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Abstract: - A linear multi-port is considered a model of a wire communication line with physical quantities 

sensors or as a power loads supply line. The problems of known methods are shown to determine the multi-port 
parameters and the calculation of load resistances by specified or measured input currents. In the present work, 

the “loads‒currents” relationships are approximation tasks of feedforward neural networks. The corresponding 

input currents are calculated for a particular set of load values, using the multi-port models with one, two, and 
three loads. This is how the training or input vector (input currents) and the target vector (loads) are composed, 

the dimension is equal to the amount of input currents or loads, and the size corresponds to the load set. 

Numerical experiments by the Fit Data package of MATLAB Deep Learning toolbox demonstrate the accuracy 

of load calculation and capability to generalization. An introduced quantitative index of the quality of training 
allows us to identify the minimum size of the training vector and the optimal amount of hidden layers’ neurons. 

The obtained results provide purposeful and fast network training. 
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1   Introduction 
Let us consider a linear multi‒port with an equal 

number of inputs and outputs. This multi-port can be 
used as a model of a wire communication line with 

physical quantities sensors or as a power loads 

supply line. Then, the input currents can be 
calculated for the given loads and known multi-port 

parameters. This is the direct problem presented in 

all the textbooks of the electric circuits theory. On 

the other hand, the loads can be calculated for the 
given or measurement input currents for the inverse, 

more complex, problem. In turn, multi-port 

parameters can be determined experimentally by 
open and short circuits for the inputs and outputs.  In 

particular, the determination of the two-port 

parameters is given in [1]. However, manipulations 
at the inputs and outputs, and even with the 

connection of a voltage source at the output, 
complicate this method. It is more convenient when 

the manipulations are carried out only at the outputs, 

which corresponds to the formulation of this study.  

Various options for organizing experiments at 
the output are possible, such as short circuit, open 

circuit, or using test resistive loads, [2]. In this case, 

the currents can be measured both at the input and 
output and only at the input. This is due to the 

number of necessary experiments, the unambiguity 

of the parameter values, the dimension of the 
resulting system of equations, and the possibility of 

solving this system, [3], [4], [5], [6], [7]. Ultimately, 

such a traditional approach based on the electric 

circuits theory and analytical expressions is 
laborious, the solution of intermediate problems is 

required. 
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In the present work, to explain the traditional 
approach, a fairly general case of a multi-port with 

two mutually influencing loads is considered. Next, 

the “load‒currents” dependencies are not 
determined but are simply considered as an 

approximation or regression problem by a 

feedforward neural network, [8], [9]. The choice of 

the number of hidden layers and neurons is the 
subject of many studies, [10], [11], [12], [13], [14], 

[15], [16].  Grave attention is paid to achieving fast 

training and calculation simplicity. In general, the 
choice of multilayer network architecture is a 

complex and multivariable task.  This task is 

currently poorly formalized, and the effectiveness of 

the solution depends on the developer's experience, 
including based of empirical data based on the 

results of numerical experiments, [17], [18]. In this 

regard, the studies of both overparameterized 
networks and networks with a small number of 

trained parameters are of interest, [19], [20]. 

Numerical experiments were performed to 
demonstrate this approximation problem by the Fit 

Data package with a Shallow Neural Network of 

MATLAB Deep Learning toolbox. To do this, using 

the multi-port model (up to three loads), the input 
currents for a particular set of load values are 

calculated. This is how the training vector and the 

target vector are composed. The dimension of the 
training vector is equal to the amount of input 

currents. The feedforward neural network of up to 

three hidden layers is used.  
The trained neural network is further being tried 

on expanded control data to examine the capability 

to generalization and to verify the specified 

calculation accuracy for "all possible" load values. 
The fact is that, for approximation tasks, the training 

of networks is carried out to minimize the mean 

square error. Therefore, cases of invalid relative 
errors for some load values are not excluded. This is 

important, for example, to physical quantities 

sensors. 

The problems of using the neural network lie in 
determining the minimum set of load values   or the 

size of training vectors and targets, which is 

important in practice with a technically limited set 
of loads. Further, a quantitative index of the quality 

of training is needed, [21], [22]. This index allows 

us to identify the minimum size of the training 
vector and the optimal amount of hidden layers’ 

neurons. The obtained results provide purposeful 

and fast network training. 

