holistic
approach can improve the accuracy and efficiency of
engine fault diagnosis, maximize facility reliability,
and reduce maintenance costs.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are deep learning
models used to process and analyze graphically
structured data. Unlike traditional grid-like data,
GNNs can effectively handle data with irregular
relationships [10].

Figure 1: Traditional Grid Data vs. Graph Data

The left side of Figure 1 represents traditional grid
data. A typical lattice structure is that each node is
connected to the adjacent node according to a fixed
pattern. Traditional neural network models such as
CNN are mainly used for this type of data. On the
other hand, the right side of Figure 1 shows graph data
with irregular structures. In graph data, each node can
have a variable number of adjacent nodes.

Figure 2: GNN Learning Steps

The fourmain steps of GNN are shown in Figure 2:

• Data and Graph Structure Preparation: Convert
the original data to a graph structure consisting of
nodes and edges. A node represents an individual
element of data, and an edge represents a
relationship between nodes.

• Graph Neural Network Learning: Using graphs
as input, each node receives information from
the neighboring node and updates its state. This
process is repeated over and over again to reflect
the overall structure information of the graph.
This allows each node to learn the relationships
in the graph.

• Prediction—Performs predictions based on the
state of the trained node.
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• Optimization: Compute the loss by comparing
the predicted value with the actual label. To
improve the prediction accuracy of themodel, we
optimize and update the model using per-pair and
per-point losses.

GNNs can effectively handle complex graph
structures that traditional neural network models
cannot handle. This enables GNNs to efficiently
analyze and predict complex data across a variety of
industries.

3 Graph Neural Network-Based
Motor Fault Classification Model

The framework of this paper presents learning
results for two preprocessing stages of the GNN
model, suggesting that the GNN model shows good
performance in motor failure classification for each
preprocessing method. A framework for each
preprocessing method is shown in Figure 3.

3.1 Preprocessing and Data Feature
Extraction

Motor fault diagnosis systems combine sensor
vibration data with Fast Fourier Transform (FFT) and
Wavelet Transform (WT) preprocessing to effectively
classify faults by integrating them into graph neural
networks (GNNs). This methodology quantitatively
and qualitatively analyzes the frequency distribution
to overcome the limitations of existing fault diagnosis
methods. The motor fault classification procedure is
as follows:

|x|2 =
√
x21 + x22 + · · ·+ x2n =

√∑
i = 1nx2i

(1)
First, in a preprocessing step, the vibration data

collected from the sensor is transformed into a single
time series dimension using the Euclidean norm of
acceleration across the x, y, and z axes [11]. The
effect of gravity is then removed to obtain pure
vibration data. To better capture low-frequency
characteristics, low-pass filtering is used to remove
high-frequency noise above 500 Hz. Min-max
normalization is then applied to obtain data values
within a specific range to facilitate analysis. Data
processed in the time domain is then converted to the
frequency domain for frequency analysis.

• FFT (Fast Fourier Transform) is used to
transform time-domain data into the frequency
domain to identify major vibration components.
For example, bearing failure was identified by a
sudden increase in amplitude at a specific natural
frequency, such as 120 Hz, which corresponds

Figure 3: Preprocessing Framework

to the frequency of bearing failure. For motors
with rotational imbalance, significant peaks are
observed at multiples of the rotational frequency,
such as 60 Hz and 120 Hz, indicating a harmonic
relationship. These frequency-domain features
were extracted as nodes in the graph, and
the relationship between the harmonics was
indicated by the graph edges.

Based on FFT frequency components, key factors
impacting motor fault prediction are extracted. For
instance, during normal motor operation, consistent
amplitude patterns appear at certain frequencies.
However, when a fault occurs, abnormal amplitude
changes are detected at specific frequencies. Bearing
defects can cause a sharp increase in amplitude at
specific natural frequencies, which vary depending
on the bearing’ s fault characteristics [12]. Rotational
imbalance produces high amplitudes at the rotational
frequency and its multiples, resulting in a periodic
vibration pattern. Additionally, various mechanical
issues within the motor may produce abnormal
amplitudes at distinct frequency components.

