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Abstract:  - We consider a mathematical model of genetic regulatory networks (GRN). This model consists 
of a nonlinear system of ordinary differential equations. The vector of solutions X(t) is interpreted as the 
current state of a network for a given value of time t. The evolution of a network and future states depend 
heavily on the attractors of a system of ODE. We discuss this issue for low-dimensional networks and show 
how the results can be applied to the study of large-size networks. Examples and visualizations are provided. 
The remarkable feature of our research is that the interactions in a network are supposed to be variable. We 
focus on the interaction of variable activation-inhibition cycles. 
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1    Introduction  
Gene regulatory networks (GRN in short) exist in 
any cell of any living organism. GRN is 
responsible for morphogenesis, regulation of 
reactions to changes in the environment, and 
management of functioning of any kind. GRN can 
be imagined as a discrete object, consisting of 
elements (genes) that generally are in continuous 
interaction with other elements. This interaction 
can be roughly classified and modeled. This is 
done based on a huge amount of data. By 
obtaining some kind of regularity in these data, a 
researcher may build a mathematical model. 
Mathematical models based on ordinary 
differential equations (ODE) can predict the future 
states of a network and describe its evolution. For 
this, the state space of a system in a model should 
be investigated. Generally, systems in these 
models have attractors. Knowledge of attractors 
and their properties can help one understand the 
structure and main properties of a modeled 
network. The system of ODE has multiple 
parameters, of which the main interest is in the so-
called regulatory matrix W that describes the 

interrelations between elements in a model. One 
can speak about activation, inhibition, or no 
interaction. As a result of this interaction, the 
entire network can work effectively and rapidly. It 
is to be mentioned, that there were attempts to 
borrow principles of self-organization of GRN to 
other areas, for instance, to telecommunication 
networks [1], [2] and for the design of artificial 
ones. Experimental data are used extensively in 
combination with theoretical means to study GRN. 
In this paper, we will focus on mathematical 
models formulated in terms of differential 
equations. Differential equation models, if 
adequately selected, can predict future states of a 
described phenomenon, based on the given 
structure and rules in a model and information 
about the current state (or previous states). The 
efficacy of mathematical models in different areas 
is repeatedly confirmed. In the last decades, 
mathematical methods of study of GRN have 
developed extensively. The interested reader can 
consult the reviews [3], [4], [5] and the articles [6], 
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], 
[17], [18], [19], [20]. 
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Due to difficulties in directly studying GRN, 
mathematical models are used. To describe the 
evolution of GRN, dynamical models, formulated 
as systems of ordinary differential equations 
(ODE), are used. Systems of ODE can be studied 
by traditional methods of mathematical analysis. 
Solutions are treated as curves in phase space of 
the corresponding dimensionality, which is equal 
to the number of elements (genes) in GRN. 
Trajectories can tend to some geometrical objects 
in a phase space, which are called attractors. To 
understand the principles of GRN, one has first to 
study attractors in the respective mathematical 
model. 

We focus now on the interrelation between 
elements of a network. Mathematically this 
interrelation is described by the regulatory matrix 
W which is an essential characteristic of the 
system (1). In the early stages of the study of 
networks using this system, the elements of W 
were only 1 (activation), 1 (inhibition), and zero 
(no relation). Then the intensity of the interrelation 
was concerned using arbitrary (realistic) real 
numbers. Nevertheless, these numbers are constant, 
and it was suggested tacitly that the interrelation is 
constant. Therefore it is usable only on 
conventionally small intervals of time. In this 
manuscript we allow the coefficients to be variable. 
We provide a number of examples that show that 
the system with variable matrix W has attractors of 
various shapes. Due to a large number of variants, 
we consider here the case of activation inhibition 
behavior, which is discussed in ongoing sections. 

 
 

2    Preliminaries 
Here is the system of ordinary differential 
equations: 

{

𝑥′1 = 𝑓1(−𝜇1𝑆1) − 𝑣1𝑥1,

𝑥′2 = 𝑓2(−𝜇2𝑆2) − 𝑣2𝑥2,
⋯

𝑥′𝑛 = 𝑓𝑛(−𝜇𝑛𝑆𝑛) − 𝑣𝑛𝑥𝑛 .