 

2  Possible Methods of the four-port 

Parameters Determination and 

Calculation of Loads 
Let us consider a four-port with all unknown seven 

resistors  , , and load resistors 

 in Figure 1.  Due to the resistance of the 

common wire, the load interference is manifested. 

Therefore, this multi-port is of practical interest for 
determining unknown parameters.  

Using the loop current method, the known 

system of equations has the view for the designated 

direction of currents: 
 

,      (1)                                          

 

where   

,  ,  

 ,  

 
 

are the four-port parameters. In turn, the load 

voltages: 

  ,  . 

 
 So, the required experiments are conducted for 

the following variants to find these seven 

parameters. Based on the obtained data, a system of 

the seven equations is compiled and solved. 
 

2.1 Methods of Three Experiments with at 

the Output and Input Measurement 
1) Three pairs of short and open circuit 

combinations at the outputs. The current and voltage 

designations are given in Table 1. The voltages at 
the inputs do not change. 

 

 
Fig. 1:  Four-port with a resistor of the common 

wire 
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Table 1. Short and Open Circuit Combination. 
Designation of Measured Currents and Voltages 

Regime of the First and Second Outputs 

Short & 

short 

circuit 

Short & open 

circuit 

Open & short 

 circuit 

   

   

   

   

  =0 

 =0  

 

We must notice that the OCOC combination is 

redundant and less informative. 
Let us consider (1). We reformat this expression 

so that the desired parameters represent a vector and 

the measured currents constitute a matrix. 
Ultimately, the system of seven equations takes the 

form 

                                        (2) 

 

, 

,            

 

The first line of the matrix corresponds to the 

third equation of (1) for , which contains 

. The second line corresponds to the fourth 

equation of (1) for , which contains , , etc. 

Further, the system is solved by known methods 

concerning the parameter vector.  
 

2) Finite values of the load resistances. If the short 

circuit regime results in large current values for the 

operating values of the input voltages, it is possible 
to measure the currents for the finite resistances of 

the loads. Let it be loads with some maximum 

 and minimum values. The load 

combinations, designations and measured values of 

currents and voltages correspond to Table 1 and 

. 

 

2.2  Method of Four Experiments with the 

Input Currents Measurement 
3) Parameter ambiguity case. At first, we obtain 

the fractionally  linear expressions by  (1) 

 
 

 
 

The first expression (3) contains four unknown 

parameters  We reformat (3) as a 

linear expression so that there are no desired 

parameters on the right side: 

 
 

Let us consider four load values 

 and obtain the corresponding four 

pairs of currents . Ultimately, the 

system of four equations (5) take the form: 

 
 

We note that (6) contains the multiply and 

square of the parameters. Therefore, the solution to 
this system will be ambiguous and give four roots 

with two different parameter values.  

In turn, (4) contains three unknown parameters 

 and the already found parameter  

Similarly, a system of equations is compiled for 
three pairs of currents from those obtained above. 

The solution to this system will be ambiguous and 

give two identical roots. 
We can also make a common system of seven 

equations. Then it turns out eight roots with two 

different values. This is a problem of experimentally 

determining parameters. 
4) Case of unambiguous generalized parameters.  

Let us consider (5).  We exclude multiples and 

squares of the parameters. To do this, the following 
generalized parameters are introduced: 

.         (7)                                               

 

Then, together with the remaining initial 

parameters, the expression with five parameters is 
obtained: 

 
 

We consider five load values  

and the corresponding five pairs of currents 
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. Ultimately, the system of five 

equations (8) take the matrix form: 

 
 

The generalized parameters for the second load 

(4) are introduced similarly. 

 

2.3  Discussion of the Presented Methods 
As we can see, these methods for determining 

parameters are rather laborious and take time. 
Especially everything becomes more complicated 

with an increase in the amount of loads. So, for 

three loads, the system of twelve equations is 
obtained. In addition, the generalized parameters 

lead to a different physical circuit model. However, 

having determined the parameters by one method or 

another, we can calculate the load resistances from 
the measured currents. For that, it is convenient to 

use the explicit (3, 4, 8). 