From FFT-derived fault-related frequency
components, elements such as the x-component, RMS
value, and skewness that influence various fault types
are extracted and structured into nodes [13]. Each
node represents a significant frequency component,
and edges represent the relationships between these
components. This graph representation encapsulates
both amplitude and frequency distribution, providing
a comprehensive dataset for further analysis.

• WT (Wavelet Transform): Wavelet Transform
enables simultaneous analysis of changes in
both time and frequency domains, which is
advantageous for identifying periodic patterns.

Applying the Wavelet Transform generates a
Wavelet coefficient plot. From this, data at critical
levels for fault detection is extracted. For example,
components at levels 3 and 4 for two-pole motors,
and levels 4 and 5 for four-pole motors, are
selected, as normal motor operation shows consistent
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components per rotation cycle. Since the range
of wavelet coefficients differs by level, min-max
scaling is applied to each level to prevent skewed
judgments toward particular levels. The extracted
data is then transformed into a graph element
structure. Each node comprises key-level wavelet
coefficients in the x, y, and z dimensions at a
specific time point, with edges connecting adjacent
time periods. Additionally, since the motor is
configured to repeat a consistent operation, nodes
representing the beginning and end values of a cycle
are connected considering the motor’ s rotation speed.
This process enables the visualization of vibration
pattern information in the time-frequency domain as
a graph.

3.2 GNN Model Training
Once the graph is constructed, the Graph
Convolutional Network (GCN) is used to train
the graph data. The GCN consists of the
following structure: graph convolution layer,
batch normalization layer, and ReLU activation.
Hyperparameters such as learning rate (set to
0.001), dropout rate (0.2 for FFT-GNN and 0.3 for
WT-GNN), and number of graph convolution layers
(2 layers) were determined through grid search to
optimize model performance. For example, a low
dropout rate was chosen for the FFT-GNN case to
preserve important frequency domain features, while
a high dropout rate was applied for theWT-GNN case
to prevent overfitting due to complex data structures.

Figure 4: FFT GNN

Figure 4 shows the FFT GN that processes graph
data through the Graph Synthesis (GC) hierarchy and
extracts features. This hierarchy uses information
from each node and its surrounding nodes to learn

Figure 5: WT GNN

meaningful patterns. The batch normalization layer
then stabilizes the learning process and increases
the learning speed. The ReLU activation function
provides nonlinearity and improves neural network
performance by converting negative numbers to zero.
This process is repeated twice with additional GC
hierarchy, batch normalization, and ReLU activation
sequentially applied. Finally, the linear hierarchy
calculates the output and solves the classification
task using cross entropy loss. Figure 5 shows the WT
GNN, which also processes data through GC layers,
with Batch Normalization and ReLU activation
applied similarly. However, the WT GNN includes
a Dropout layer to prevent overfitting by randomly
excluding certain neurons during training, aiding
model generalization [14].This Dropout layer is
applied twice to enhance stable learning of WT data
characteristics. Additionally, Dropout is included
within the repeated GC, Batch Normalization,
and ReLU layers, further strengthening overfitting
prevention. The final Linear layer and Cross Entropy
Loss function operate in the same way as in the
FFT GNN. The main difference between FFT
GNN and WT GNN is that the WT GNN includes a
Dropout layer that provides an additional stabilization
mechanism to prevent overfitting due to WT data
complexity. The WTGN structure, which consists
of multiple Dropout layers, can learn more complex
model structures and capture more variability. FFT
GNN, on the other hand, processes data in a simple
structure without a dropout. In conclusion, each
model is designed for data characteristics, and while
WTGN uses a more complex learning process using
Dropout to handle complex data structures, FFTGN
has a simpler learning structure. Each preprocessing
GCN performs synthetic operations from the
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graph to effectively learn spatial dependencies and
interactions between various frequency components.
This process allows the GCN to extract higher-level
features from graphs essential for accurate defect
classification.

