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Abstract: - A banyan-type network is constructed by aligning unit switches with two inlets and outlets in multiple 
stages. Rearrangeable banyan-type networks are crucial for applications such as communication systems because 
they can universally establish connections for any request without blocking. If the number of network inputs (or 
outputs) is 2n (n > 0), the banyan-type network should have 2n − 1 or more stages to be rearrangeable. A few 
rearrangeable 2n − 1 stage networks have been reported. However, the class of rearrangeable 2n − 1 stage 
banyan-type networks has not been completely clarified. This study examines the identification of rearrangeable 
2n − 1 stage banyan-type networks that are not isomorphic to one another. This is done by generating candidate 
networks and checking their rearrangeability via the satisfiability problem. The drawback of this approach is its 
poor scalability due to numerous candidates. To eliminate this drawback, it is shown that the candidates can be 
reduced to a smaller number of networks called pure banyan networks. This is achieved by analyzing network 
isomorphism. Next, necessary conditions are derived for rearrangeability. Utilizing the conditions, the number 
of candidate networks further decreases because blocking networks are identified and removed from the 
candidates. For the reduced number of candidate networks, rearrangeability is assessed through computer 
experiments for n = 4 and 5. For n = 4, the result shows that any rearrangeable configuration is isomorphic to 
previously reported rearrangeable networks. For n = 5, the blocking probability is extremely low and the 
rearrangeability is inconclusive for two groups of networks. 
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1   Introduction 
Switching networks, [1], [2], [3] are indispensable as 
components of various information and 
communication systems, [4], [5], [6], [7], [8], [9], 
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], 
[20]. Switching networks are configured by placing 
small switches in multiple stages. This configuration 
flexibly provides connectivity between numerous 
inputs and outputs. 

A well-known class of switching networks 
comprises multistage unit switches, each of which 
has two inlets and outlets. Various networks of this 
type have been reported in the literature with 
different names, [16], [17], [18], [19], [20], In this 
study, we refer to them as banyan-type networks. 

For some applications, a switching network is 
required to be nonblocking. Nonblocking banyan-
type networks can be classified as rearrangeable 
networks, [1]. Let N = 2n be the number of inputs (or 
outputs) in a banyan-type network. Then, the number 
of stages should be greater than or equal to 2n − 1 for 

the network to be rearrangeable. Actually, there are a 
few known rearrangeable 2n − 1 stage networks. 
However, the class of rearrangeable 2n − 1 stage 
banyan-type networks has not been clarified, despite 
numerous previous related studies, [21], [22], [23], 
[24], [25], [26], [27], [28], [29]. The clarification of 
rearrangeable banyan-type networks is essential 
because it enables us to choose the best configuration 
from all possible networks for an application. For 
example, if we find the best configuration for the 
photonic switching application, it will become easier 
to implement a large-scale photonic switch. This 
enables us to utilize higher transmission bandwidth 
in communication services through photonic 
networks. It is also a theoretically interesting 
challenge to search for previously unreported 
rearrangeable banyan-type networks. 

In a banyan-type network, the set of links 
connecting adjacent stages is called an exchange. The 
link configuration rule of an exchange is represented 
by a cyclic bit-position permutation of indices 
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assigned to switch inlets and outlets. A banyan-type 
network is specified by which permutation is applied 
to each exchange. 

Isomorphism should be considered when 
assessing the rearrangeability of a banyan-type 
network. A given banyan-type network can be 
transformed into another by exchanging the positions 
of switches and redrawing links. Then, the original 
and transformed networks are isomorphic and thus 
equivalent in terms of their rearrangeability. Suppose 
that two or more networks are isomorphic. Then, it is 
unnecessary to assess the rearrangeability for all of 
them; it is sufficient to only check the 
rearrangeability for any one of them. 