 
 

3   Calculation of Two-Port Load 
Feedforward neural networks are good at fitting 

functions, [8]. For this task a set of examples of 

proper network behavior as the input data and target 
or output data is required. Such data are found 

experimentally or calculated according to the 

accepted model.  

 
3.1 Preparing the Training Data and 

 Expanded Control Data 
Let us consider a two-port in Figure 2. For such a 

simple circuit, the expression  has the 

following form: 

 
where . In turn, 

the load voltage  .   

 
We consider the specific example of this two-

port. Let us take the following dimensionless 

parameter values . Let 

the load resistance change over a sufficiently 

large range 5…,17 in 0.8 increments. Therefore, a 

set of 16 samples is obtained. This set represents the 
target vector t_16. The corresponding set of input 

current samples I0_16 is the training vector. In turn, 

the increment of 0.5 in the same range yields 25 

samples and the training values I0_25, and t_25. The 
presented variants allow us to determine the 

minimum amount of samples based on the results of 
using expanding control data.  

To check the neural network during or after 

training, we prepare two expanded control data, 
whose values  should be within the range of 

changing parameters for training, but not coincide 

with them.  

 

 
Fig. 2: Two-port with the load resistor  

 

Let the first control data I0_225, t_225 of 225 

samples cover the entire range of change with the 
increment of 0.053. To compare the results of 

checking, let us take even more samples. Let the 

second control data I0_625, t_625 will be 625 
samples with the increment of 0.0192.  

 

3.2 Some Information about the 

 Feedforward Neural Network 
Let us consider the Fit Data package with a Shallow 
Neural Network of MATLAB Deep Learning 

toolbox, [8]. It is generally best to start with the 

graphical user interface GUI by the command 

nftool. This GUI allows us to go through all the 
stages of selection, train a feedforward neural 

network, and get a Script file for further training and 

verification of the neural network with original data. 
The neural network architecture for our example is 

shown in Figure 3.   

At first, we put 3 neurons for the hidden layer. 

This number corresponds to the formula , 

where  defines the input vector dimension, 

[12]. 

The training data I0_16, and t_16  are usually 
divided randomly into a training set of 70%, a 

validation set of 15%, and a test set of 15%. When 

every neuron’s initial weight  and biases  are 

randomly initialized, the network is ready for 

training.     
The input layer or node receives the input vector 

of the first training sample I0_16(1) and transmits it 

to the neurons of the hidden layer.  Inside these 

neurons, this sample is assigned weights  and 

biases  and then subjected to a non-linear sigmoid 

activation function, which is a hyperbolic tangent. 

So, the outputs of the hidden layer are calculated by  
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The output layer is with the linear activation 

function. So, the output of the network as the 

predicted value is calculated by: 

 
 

Similarly, the validation set and test set samples 

are sent to the network input. In the same way, the 
network output for all other samples is calculated, 

which is an epoch. 

The default performance function for 

feedforward networks is a cost factor  or mean 

square error MSE as the average squared error 

between the network outputs  and the target outputs 

t. It is defined as follows for the training set with 

amount of samples  

 
 

 
Fig. 3: Feedforward neural network with one hidden 

layer. 

 
Similarly, MSE is calculated for the validation 

and test sets.  

The process of training a neural network 

involves tuning the values of the weights and biases 
of the network to minimize MSE. The changes in 

updated values were dependent on the MSE change 

concerning previous ,  and ,  values. A 

decreasing error produced a smaller change from 

preceding values and vice versa. If the desired 
accuracy was not achieved, the algorithm updated 

 values in the next iteration as:  

 
where  is the learning rate that determines the 

amount of weight adjustment. The other values as 

, , and  followed the same upgradation 

criteria.  
The presented procedure is repeated for the next 

epochs. Naturally, the training MSE decreases faster 
than for the validation set because the validation set 

is not used to adjust. The training is terminated 

when validation MSE begins to increase or the 
amount of epochs is over. In turn, if the test MSE is 

greater than necessary, then the training process is 
repeated.   