Figure 6: GNN Training

Then, as shown in Figure 6, the motor state
is classified into various error categories using the
trained GCN model. The classification process
involves reducing the graph to a feature vector that
best describes the motor’s operating state. Then,
when you enter this vector into a pre-trained classifier,
you determine the error type based on the learned
pattern. The effectiveness of this approach has been
verified by extensive testing of data sets, including
normal and error motor conditions. The experiment
demonstrated the robustness and reliability of the
proposed system in real-world environments with
high accuracy and 0.94 F1 points. Innovative use
of FFT and GNN not only improves defect detection
accuracy, but also helps reduce computational
complexity and data volume compared to traditional
methods.

4 Experiment and Results
4.1 Experiment and Results

Table 1. System specification.

Hardware
Environment

Software Environment

CPU: Intel Xeon Silver
4216 CPU @ 2.10GHz
GPU: 4 x NVIDIA RTX
A5000
Memory: 256GB DDR4
Storage: 2TB SSD

OS: Ubuntu 18.04.6 LTS
Framework:
TensorFlow 2.11.0
Framework: pytorch
2.0.1
Programming
Language: Python
3.10.9

Table 1 shows the hardware and software
experimental settings used in this study. The
hardware configuration consists of an Intel Xeon
Silver 4216 CPU @ 2.10GHz processor and
four NVIDIA RTX A5000 graphics cards. The
software configuration leveraged Python 3.10.9,
a programming language commonly used for
data analysis and machine learning, running on
the Ubuntu 18.04.6 LTS operating system. In
addition, TensorFlow 2.11.0, an open source machine
learning framework, was used to generate and run
machine learning models. Python is a multi-talented,
user-friendly, and widely used framework in deep
learning studies, and was also used as an essential
tool in this study. Finally, we used the Cybit
Learning Library, which provides various tools
for data analysis and machine learning for model
comparison. The data sets used in this study were
collected from configurations that mimic various
operating conditions. In the case of experimental
setting, 30T wooden blocks were used for vibration
measurement and 25T rubber pads were used to
stop the motor shaking. In addition, a flat iron plate
was used to stabilize the motor, and a clamp was
implemented to secure the sensor to the iron plate
to prevent movement. In the load environment, the
timing belt was connected to the motor to apply the
load, and the sensor was fixed to the motor under
load conditions to collect vibration data.

4.2 Dataset
This study utilizes big data vibration data beyond
industrial machinery. This dataset contains
vibration signals for both normal and various
abnormal operating conditions to effectively analyze
potential mechanical anomalies that may occur in
an industrial environment. Future work plans to
further expand the dataset to include additional types
of anomalies (e.g., electrical defects, thermal
imbalances), broader mechanical types (e.g.,
induction motors, synchronous motors), and various
load conditions. This improves the generalization
of the model and verifies its applicability in a
variety of industrial environments. The vibration
data were collected using sensors attached to the
machinery, measuring signals along the X, Y, and
Z axes. The magnitude and characteristics of the
measured vibrations can vary depending on the
sensor’ s installation orientation and the machine’ s
structural configuration. Such multi-axial vibration
signals provide essential information for accurately
understanding the machine’ s operating conditions.
Furthermore, by employing a consistent sampling rate
(e.g., 1000 Hz) and sufficient recording periods (e.g.,
on the order of milliseconds to seconds),we obtained
high-resolution time-domain vibration data. This
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approach allows us to clearly differentiate between
normal states and various abnormal conditions.