 (1) 

where 𝑆𝑖 = 𝑤𝑖1𝑥1 + 𝑤𝑖2𝑥2 +⋯+𝑤𝑖𝑛 𝑥𝑛−𝜃𝑖 ,   
𝑓𝑖(𝑧)  can be any sigmoidal function. So they are 
defined for any 𝑧 ∈ 𝑅 and their range of values is 
(0,1).  

 
 
 

Let us simplify things even more. Consider the 
two-dimensional system: 

{

𝑥′1 =
1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 −𝜃1)
− 𝑣1𝑥1,

𝑥′2 =
1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 −𝜃2).
− 𝑣2𝑥2,

 (2) 

 
which corresponds to the mathematical modeling 
of a two-element network. Systems of the form 

{
𝑥′1 = 𝑓1(𝑥1, 𝑥2),

𝑥′2 = 𝑓2(𝑥1, 𝑥2)
      (3) 

are quite popular among researchers and writers of 
textbooks for students. One of the reasons is that 
these systems allow understandable interpretation, 
using the phase plane. To be definite, set 
parameters in (2) to 𝜇1 = 𝜇2 = 4 , 𝑣1 = 𝑣2 = 1,  
𝑤11 = 𝑤22 = 0,  𝑤12 = 𝑤21 = 1,   𝜃1 = 𝜃2 = 0.3.  
Choose the initial point for a solution 
(𝑥1(𝑡), 𝑥2(𝑡)).   Let it be at (x1(0); x2(0)) =(0.8; 

0.1). We see in Figure 1 that the trajectory 
emanating from this point goes to (0.91, 0.91). The 
graphs of 𝑥1(𝑡) and 𝑥2(𝑡) are depicted in Figure 2. 

We can predict the future of the process, which is 
modeled by system (2) with a given set of 
parameters and the chosen initial data. 

 
What is the conclusion made on the basis of 

the above considering the two-dimensional system. 
 

 
Fig. 1: The trajectory of the system (2) emanating 
from (0.8, 0.1) 
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Fig. 2: The graphs of two components of a solution 
of the system (2) emanating from (0.8, 0.1) 
 

The conclusion is: for a given incline rate (µi 

=4) and for given thresholds (θi = 0.3) the two-
element network, in which an element activates 
another one with intensity 1 (w12 = w21 = 1), goes 
to the state (0.9, 0.9) in infinite time. 

No other outcomes. 
Of course, changing the mode of interaction 

between elements, as well as changing any 
parameter, may significantly affect the described 
scenario. For instance, leave parameters 
unchanged, and change the sign of w21 to 1. The 
regulatory matrix is: 

W =( 1 1
−1 1

). (4) 

 

 

Fig. 3: The trajectory of the system (2), matrix W 
as in (4), emanating from (0.8; 0.1) 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 4: The trajectory of the system (2), matrix W 
as in (5), emanating from (0.8; 0.1) 
 

The fortune of the trajectory, emanating from 
the point (0.8, 0.1) is different, it goes (Figure 3) to 
the point at (0.29, 0.09) (the values are 
approximate). 

Let us make two changes, w11 = 1, µ1 = 1. 

 
The regulatory matrix is: 

W =( 1 1
−1 0

). (5) 

 
The result of changing parameters is shown in 

Figure 4. Notice that the limit point is now at the 
center of the unit square. It is the result of the 
choice of thresholds θ1 and θ2. In any of the 
pictures there are the nullclines: 

{

𝑣1𝑥1 =
1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 −𝜃1)
,

𝑣2𝑥2 =
1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 −𝜃2).