In this study, an efficient method is proposed for 
searching for rearrangeable banyan-type networks by 
improving the method presented in, [30] (hereinafter, 
the base method). In the base method, a set of bit-
position permutations is first assumed, and candidate 
networks are exhaustively generated by assigning 
elements of the permutation set to exchanges. Then, 
it is checked whether connections can be established 
in each candidate network for a given connection 
request set. This is achieved by solving a satisfiability 
(SAT) problem that models the routing of 
connections, [31]. By repeating the above procedure, 
if connections are blocked for a certain request set, 
the network is a blocking network, whereas if 
connections can always be established for many 
request sets, the network is likely to be rearrangeable. 
The base method is disadvantageous for scalability 
because the number of generated candidate networks 
grows unacceptably large for a large n value. 
Therefore, this study effectively reduces the number 
of candidate networks. 

The major contributions of this article are as 
follows. 
(1) It is shown that any banyan-type network 

configured by bit-position permutations 
commonly used in the reported networks is 
isomorphic to a configuration referred to as a 
“pure banyan network” (Theorem 1). The 
number of pure banyan networks is significantly 
less than that of the possible candidate networks 
examined in, [30]. 

(2) Necessary conditions for the rearrangeability of 
pure banyan networks are derived (Theorems 2 
and 3). The conditions suggest that a 
considerable number of pure banyan networks 
are blocking networks. This further reduces the 
number of candidate networks to be assessed for 
rearrangeability. 

(3) By investigating the Beneš network structure, a 
class of blocking networks is revealed (Theorem 
4). By discovering the isomorphism between 

this network class and candidate networks, it is 
possible to further filter out blocking networks. 

(4) The rearrangeability of pure banyan networks is 
assessed by computer experiments for n = 4 and 
5. For n = 4, it is shown that only 36 networks 
are sufficient to be checked although 117,649 
candidates were tested in, [30]. For n = 5, 
candidate networks were categorized into 11 
groups, each comprising isomorphic networks. 
The networks of these groups were tested, and 
the networks of nine groups were blocking 
networks. However, the rearrangeability is 
inconclusive for the two other groups. 

The remainder of this article is organized as 
follows. In Section 2, previous related studies are 
reviewed. In Section 3, we define a banyan-type 
network and explore the isomorphism, 
rearrangeability, terminology, and definitions as 
preliminaries. The characteristics of isomorphism are 
investigated in Section 4, wherein a previously 
reported banyan-type network is shown to be 
isomorphic to a pure banyan network. In Section 5, 
the necessary conditions for the rearrangeability of a 
pure banyan network are derived. By observing the 
Beneš network structure, a condition for blocking 
networks is also derived. Section 6 presents the 
empirical results of computer experiments. Finally, 
Section 7 concludes this study. 
 

 

2   Related Work 
Many studies have been conducted on multistage 
switching networks comprising unit switches, each of 
which has two inlets and outlets. This category of 
switching networks includes shuffle-exchange 
network [16], omega network [17], n-cube network 
[18], banyan network [19], and baseline network [20]. 
It is also possible to consider that the Beneš network 
[1], [2] falls into this category. In this study, we refer 
to these networks as banyan-type networks. 

Banyan-type networks have various applications. 
They were first proposed and studied mainly for 
parallel processing, [16], [17], [18], [19], [20]. For 
this application, the networks were employed to 
connect multiple processors and memories. Banyan-
type networks are well suited for this purpose 
because of their control simplicity. Then, studies 
based on fast packet-switching technology were 
conducted to apply them to communication systems, 
[13], [14], [15]. In a node of communication 
networks, a banyan-type network can be employed to 
interconnect network interfaces. For communication 
system applications, the advantages of banyan-type 
networks include their self-routing nature and 
modularity. Recently, banyan-type networks have 
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been often employed in photonic switching systems, 
[4], [5], [6], [7]. A banyan-type network is suitable 
for photonic switches because it is relatively easy to 
implement a unit switch using phase shifters, [7]. 
Another recent application of banyan-type networks 
is in decoding LDPC (low-density parity-check) code, 
[8], [9], [10], which is a high-performance error-
correcting code. Banyan-type networks have also 
been applied to image encryption, [11] and neural 
networks [12]. 