Figure 7: x axis data

Figure 8: y axis data

Figure 9: z axis data

Figures Figure 7,Figure 8, and Figure 9 present
examples of time-series vibration data collected
along the X, Y, and Z axes, respectively. By
examining these multi-axial vibration signals, it
is possible to identify the distinct characteristics
of each axis and analyze machine anomalies from
multiple perspectives. For instance, the X-axis data
(Figure 7) can reveal how vibrations change along
a specific direction, while the Y-axis data (Figure

8) can complement the analysis by highlighting
differences in another direction. The Z-axis data
(Figure 9) further contributes to understanding the
three-dimensional vibration pattern, thus supporting
the development and refinement of anomaly detection
models based on multi-axial analysis. Overall,
this comprehensive multi-axis vibration dataset
encompasses a wide range of conditions—from
normal operation to various types of abnormalities
(e.g., bearing damage, rotor imbalance, and other
mechanical faults). As a result, it provides a rich
environment for training and validating predictive
models. By leveraging such data, it is possible to
develop and improve predictive models that can
address a variety of real-world industrial scenarios,
ultimately enhancing the robustness and applicability
of these models across different industrial sectors.

4.3 Evaluation Metrics
Several evaluation metrics are commonly used to
assess the performance of classification machine
learning models. These metrics evaluate various
aspects of the model, with the most popular being
Accuracy, Precision, Recall, and F1 Score. These
metrics are calculated based on the ConfusionMatrix.

• TP (True Positive): Correctly predicting positive
data as positive.

• FP (False Positive): Incorrectly predicting
negative data as positive.

• TN (True Negative): Correctly predicting
negative data as negative.

• FN (False Negative): Incorrectly identifies
positive data as negative values.

Accuracy gauges the proportion of correctly
predicted instances among all instances and gives
a summary of model performance. Accuracy is
computed as follows:

Accuracy =
TP

TP + FP + TN + FN
(2)

Recall shows the portion of accurately predicted
positive cases compared to all true positive cases.
This matters when the expense of false positives
is significant and shows how effectively the model
identifies real positive cases. Recall is computed in
this way:

Recall/Sensitivity =
TP

TP + FN
(3)

Precision assesses the percentage of positive cases
that are accurately predicted from all cases forecasted
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as positive. This metric is important when the
expense of false positives is significant and shows
how effectively the model ensures the correctness of
positive predictions. Precision is computed in this
way:

Precision =
TP

TP + FP
(4)

The F1 score is the average of precision and recall
and gives a balancedmeasure that considers both false
positives and false negatives. It gives a complete
evaluation of how well the model is doing on both
areas; the F1 score is computed as follows:

F1-Score =
2 · Sensitivity · Precision
Precision+ Sensitivity

(5)

4.4 Results
In this study, the performance of the GNN (Graph
Neural Network) model for the motor defect
classification task was evaluated in combination
with various preprocessing techniques. In particular,
wavelet transform and FFT (Fast Fourier Transform)
were applied to transform the data features and
then input into the GNN model to measure its
performance. Experimental results are summarized
as follows

Table 2. Performance Metrics Comparison

Dataset Accuracy Precision Recall F1-Score
Validation 0.92 0.92 0.92 0.92

Test 0.95 0.95 0.95 0.95
aPerformance metrics based on model evaluation.

Table 2 confirms that the GNN model achieved
an accuracy of 0.92, precision of 0.92, recall of 0.92,
and F1 Score of 0.92 on the validation dataset. On
the test dataset, it reached 0.95 across all metrics,
demonstrating high performance.

In the case of the gradient boosting model in
Figure 10, there was a high misclassification rate
in Class 2 and Class 3. In particular, Class 2 was
often misclassified as Class 1, which is interpreted
as the gradient boosting model not being able to
clearly distinguish the boundaries between classes.
The gradient boosting model works by learning the
data sequentially to correct errors, but in this case,
the performance was degraded due to the occurrence
of misclassification among certain classes. Overall,
the model recorded low accuracy, especially in Class
3. This suggests that the model had difficulty
handling complex data structures. In the case

