4 Conclusion
Based on the analysis presented in this paper, we
can conclude that the properties of one or another
circuit optimization strategy depend on the behavior
of the Lyapunov function of the optimization
process. A special function, the relative time
derivative of the Lyapunov function, is a fairly
informative source for finding strategies that
minimize the processor time. We found a strong
correlation between the properties of the Lyapunov
function and the corresponding CPU time. The least
processor time is also shown by those strategies that
have the largest absolute value of the relative time
derivative of the Lyapunov function in the initial
section of the optimization trajectory. This property
can become the basis for developing a better circuit
optimization algorithm.
References:
[1] J.R. Bunch, and D.J. Rose, Eds., Sparse
Matrix Computations, Acad. Press, N.Y.,
1976.
[2] O. Osterby, and Z. Zlatev, Direct Methods for
Sparse Matrices, Springer-Verlag, N.Y.,
1983.
[3] F.F. Wu, Solution of Large-Scale Networks
by Tearing, IEEE Transactions on Circuits
and Systems, Vol.CAS-23, No.12, 1976, pp.
706-713.
[4] A. Sangiovanni-Vincentelli, L.K. Chen, and
L.O. Chua, An Efficient Cluster Algorithm
for Tearing Large-Scale Networks, IEEE
Trans. Circuits Syst., Vol.CAS-24, No.12,
1977, pp.709-717.
[5] N. Rabat, A.E. Ruehli, G.W. Mahoney, and
J.J. Coleman, A Survey of Macromodeling,
IEEE International Symposium on Circuits
and Systems, 1985, pp. 139-143.
[6] A. Ruehli, A. Sangiovanni-Vincentelli, G.
Rabbat, Time analysis of large-scale circuits
containing one-way macromodels, IEEE
Trans. Circuits Syst., Vol.29, 1982, pp. 185-
191.
[7] R. Fletcher, Practical Methods of
Optimization, John Wiley & Sons,
N.Y.,1981.
[8] P.E. Gill, W. Murray, M.H. Wright, Practical
Optimization, Acad. Press, London,1981.
[9] G. Stehr, M. Pronath, F. Schenkel, H. Graeb,
and K. Antreich, Initial sizing of analog
integrated circuits by centering within
topology-given implicit specifications, Proc.
of the IEEE/ACM Int. Conf. CAD, 2003, pp.
241-246.
[10] M. Hershenson, S. Boyd, and T. Lee, Optimal
design of a CMOS op-amp via geometric
programming, IEEE Trans. CAD ICs, Vol.20,
No.1, 2001, pp.1-21.
[11] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi,
Optimization by simulated annealing,
Science, Vol.220, 1983, pp.671-680.
[12] V. Delport, Parallel simulated annealing and
evolutionary selection for combinatorial
optimization, Electronics Letters, Vol.34, pp.
758-759.
[13] B. Hamma, S. Viitanen, and A. Torn, Parallel
continuous simulated annealing for global
optimization, Optimization Methods and
Software, Vol.13, 2000, pp.95-116.
[14] D. Nam, Y. Seo, L. Park, C. Park, and B.
Kim, Parameter optimization of an on-chip
voltage reference circuit using evolutionary
programming, IEEE Trans. Evol. Comput.,
Vol.5, No.4, 2001, pp.414-421.
[15] N.F. Paulino, J. Goes, and A. Steiger-Garcao,
Design methodology for optimization of
analog building blocks using genetic
algorithms, Proc Symp.CAS, 2001, pp.435-
438.
[16] G. Alpaydin, S. Balkir, G. Dundar, An
evolutionary approach to automatic synthesis
of high performance analog integrated
circuits, IEEE Trans. Evol. Comput., Vol.7,
No.3, 2003, pp.240-252.
[17] A. Srivastava, T. Kachru, and D. Sylvester,
Low-Power-Design Space Exploration
Considering Process Variation Using Robust
Optimization, IEEE Trans. CAD ICs, Vol.26,
No.1, 2007, pp.67-79.
[18] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z.
Wang, J. Lu, and F.V. Fernandez, Analog
circuit optimization system based on hybrid
evolutionary algorithms, Integr., VLSI Jour.,
Vol.42, 2009, pp.137-148.
[19] M.L. Carneiro, P.H.P. de Carvalho, N.
Deltimple, L. da C Brito, L.R.A.X. de
Menezes, E. Kerherve, S.G. de Araujo, and
A.S. Rocira, Doherty amplifier optimization
using robust genetic algorithm and unscented
transform, Proc. Annual IEEE Northeast
Workshop CAS, 2011, pp.77-80.
[20] J. Robinson, and Y. Rahmat-Samii, Particle
swarm optimization in electromagnetic, IEEE
Trans. Anten. Propag., Vol.52, No.2, 2004,
pp.397-407.
[21] M.A. Zaman, M. Gaffar, M.M. Alam, S.A.
Mamun, and M. Abdul Matin, Synthesis of
antenna arrays using artificial bee colony
WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2023.22.12