For applications such as communication systems, 
switching networks should be nonblocking to always 
satisfy arbitrary connection requests between idle 
inputs and outputs. If a banyan-type network is 
nonblocking, it is necessarily rearrangeable, [1]. 

An interesting topic is the number of stages 
required for rearrangeability. The total number of 
connection request sets is N!. As reported in, [21], 

 log2 N  N log2 N – N + 1, for 𝑁 ≫ 1. 

Meanwhile, if N/2 unit switches are aligned in s 
stages and each switch takes one of the two 
connection states, the number of possible network 
states has an upper bound of 2sN/2. Thus, the following 
inequality is needed for rearrangeability: 

 2/ 2 log 1sN N N N   , 
 12 2 2 ns n      . 

From the above relation, a rearrangeable banyan-
type network must have 2n − 1 or more stages. 

For the number of stages needed for 
rearrangeability, [22], considered a network where 
the same permutation is applied to every exchange 
between stages. This structure is observed in shuffle-
exchange and omega networks. For this structure, let 
d denote the minimum number of links that one must 
go through to reach all unit switches of a stage from 
a switch of the first stage. In, [22], it is conjectured 
that 2d + 1 stages are necessary and sufficient for the 
network to be rearrangeable. For the shuffle-
exchange network, d = n − 1. This means that the 
2n − 1 stage shuffle-exchange network is 
rearrangeable. 

As, [23], reported, numerous scholars have 
attempted to prove the conjecture of, [22]. In 
particular, [24], claimed to have proved the 
conjecture, but it has been reported that the proof is 
unreliable, [25]. Nevertheless, it appears that the 
conjecture is correct for any value of n. At least, the 
rearrangeability of the 2n − 1 shuffle-exchange 
network has been confirmed for n = 4, [26], [27]. 

In the, [28], it is investigated the least cost 
rearrangeable network and showed that it should 
have as many stages as possible and as few unit 

switches as possible. This principle leads to a 2n − 1 
stage rearrangeable network, which is currently 
known as the Beneš network. 

The, [29], derived a proof method for 
rearrangeability and proposed 2n − 1 stage 
rearrangeable networks, referred to as the reduced 
NN

−1. However, these networks are isomorphic to 
the Beneš network. Thus, the work of, [29], does not 
essentially reveal previously unknown rearrangeable 
networks. 

Despite considerable research effort, the class of 
rearrangeable banyan-type networks has not been 
completely clarified. Rearrangeability is often proved 
using an algorithm that determines the connection 
routes. However, it is not easy to derive such 
algorithms for all possible network configurations. In, 
[30], authors tackled this problem using a completely 
different approach and succeeded in showing a class 
of rearrangeable networks for n = 3 and 4. They 
modeled the routing in a network into an SAT 
problem according to the formulation method 
detailed in, [31]. The SAT problem approach 
eliminates the need to develop a routing algorithm for 
any individual switching network. It is possible to 
check the rearrangeability by solving SAT problems 
for many connection request sets. They also checked 
the isomorphism between each network and known 
rearrangeable networks. For n = 4, they found 2,600 
rearrangeable networks from 117,649 candidate 
networks. These are isomorphic to known 
rearrangeable networks  

An obvious shortcoming of the aforementioned 
approach is its scalability. The number of candidate 
networks grows unacceptably large if n > 4. However, 
among the networks generated in, [30], a 
considerable number of networks are trivially 
blocking networks. In addition, isomorphic networks 
have the same characteristics for rearrangeability. 
Therefore, it is unnecessary to assess multiple 
isomorphic networks. By addressing these points, it 
will be possible to efficiently reduce the number of 
candidate networks and find rearrangeable networks 
for n > 4. 
 