Figure 10: Gradient

Figure 11: Randomforest

of the random forest model in Figure 11, a high
misclassification rate was observed in class 1 and
class 2. In particular, samples from class 2 were
often incorrectly classified as class 1. This can be
seen as a result of the random forest model’s poor
distinction between these two classes. Although the
random forest makes predictions using a number of
decision trees, it had difficulty in distinguishing the
complex boundaries between classes. Overall, the
performance for class 3 was relatively good, but the
boundary between classes was not clear, resulting
in misclassification. In the case of the SVM model
in Figure 12, there was a high misclassification rate
between class 1 and class 2. In particular, the case
where class 2 was incorrectly classified as class 1
was noticeable. SVMs work by finding the optimal
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Figure 12: SVM

Figure 13: KNN

boundary in high-dimensional space, but performance
can be degraded if the distinction between classes
is difficult. This model showed relatively stable
performance for class 3, but there was a problem
with the distinction between classes 1 and 2. In the
case of the KNN model in Figure 13, there was a
high misclassification rate between class 2 and class
3. In particular, the sample of class 2 tended to
be misclassified into class 3. The KNN model had
difficulty in distinguishing the boundaries between
classes in FFT pre-processing data, and since it is
classified based on nearby data points, it seems that
the result did not reflect the complex boundaries
well. Overall, it showed lower performance than the
GNN model, and the misclassification rate was high.
In the case of the GNN model in Figure 14, high

Figure 14: GNN

accuracy and low misclassification rate were shown
in all classes. In particular, the GNN model showed a
clear distinction between classes, high performance in
FFT pre-processing data, and excellent performance
in data using Wavelet Transform. GNN is a
model that learns the relationships between data well
and performs well in complex data structures, and
showed consistent high performance compared to
other models. The GNN model maintained high
accuracy in all classes compared to other models
and had the lowest misclassification rate. On the
other hand, gradient boosting, random forest, SVM,
and KNN models showed high misclassification rate
in some classes. In particular, gradient boosting
models performed poorly in classes 2 and 3, random
forest and SVM models in classes 1 and 2, and
KNN models recorded high misclassification rates in
classes 2 and 3. The GNN model effectively learned
the relationship between data and showed superior
performance compared to other models.

Table 3. Performance Metrics Comparison

Dataset Accuracy Precision Recall F1-Score
Validation 0.96 0.95 0.95 0.95

Test 0.96 0.94 0.94 0.94
aPerformance metrics based on model evaluation.

Table 3 confirms that in the Confusion Matrix
for the training dataset, the GNN model recorded
high accuracy across all classes, with minimal
misclassification, particularly in major classes. The
GNN model maintained high accuracy (Validation:
0.964, Test: 0.963) in the validation and test datasets,
with high values in precision, recall, and F1 Score.

The GNN model in Figure 15 showed high
accuracy in all classes and very low misclassification
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Figure 15: GNN

Figure 16: Randomforest

rate performance. In particular, the prediction
performance in classes 0, 1, 2, and 3 was very
consistently high, and the boundaries between classes
were clearly separated. GNNs performed well on
wavelet transformed data, and the accuracy was
evenly maintained in all classes. This shows that
the GNN model can learn the relationship between
data well and recognize complex patterns effectively.
The random forest model in Figure 16 showed a high
misclassification rate in classes 1 and 2. In particular,
samples of class 1 were often incorrectly classified
into class 2, which resulted in poor performance
of the model. Random forest models tended to
fail to distinguish complex inter-class boundaries,
resulting in inaccurate predictions between classes.
The overall performance showed lower accuracy

