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Abstract: - This work presents an improved three-dimensional Hindmarsh-Rose neuron model that takes into 
account the impact of electromagnetic induction. By employing magnetic flux to characterize this influence, the 
model demonstrates how electromagnetic induction produces membrane potential through a feedback 
memristive current. For this reason, the simplest memristor model, which has been reported in the literature, 
has been used. Interestingly the proposed neuron model does not possess equilibrium points and can exhibit 
hidden coexisting firing patterns. Numerical simulations have been conducted, unveiling the system’s dynamics 
and confirming that the proposed neuron model exhibits hidden coexisting firing patterns.  
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1  Introduction 
The nervous system consists of countless biological 
neurons that act as the primary units for processing 
and integrating information, [1]. Hence, the 
dynamic characteristics of these neurons are 
necessary in defining the behavior of nervous 
systems, [2]. As a result, the modeling of biological 
neurons and the investigation of their dynamics 
have become key research areas, attracting 
substantial interest from researchers. 

Numerous dynamical systems describing 
neuronal behavior have been documented in the 
literature, in order to characterize various types of 
biological neurons. These models are generally 
classified into two primary categories: discrete-time 
maps, [3], [4] and continuous-time neuron models,          
[5], [6], [7], [8], [9]. Both types of models are 
capable of accurately simulating various firing 
patterns as reactions to alterations in the 
electrophysiological environment. However, the 
effect of electromagnetic induction has recently 
garnered significant attention from researchers, as it 
can profoundly influence neurons’ dynamics, [10], 

[11], as well as the behavior of neural networks 
[12]. 

The effect of electromagnetic induction occurs, 
when ions traverse the membrane of a neuron, 
generating ion channel currents alongside 
electromagnetic induction currents, which 
collectively influence the membrane potential. As a 
result, memristors especially flux-controlled are 
employed in well-known neuron models to 
illustrate.  

The dynamic interplay between magnetic flux 
and the potential of the neuron’s membrane, [13]. 
Therefore, flux-controlled memristors have been 
incorporated into various well-known neuron 
models, including the Izhikevich [14], FitzHugh-
Nagumo [15], Hodgkin-Huxley [16], [16], [17], 
[18], as well as both three-dimensional (3D) [19], 
[20], [21] and two-dimensional (2D) [22], [23] 
Hindmarsh-Rose neuron models, to illustrate the 
effect of the electromagnetic induction. 
Furthermore, memristors enable advancements in 
neuromorphic computing, artificial neural networks 
[24], brain-machine interfaces [25], cognitive 
computing, biomedical signal processing [26], 
spiking neural networks, and low-power edge AI, 
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enhancing efficiency, adaptability, and energy-
conscious processing. 

In this work, the Hindmarsh-Rose neuron 
model, a simplified neural model grounded in 
dynamic assumptions, has been adopted, [9]. This 
model employs the most basic flux-controlled 
memristor documented in the literature to simulate 
the phenomenon of electromagnetic induction. The 
system’s numerical simulation results, by using 
bifurcation and continuation diagrams, as well as 
phase portraits and variables’ time series, reveal 
interesting phenomena. As such phenomena, hidden 
coexisting firing patterns and routes to chaos have 
been revealed.   

This paper is organized as follows.  Section 2 
presents the simple memristor, along with the 
proposed 3D neuron model. Section 3 provides the 
results of the numerical simulation, by using well-
known tools from nonlinear theory, obtained by 
solving the proposed 3D neuron model. Finally, 
Section 4 presents the conclusions based on the 
simulation outcomes, along with some 
recommendations for future research. 
 
 
2 Mathematical Description of the 

 Proposed Neuron Model 
A comprehensive mathematical explanation of the 
proposed 3D memristive neuron model is presented 
in this section. 
 
2.1  The Memristor Model 
To highlight the role of electromagnetic induction in 
the 2D Hindmarsh-Rose neuron model, the simplest 
flux-controlled memristor with a quadratic 
polynomial inductance function is used. The 
mathematical description of the proposed memristor 
model is provided as follows: 
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where iM and υM represent the current and the 
voltage in the memristor respectively, while φ is the 
magnetic flux, which plays the role of the 
memristor’s inner state variable. Furthermore W(φ) 
is the quadratic memductance function.  

By applying a sinusoidal voltage stimuli to the 
proposed memristor model, as defined in Eq. (1) the 
three key characteristics, which are crucial for 
identifying memristors [27], are depicted. Figure 1 
shows the pinched hysteresis loops for different 
amplitude (Figure 1(a)) and frequency (Figure 1(b)) 
values of the sinusoidal voltage signals. 

2.2 The Memristive Hindmarsh–Rose 

Neuron Model 
To examine the impact of electromagnetic induction 
on a neuron, the aforementioned memristor model 
of Eq. (1) is incorporated into the well-known 2D 
Hindmarsh-Rose neuron model, [4]. Consequently, 
this results in a novel 3D memristive Hindmarsh-
Rose neuron model, which is described 
mathematically as follows: 
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            (a) 

 
            (b) 

Fig. 1: Pinched hysteresis loops of the memristor 
model of Eq. (1), driven by different sinusoidal 
voltage stimuli          υM = Vmsin(2πft), by using (a) f 
= 100 Hz, with different values of voltage 
amplitudes Vm, and (b) Vm = 2 V, with different 
values of frequencies f  
 
where x and y represent the membrane potential and 
the recovery variable respectively, while a, b, c, and 
d are four adjustable parameters in the original 
Hindmarsh-Rose model. Additionally, I stands for 
the externally applied stimulus, and k is the coupling 
factor of electromagnetic induction. 