 

3.3  Neural Network Training and 

 Evaluation 
We continue the above example with the following: 

 

Thus, introduced repeatability, as a probabilistic 

index of accuracy or generalizing capability shows 
the training quality changes. If the repeatability 

approaches 100%, then the neural network is 

guaranteed to calculate the load with the appropriate 

accuracy or error.  
So, let us consider the training data of 25 

samples. After the first ten retraining, we got the 

results of Table 2 and the corresponding 
“plotperform” plots for some characteristic cases.  

Let us consider experiment no.1 and plot 

“plotperform” in Figure 4(a). We pay attention to the 
small value for the Validation MSE curve when the 

training process has ended by 206 epochs. 

 

Table 2.  Results of the  first ten experiments 
No. 

Exper. 

Actual 

number 

of epochs 

Maximum 

relative 

errors, % 

1 206 0.67 

2 500 0.064 

3 15 0.74 

4 500 0.013 

5 500 0.18 

6 8 5.93 

7 1 28.7 

8 500 0.25 

9 80 0.22 

10 132 0.48 

 

At the same time, the value for the Test MSE 

curve is much larger. But still, the maximum relative 

Training and evaluation algorithm 

the initial weights w and biases b are randomly 

selected  

↓ 

from 50 to 100 training experiments are 

conducted for 500 epochs 

↓ 

expanded control data are submitted to the input 

↓ 

only extreme relative error values are used 

 ↓ 

the error values are distributed   

up to 0.5%, 1%, 2%, 5%, and 10% ranges 

↓ 

we display the number of errors by ranges as the 

repeatability from the total amount of extreme values    
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error “max error” is equal to the small value of 
0.6705 due to the small value for the Validation 

MSE curve. As it turned out, the extreme values  for 

225 samples are close to the values   of 625 samples. 
Therefore, the control data can be limited to 225 

samples. 

Next, experiment no. 2 results in an even lower 

max error of 0.0644. For this case, the value of the 
Test MSE curve is much less than for the Validation 

MSE curve, as shown in Figure 4(b).  

These experiments no. 1 and no. 2 show that the 
Best Validation Performance value ambiguously 

determines our relative error. This justifies the use of 

expanded control data.  

As can be seen from this table, there are 6 errors 
up to 0.5%, and the number of errors up to 1% is 8 or 

80%. We will consider this a high result. Therefore, 

we calculate the repeatability of the specified error. 
The corresponding tendency to change the training 

quality of such averaged data is shown in Table 3.  

 
Table 3. Repeatability of 1 to 10 experiments 

Specified errors, %  0.5 1 2 5 10 

Repeatability, %   60 80 80 80 90 

 

 
(a) 

 

(b) 

Fig. 4: Change of the MSE in the training process: 

(a) the Test MSE is significantly larger than 

the Validation MSE at the training end; (b) the Test 
MSE is significantly less than the Validation MSE at 

the training end 

To confirm the statistics, we carry out the 
following ten experiments and calculate the average 

repeatability from 1-20, 1-30, etc. For 50 

experiments, the repeatability became close to that of 
40 ones.  The achieved steady-state repeatability 

value is a criterion for the ending of this multiple 

retraining, which is important in practice.    
 

 
(a) 

 
(b) 

Fig. 5: Repeatability of specified errors: (a) 25 

samples; (b) 16 samples 
 

Next, we repeat all the experiments for 2, 4, etc. 

up to 10 hidden layer neurons. The obtained results 
are presented by the family of plots in Figure 5(a). 

As can be seen, 3 neurons provide the greatest 

repeatability. For 2 neurons, the result is somewhat 

worse. This suggests that there are not enough 
neurons to approximate. The result is also worse in 

the case of 4 and 5 neurons. This may indicate 

insufficient training data sets. The repeatability is 
monotonously reduced. However, for 6 or 7 neurons, 

oscillations in the repeatability begin to appear. 

Similar results for 16 samples are presented in 
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Figure 5(b). Then, the repeatability in this case is 
lower. 