   (6) 

 
The direction of the vector field defined by 

the system of differential equations (2) is vertical 
or horizontal, which can be seen in the pictures. 
The points of intersection of nullclines are the 
critical points where no direction of the vector 
field is defined. They serve as attractors in any of 
the three examples. After this preface, we can 
outline our plans in this article. The regulatory 
matrix W in previous studies of many authors was 
Boolean. Its entries were only 1 for activation, 1 
for inhibition, and 0 for no relation. Then any real 
number was allowed to be an element of W, 
characterizing the intensity of interaction. We wish 
to consider further generalization. It is natural to 
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suggest that interrelations between elements of a 
network can and ought to change in time. 
Therefore, in the next section we allow matrix W 
to be variable. This novelty can change the 
behavior of solutions significantly. Because of a 
great variety of possible types of interrelations, we 
have chosen the combination activation versus 
inhibition, both in variable settings. 

 
 

3  The Three-Dimensional Systems 
and Periodic Attractors 

Consider the three-dimensional system, 
corresponding to a three-element network. It is 
assumed that the behavior of trajectories of this 
network is governed by the system: 

{
 
 

 
 𝑥

′
1 =

1

1+𝑒−𝜇1(w11𝑥1+⋯+𝑤14𝑥4−𝜃1)
− 𝑣1𝑥1,

𝑥′2 =
1

1+𝑒−𝜇2(w21𝑥1+⋯+𝑤24𝑥4−𝜃2)
− 𝑣2𝑥2,

𝑥′3 =
1

1+𝑒−𝜇3(w31𝑥1+⋯+𝑤34𝑥4−𝜃3)
− 𝑣3𝑥3,

 (7) 

 
Assign the parameters values, μi=4, vi=1 for 

i=1,2,3. Let the matrix W be: 

𝑊41 = (
2.35 0 −1
−1 2.35 0
0 −1 2.35

) (8) 

Set θ1=0.5 (2.35-1), θ2=0.5 (1+2.35), 
θ3=0.5(1+2.35).  

 
This choice of θ puts a critical point to the 

central location (0.5,0.5,0.5). The reader may 
check that the values x1=0.5, x2=0.5, x3=0.5 satisfy 
the system 

{
 
 

 
 𝑥1 =

1

1+𝑒−𝜇1(w11𝑥1+⋯+𝑤14𝑥4−𝜃1)
,

𝑥2 =
1

1+𝑒−𝜇2(w21𝑥1+⋯+𝑤24𝑥4−𝜃2)
,

𝑥3 =
1

1+𝑒−𝜇3(w31𝑥1+⋯+𝑤34𝑥4−𝜃3)
,

   (9) 

 
which defines the critical points. The values of 
parameters μ, θ, wij are as above chosen. This 
system has a limit cycle, seen as a closed trajectory. 
Moreover, this trajectory attracts other trajectories 
(hence “limit cycle”). 

 

 
Fig. 5: The closed trajectory of the system (7) 
emanating from (0.2, 0.4, 0.2) 
 

 
Fig. 6: The closed trajectory of the system (7), 
attracting two trajectories emanating from (0:2, 0.1, 

0.1) and (0.9, 0.8, 0.9) 
 

Looking at the regularity matrix W, we can 
conclude that there exists an inhibitory cycle (three 
1 in different rows and columns) against self-
activation represented by three 2.85 in the main 
diagonal. The struggle between these tendencies 
results in a periodic solution, represented by the 
closed trajectory (Figure 5). It is to be said, that 
further study of this example shows the following. 
If we put k in the main diagonal, 

𝑊 = (
𝑘 0 −1
−1 𝑘 0
0 −1 𝑘

) ,  (10) 

then for k positive and small the periodic solution 
does not exist. Instead, a spiral like three-
dimensional trajectory enters a single critical point. 
In some region of values for k the periodic solution 
exists, and tends to follow the edges of the unit 
cube (this can be observed in Figure 5). 
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3.1  Behavior at Small Perturbation 

Does the limit cycle lose its properties at small 
perturbations? We can obtain the partial answer by 
conducting a numerical experiment. Imagine that 
the elements in the regulatory matrix are not pure 
constants, but suffer some perturbations, which 
can be interpreted as disturbing noise. To 
experiment, we simply add some bounded 
functions to several entries of the matrix W. 
Suppose the matrix is: 

𝑊 = (

2.35 0 −𝑎(𝑡)
−𝑎(𝑡) 2.35 0
0 −𝑎(𝑡) 2.35

),  (11) 

where 𝑎(𝑡) ≔ 1 + sin 𝑡. 
 