In general by setting the left sides of system (2) 
equal to 0, one can obtain the equilibrium points. 
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However, in the case of the system (2) there is no 
solution. Hence, the proposed system falls into the 
category of dynamical systems with hidden 
attractors, [28]. In biological systems, hidden 
attractors are crucial for understanding the complex, 
nonlinear dynamics of neuronal activity, including 
phenomena such as irregular spiking, bursting, and 
chaotic oscillations observed in the brain, [29]. The 
presence of hidden attractors in neuronal models 
indicates that brain activity is governed by intricate 
dynamical structures, which shape processes, such 
as cognition, perception, and motor control in ways 
that are not readily apparent through traditional 
equilibrium-based analyses. 
 
 
3  Numerical Simulation Results 
This section utilizes the externally applied current I 
as a bifurcation parameter, with numerical 
simulations carried out via the 4th-order Runge-
Kutta algorithm, and with initial values (x0, y0, φ0) = 
(0, 0, 0.1). The remaining parameters of the system 
(2) are selected as (a, b, c, d) = (1, 2, 1, 5), while the 
coupling factor k has taken the values of 0.02 and 
0.03. 

 
        (a) 

 
       (b) 

Fig. 2: Bifurcation diagrams of variable φ versus the 
parameter I, for (a) k = 0.02 and (b) k = 0.03, with 
initial conditions (x0, y0, φ0) = (0, 0, 0.1) 

Thus, Figure 2 displays the bifurcation diagrams 
of φ, for the previously mentioned values of the 
coupling factor k, as the parameter I increases with a 
small step. From Figure 2(a) the route from period-1 
to period-2, as the parameter I increases, is 
observed. However, from the value of I equal to 4.4 
the system diverges. In the second case of Figure 
2(b), the system is driven to chaos through a period-
doubling sequence. However, in this case, there are 
windows inside the chaotic region, in which the 
system also diverges. This behavior was the trigger 
for investigating the phenomenon of coexisting 
attractors. In this direction, the respective 
continuation diagrams (Figure 3) of the bifurcation 
diagrams of Figure 2 are produced, In both cases 
continuation diagrams. 

In Figure 3 the route to chaos through a period-
doubling is revealed. Figure 4 (Appendix) depicts 
the time series of x, as well as the phase portraits in 
the y-φ plane, for four values of parameter I (with k 
= 0.03), extracted from Figure 3(b) in order to 
demonstrate the neuron’s activation sequences 
emerging from the proposed 3D neuron model. 

Also, in the ranges of values of I, where the 
system diverges, as demonstrated by the bifurcation 
diagrams of Figure 2, the system presents, 
according to the continuation diagrams other types 
of attractors (periodic and/or chaotic). In Figure 5 
(Appendix), for k = 0.03 and I = 3.79, two 
coexisting attractors (periodic and chaotic), for 
different sets of initial conditions, are presented.   

 
 

4  Conclusion 
This research introduces a 3D memristive 
Hindmarsh-Rose dynamical system that integrates 
the  influence  of  electromagnetic  induction  to  
thesystem. For this reason, the simplest ideal 
memristor model, with a memductance function 
based on a quadratic polynomial, was adopted. The 
improved neuron model presented interesting 
dynamical behavior. As concluded the improved 
neuron model lacked an equilibrium point and also 
it exhibited hidden coexisting firing patterns, which 
were investigated through a numerical simulation 
process, by using bifurcation and continuation 
diagrams. 

In future works the implementation of an analog 
electronic circuit based on the op-amp approach, for 
emulating the proposed memristive neuron model, 
which was based on the Hindmarsh-Rose system, 
has been planned. Furthermore, other ideal or non-
ideal memristors’ models with various nonlinear 
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memductance functions, in the Hindmarsh-Rose 
neuron model, will be used. 
 

 
        (a) 

 
       (b) 

Fig. 3: Continuation diagrams of variable φ versus 
the parameter I, for (a) k = 0.02 and (b) k = 0.03, 
with starting initial conditions (x0, y0, φ0) = (0, 0, 
0.1) 
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APPENDIX 
 
 

 
Fig. 4: Variable’s x time series (left) and phase-portraits in the y-φ plane (right) with k = 0.03 for (a) I = 2.8 

(period-2 spiking), (b) I = 3.4 (period-4 spiking), (c) I = 3.55 (period-8 spiking), and (d) I = 3.8 (chaotic 
spiking) 
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          (a)
 

          (b)  
Fig. 5: Coexisting attractors (periodic and chaotic), with k = 0.03 and I = 3.79, for (a) (x0, y0, φ0) = (0, 0, 0.1), 

and (b) (x0, y0, φ0) = (0, 0, 0.5) 
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