Figure 17: SVM

Figure 18: CNN

than that of the GNN model, and there were many
cases where the boundaries between classes were not
clear. The SVM model in Figure 17 showed a high
misclassification rate in Class 1 and 2. Class 1 tended
to be misclassified into Class 2, which is interpreted
as the fact that the SVM had difficulty finding the
optimal boundary in the high-dimensional space. The
SVM model showed constant performance on the
wavelet-transformed data, but the boundary between
Class 1 and 2 was not well distinguished, resulting in
misclassification. As a result, there was a problem
that the ability to distinguish between classes was
inferior to that of the GNN model, recording lower
accuracy. The CNN model in Figure 18 showed
relatively high accuracy, but the performance was
lower than that of the GNN model due to the
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occurrence of class 1 to class 2 misclassification. The
CNNmodel is particularly strong in feature extraction
and can learn the spatial relationship of data well,
but misclassification can occur if the boundaries
between classes are not clear. The prediction
discrepancy between classes 1 and 2 caused the
performance degradation of the CNN model, and
the GNN model showed consistent high performance
without these problems. The GNN model showed
high precision and low misclassification rate in both
wavelet conversion data and FFT pre-processing
data, and showed consistent performance in all
classes. Meanwhile, random forest, SVM, and
CNNmodels showed relatively highmisclassification
rates in major classes, while random forest and
SVM models recorded high misclassification rates,
especially in classes 1 and 2. The CNNmodel showed
relatively high precision, but the performance was
degraded due to classification mistakes in classes 1
and 2. The GNN model showed good performance in
accuracy, repeatability, and F1 score, and consistent
performance across all classes. These results suggest
that the GNN model is highly effective for motor
failure classification tasks, and that its real-time
processing power and low misclassification rate
greatly help to reduce maintenance costs and improve
operational efficiency. Furthermore, the GNN model
has shown strong performance that is useful in various
industries.

5 Conclusion
In this study, a motor disorder diagnosis model using
a graph neural network (GNN) was introduced and
its effect was verified with various preprocessing
methods. The strong data processing power of GNN
is integrated into Fast Fourier Transform (FFT)
and Wavelet Transform (WT), which significantly
improves the accuracy and reliability of motor failure
diagnosis compared to previous models. The test
results show that the GNN-based model achieves
excellent accuracy, repeatability, and F1 score on
datasets treated with FFT and WT, which is very
effective in diagnosing motor failures. Specifically,
the GNN model combined with FFT achieved an F1
score of 0.95, and the WT-based model also showed
consistent results across all classes. This shows that
the GNN can learn more accurately about complex
motor failure patterns, extract key features in the
frequency and time frequency domains, and predict
failures effectively. The proposed GNN-based model
outperformed traditional machine learning and deep
learning models (CNN, SVM, random forest, etc.).
Existing models had limitations in dealing with
high-dimensional data and nonlinear properties,
but GNN overcame these limitations and achieved
higher accuracy in defect diagnosis. The GNNmodel

provides consistent predictive performance for all
defect types, allowing more accurate detection of
defect patterns through FFT and WT pretreatment.
These results mean that GNN-based systems are
very useful in real-world industrial environments.
The model’s high accuracy and low motor defect
diagnostic misclassification rates have the potential
to reduce maintenance costs and significantly
improve operational efficiency. It also has the
potential to develop into a real-time defect prediction
system to increase the potential applicable in the
industrial environment and to demonstrate important
technological advances. Future research directions
include greater data diversity, model optimization,
and real-time applications. In particular, the
proposed GNN-based motor defect diagnosis model
can be integrated into industrial monitoring systems
such as manufacturing plant forecast maintenance
platforms. By using edge computing devices to
process motor sensor data in the field, real-time
systems can be developed to ensure low-latency
defect detection. For example, real-time analysis
of vibration data collected from an industrial motor
in operation enables immediate intervention and
reduces shutdown time.

• Expanding data diversity: expanding data
collection across different motor types and
failure types to validate model generalizability
and evaluate model performance in a wider range
of environments.

• Model Optimization: We plan to optimize the
hyperparameters of the GNN model and apply
various GNN structures to further improvemodel
performance.

• Real-time application: We would like to build
a real-time motor fault diagnosis system, test
its applicability in a real industrial environment,
and validate its real-time data processing and
prediction accuracy.
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