Hence the training methodology follows. The 

amount of neurons is selected for the prepared 
training data. We run several training attempts. If the 

repeatability is by the required error, then we are 

approaching the optimal network structure. If the 

errors are large and there is no repeatability, then it 
does not make sense to realize the retraining for a 

long time. For example, we can take 16 samples or 

less, 2 or 5 neurons, and repeat retraining for a long 
time, while we get an error of no more than 1%. 

After all, the statistics of the repeatability of such a 

result show only 40% and 20%. It is better to change 

the number of neurons, and the repeatability of the 
result will immediately show the tendency. In this 

example, according to Figure 5, the amount of 

samples from 16 to 25 is the optimal value for 3 
neurons that corresponds to the theory.  

 

 

4   Calculation of Two Loads 
 

4.1 Preparing the Training Data and 

 Expanded Control data 
We consider the specific example of the above four-

port in Figure 1. Let us take the following 

dimensionless parameter values: 

    
   

 

Then the expressions for the input currents 

, , as the inverses of (3, 4), 

have the MATLAB form 
I3=2*(3889*RL2 + 19886).*(RL1 + 10)./det;  

 I4=2*(2351*RL1 + 7310).*(RL2 + 14)./det;               

(14)             
                                                                  

 det=50552*RL1 + 34711*RL2 +  

         9052*RL1.*RL2 + 190754; 
 

Now, we calculate the training data with the 

different amounts of samples according to Table 4.  

Note that the amounts of load samples are the 
same, and the total amounts of samples are formed 

due to the mutual search of the values for each load.  

Therefore, the calculation code uses the for loop 
to the rL1 value, the nested for loop to the rL2, and 

the user-defined functions (14).  

Similarly, we calculate the expanded control data 

with two different amounts of samples according to 
Table 5. 

 

 
 

Table 4. Training data 

Amount of 

samples 

rL1 9 7 

rL2 9 7 

Total amount 81 49 

Range and 

increment 

of load 

changes 

rL1 5:1.5:17 5:2:17 

rL2 7:2.625:28 7:3.5:28 

Input vector I0_81 I0_49 

Target vector t_81 t_49 

 

Table 5. Control data  

Total amount 256=16^2 676=26^2 

Range and 

increment 

of  

load 

changes 

rL1 5.0:0.8:17.0 5.0:0.48:17.0 

rL2 7.0:1.4:28.0 7.0:0.84:28.0 

Input vector I0_256 I0_676 

Target vector t_256 t_676 

 

4.2  Neural Network Training and 

 Evaluation 
We repeat all the actions similarly to one load for the 

given samples by different numbers of the hidden 
layer neurons. The neural network architecture is 

shown in Figure 6. 

The initial number of these neurons equals 5 and 

corresponds to the formula 2n+1, where n=2 defines 
the input vector dimension. Let us consider the 

training data of 81 samples. As it turned out, the 

extreme values   for 256 samples are close to the 
values   of 676 samples. Therefore, the control data 

can be limited to 256 samples. The results obtained 

are presented by the family of plots in Figure 7(a). 
Similar results for 49 samples are presented in 

Figure 7(b). But, the repeatability in this case is 

lower. The required amount of samples and the 

number or amount of neurons is determined by the 
given repeatability. 

 
Fig. 6: Feedforward neural network with one hidden 
layer, two inputs, and outputs 
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(a) 

 
(b) 

Fig. 7: Repeatability of specified errors: (a) 81 

samples; (b) 49 samples 
 

So, with an increase in the number of neurons 

from 7 ones, the repeatability decreases 
monotonously, and for 81 samples this decrease 

manifests itself to a lesser extent. 

This suggests that 49 samples are not enough. 

However, with a further increase in the number of 
neurons (even one neuron), the oscillations of 

repeatability are observed. And so, the optimal 

number of neurons depends on the given relative 
error and the size of the training data sets. Thus, for a 

1% error for 81 samples and 5 to 10 neurons are 

obtained and 5 to 7 neurons are obtained for 49 
samples. Obviously, the repeatability value increases 

for large errors of more than 5%, and the range of the 

optimal number of neurons expands. 