 
Fig. 7: The closed trajectory of the system (7) with 
the matrix (11) 
 

 
Fig. 8: The closed trajectory together with two 
trajectories of the system (7) with the matrix (11) 
 

The results of the experiment are shown in 
Figure 7 and Figure 8, which are counterparts of 
Figure 5 and Figure 6. 

 

4   Activation Meets Inhibition 
Consider system (7) with periodic activation and 
periodic inhibition. The regulatory matrices are: 

𝑊1 = (

𝑎(𝑡) 0 −𝑎(𝑡)
−𝑎(𝑡) 𝑎(𝑡) 0
0 −𝑎(𝑡) 𝑎(𝑡)

),  (12) 

 
𝑊2 =

(

𝑎(𝑡) 0 −𝑎(𝑡 + 1)
−𝑎(𝑡 + 1) 𝑎(𝑡) 0

0 −𝑎(𝑡 + 1) 𝑎(𝑡)
),  (13) 

 
and 
 
𝑊3 =

(

𝑎(𝑡) 0 −𝑎(𝑡 − 1)
−𝑎(𝑡 − 1) 𝑎(𝑡) 0

0 −𝑎(𝑡 − 1) 𝑎(𝑡)
).  (14) 

 
So inhibition is advancing activation in models 

with the matrix (13) and delays in models with the 
matrix (14). 

For all three cases a trajectory tending to the 
attractor is depicted in Figure 9,  Figure 10, Figure 
11 respectively, the initial conditions are x1(0)=0.2, 

x2(0)=0.4, x3(0)=0.2. 

 

 
 
 
 
 
 
 
 
 

Fig. 9: For the case of matrix (12) 
 

 
 
 
 
 
 
 

 
Fig. 10: For the case of matrix (13) 
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4.1  Activation and Inhibition with Different 

Periods 
Continue considering system (7) with periodic 
activation and periodic inhibition, but now the 
period for inhibitory elements is twice smaller than 
that of activation counterparts. Let the regulatory 
matrices be: 

𝑊4 = (

𝑎(𝑡) 0 −𝑏(𝑡)
−𝑏(𝑡) 𝑎(𝑡) 0
0 −𝑏(𝑡) 𝑎(𝑡)

),  (15) 

 
𝑊5 =

(

𝑎(𝑡) 0 −𝑏(𝑡 + 1)
−𝑏(𝑡 + 1) 𝑎(𝑡) 0

0 −𝑏(𝑡 + 1) 𝑎(𝑡)
),  (16) 

 
and 
 
𝑊6 =

(

𝑎(𝑡) 0 −𝑏(𝑡 − 1)
−𝑏(𝑡 − 1) 𝑎(𝑡) 0

0 −𝑏(𝑡 − 1) 𝑎(𝑡)
),  (17) 

where 𝑎(𝑡) = 1 + sin 𝑡,    𝑏(𝑡) = (sin 𝑡)2 . 
 

In Figure 12, Figure 13 and Figure 14 the 
trajectory going to the attractor is depicted. The 
initial values are as before, x1(0)=0.2, x2(0)=0.4, 

x3(0)=0.2. 
 

 
Fig. 11: For the case of matrix (14) 

 
Fig. 12: For the case of matrix (15) 

 
Fig. 13: For the case of matrix (16) 

 

 
Fig. 14: For the case of matrix (17) 

 
 

5   Conclusion 
A system of ODE describing gene networks and 
similar networks can be used in the study of phase 
space and a set of attractors. Since the interrelation 
between elements in such networks is variable, not 
static, the systems of ODE with variable regulatory 
matrices can be used. Activation-inhibition 
constant matrix produces a periodic attractor. This 
attractor does not change its main properties under 
small perturbations in elements of the matrix W. 
For variable matrices, the attractor exists also and 
resembles the one in the static case. The study of 
models of gene networks and similar networks can 
be conducted effectively using the variable 
elements to model interrelations between elements 
of a network. Last but not the least, the authors are 
unaware of studies where variable regulatory 
matrices were employed. Further studies in this 
direction promise to be fruitful. 
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