In addition, an interesting and useful result is 
obtained. As we saw, the load interaction reduces the 

amounts of samples and its range for each load. A 

kind of cumulative effect of load interaction is 
manifested. The amount of samples for each of the 

two loads varies from 7 to 9 due to the second 

power. For comparison, in the case of one load, the 

amount of samples varied from 16 to 25 for 
comparable repeatability. 

Attempts to train a network with two hidden 

layers produce dramatically worse results. 
 

 

5   Calculation of Tree Loads 
 

5.1 Preparing the Training Data and 

 Expanded Control Data 
For specificity, let us consider a six-port in Figure 8. 

To simplify calculations, we enter intermediate 

loads , where: 

 

 

 
 

We must obtain the expressions  

   , using the loop current 

method. Then, the MATLAB Script has the 
following view:  

r4a=5.0; r5b=2.5; r6c=7.5; rab=4.0; rbc=6.0;  

rac=12.0; V4=5.0; V5=5.0; V6=5.0; 

syms I4 I5 I6 Iab Ibc Iac L1 L2 L3 
eq1=(r4a+L1)*I4-L1*Iab-V4;  

eq2=(r5b+L2)*I5+L2*Iab-L2*Ibc-V5; 

eq3=(r6c+L3)*I6+L3*Ibc-V6;  
eq4=(L1+rab+L2)*Iab-rab*Iac-L1*I4+L2*I5-

 L2*Ibc; 

eq5=(L2+rbc+L3)*Ibc-L2*Iab-L2*I5-
 rbc*Iac+L3*I6; 

eq6=(rab+rac+rbc)*Iac-rab*Iab-rbc*Ibc;  

eqns = [eq1,eq2,eq3,eq4,eq5,eq6]; 

S=solve(eqns,I4,I5,I6,Iab,Ibc,Iac);  
I4=S.I4; I5=S.I5; I6=S.I6; 

 

The expressions for input currents are user-defined 
functions.  
 

 

Fig. 8: Six-port with three load resistors 
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Now, we calculate the training data sets with the 
different amounts of samples according to Table 6. 

 

Table 6. Training data 
Total amount 512=8^3 343=7^3 

 

Range and 

increment 

of 

load 

changes 

rL1 3:2.5:20.5 3.0:2.9:20.4 

rL2 2.0:2.5:19.5 2.0:2.9:19.4 

rL3 3.5:3:24.5 3.5:3.5:24.5 

Input vector I0_512 I0_343 

Target vector t_512 t_343 

 

The amount of load samples is the same, and the 

total amount of samples is formed due to the mutual 
search for each load. Therefore, the calculation code 

uses the for loop to the rL1 value, the first nested for 

loop to the rL2, the second nested for loop to the 
rL3, and the user-defined functions.   

In turn, the calculated two control data are 

shown in Table 7.  
 

Table 7. Control data 

Total amount 4913=17^3 9261=21^3 

 

Range and 

increment 

of  

load 

changes 

rL1 4:1:20 4:0.8:20 

rL2 3:1:19 3:0.8:19 

rL3 4:1.25:24 4:1:24 

Input vector I0_4913 I0_9261 

Target vector t_4913 t_9261 

 

5.2  Neural Network Training and 

 Evaluation     
We are conducting similar experiments for the given 

samples with different numbers of neurons for one, 

two, and three hidden layers. At first, the neural 
network with one hidden layer is used, similar to 

Figure 6, but with three inputs and outputs. The 

initial number 7 of the hidden layer neurons 

corresponds to the formula 2n+1, where n=3 defines 
the input vector dimension. The obtained results are 

presented by the family of plots in Figure 9. So, the 

control data can be limited to 4913 samples also.  
With an increase in the number of neurons, the 

repeatability decreases to a lesser extent compared to 

two loads due to the manifestations of the 
cumulative effect to a greater extent. Note that the 

amount of samples for each of the three loads varies 

slightly (from 6 to 8) due to the third power.  

Besides, the oscillations in repeatability values   are 
observed with the increase of only one subsequent 

neuron.   

As we can see, the optimal number of neurons 
depends on the given error and the size of the 

training data. Thus, for 2% of the error, from 8 to 14 

neurons are obtained for 343 samples in Figure 9(a), 
and from 11 to 22 ones for 512 are obtained for 1.5% 

of the error in Figure 9(b). The repeatability is 35%. 

Note the significant oscillation in repeatability in the 

region of the optimal number of neurons for 512 
samples. This suggests that there are not enough 

neurons. 

 

 
(a) 

 
(b) 

Fig. 9:  Repeatability of specified errors for one 

hidden layer: (a) 343 samples; (b) 512 samples 
 

A further increase in the number of neurons 

leads to a more monotonous dependence. On the 

other hand, for 343 samples, an increase in the 
number of neurons also leads to significant 

oscillations in repeatability. This may indicate that 

the size of the training data is insufficient. 
In a general case, when the given error increases, 

the optimal number of neurons shifts to the region of 
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smaller values. In this case, the repeatability value is 
also increased. It is obvious that for large errors 

of more than 5%, the repeatability value is even 

more increased, and the range of the optimal number 
of neurons expands. 

Let us consider the range of the number of 

neurons (for example, more than 30 ones in Figure 

9), when the number of neurons significantly 
exceeds the optimal number. On the one hand, the 

repeatability value decreases. On the other hand, 

using such an excess number of neurons is useful in 
practice to improve the reliability of the neural 

network.  

 

 
(a)                     

 

   (b) 

Fig. 10: Repeatability of specified errors for 512 

samples and number of neurons for each layer: (a) 

three layers; (b) two layers 
 

Next, the plots of 512 samples with two and 

three layers are presented in Figure 10. There are 

also oscillations in repeatability, but the plots are 

smoother for three layers. This suggests that two 
layers are not enough. The repeatability values for 

three and two layers are approximately the same. As 
we can see, the optimal number of neurons depends 

on the given error and the number of layers. So, for 

1% of the error, it turns out from 7 to 11 neurons for 
three layers and from 9 to 11 for two layers. The 

repeatability is 50%.  

When the specified error increases to 2%, the 

optimal number of neurons shifts to the region of 
smaller values, especially for two layers. In this case, 

the repeatability value is also increased to 70%. 

Obviously, for large errors of more than 5%, the 
repeatability value increases to 100%. Therefore, the 

range of the optimal number of neurons expands.  
 

 

(a)                           

 
       (b) 

Fig. 11: Repeatability of specified errors for 343 

samples and number of neurons for each layer: (a) 

three layers; (b) two layers 
 

In turn, the plots for 343 samples with three and 

two layers are presented in Figure 11. It can be noted 
that the three layers produce large repeatability 

values, especially for small values of specified 

errors. There are also oscillations in repeatability, but 
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more smoothed plots appear already for two layers. 
This suggests that there are not enough data sets for 

the three layers. The changes in the optimal number 

of neurons are similar to the case with 512 samples. 
The comparison of the characteristics with the 

512 and 343 samples shows that the repeatability 

values for the 512 are markedly higher. This follows 

a possible compromise between the size of the 
training data sets, the accuracy obtained, and the 

number of neurons. 

 
 

5   Conclusion 
The solution of the direct and inverse problem of 

electric circuits theory is associated with the 
determination of multi-port parameters. Known 

methods for determining parameters using analytical 

expressions are rather laborious. A neural network is 
an alternative for the multi-port calculation without 

explicit determination of its parameters. The relation 

of MSE values for the Validation and Test curves on 
the plotperform plot provides preliminary 

information on the quality of the training. However, 

the Best Validation Performance value ambiguously 

defines the relative error for the expanded control 
data. The used repeatability index quantifies the 

training quality defines the criterion for performing 

multiple training, gives a practical compromise 
between the size of the training data, the accuracy 

obtained, the number of neurons, and the number of 

hidden layers, and provides purposeful network 
training. The interaction of two and three loads 

reduces the number of samples for each load, which 

is important in practice. This positive effect can be 

expected to occur for more loads. Although the 
results obtained are more demonstrative and 

qualitative, the identified patterns in the behavior of 

neural networks provide a basis for practical 
problems. Thus, an excessive number of neurons 

increases the reliability of neural networks. 
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