 
3   Preliminaries 
This section introduces banyan-type networks and 
presents some key concepts such as rearrangeability 
as well as explores some mathematical definitions 
needed to describe the network characteristics. 
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3.1  Banyan-Type Networks 
A banyan-type network has a structure, which is 
constructed by aligning unit switches with two inlets 
and outlets in multiple stages. For this structure, the 
number of network inputs (or outputs) is 2n because 
2n − 1 unit switches are placed in each stage. As 
examples of such networks, Figure 1 shows the 
omega and banyan networks. Also, Figure 1 (c) 
shows an example of the practical electronics design 
of a unit switch. 

In a banyan-type network, the link configuration 
between two adjacent stages is called an exchange. 
The link configuration between the inputs and the 
first stage or that between the last stage and outputs 
is also an exchange. The link configuration rule of an 
exchange is represented by a cyclic bit-position 
permutation of inlet/outlet indices, as detailed in 
Subsection 3.4. 

 

 
Fig. 1: Examples of banyan-type networks: (a) 
omega network (b) banyan network, and (c) the 
practical electronics design of a unit switch. 
 
3.2  Rearrangeability 
Switching networks are categorized as blocking and 
nonblocking networks. For some applications, 
nonblocking networks are indispensable. 
Nonblocking networks are further classified into 
several groups, [1], [2], [3]. A class of nonblocking 
networks is rearrangeable networks. In a 
rearrangeable network, a requested connection may 
be blocked. However, the system can always be 
unblocked by rearranging the routes of existing 

connections. A nonblocking banyan-type network is 
rearrangeable, [1]. 

As described in Section 2, 2n − 1 or more stages 
are necessary for a banyan-type network to be 
rearrangeable. Known 2n − 1 stage rearrangeable 
networks include the Beneš network (Figure 2) and 
the 2n − 1 stage shuffle-exchange network. The 
omega network is trivially isomorphic to the shuffle-
exchange network because the former is obtained by 
swapping the inputs and outputs of the latter. Thus, 
the 2n − 1 stage omega network is also rearrangeable. 

 

 
Fig. 2: Example of the Beneš network: rearrangeable 
2n − 1 stage network. 

 
As a tool to assess rearrangeability, [31], proposed 

the SAT problem approach. In this approach, the 
conditions that must be satisfied by the connection 
routes are modeled in the conjunctive normal form 
(CNF) of Boolean variables. The CNF-SAT problem 
determines the existence of variable values that 
satisfy the required conditions, [32]. In a 
rearrangeability assessment, a CNF-SAT problem is 
formulated for a network, and a set of connection 
requests is given between the inputs and outputs. The 
set of requested connections is represented as a 
permutation of output indices. If the solution to a 
problem is unsatisfiable for a given connection 
request set, the network is a blocking network. If the 
solution is always satisfiable for many connection 
request sets, the network is likely to be rearrangeable. 
 
3.3  Isomorphism 
To identify rearrangeable banyan-type networks, it is 
crucial to consider isomorphism between networks. 
Figure 3 shows an example of two isomorphic 
networks. The network in Figure 3 (a) is distinct from 
that in Figure 3 (b) because of the difference in the 
bit-position permutation assigned to exchange 1. 
However, suppose that the positions of switches 01 
and 10 are interchanged at stage 1 in the network in 
Figure 3 (a). Then, it is easy to see that the two 
networks are equivalent.  

Trivially, if a banyan-type network can satisfy an 
arbitrary connection request, its isomorphic network 
can also satisfy an arbitrary connection request. 
Meanwhile, if blocking occurs in a network for some 
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connection request sets, blocking also occurs in its 
isomorphic network. Suppose that we are checking 
the rearrangeability of multiple isomorphic networks. 
Then, it is unnecessary to assess the rearrangeability 
of each network; it is sufficient to check for any one 
of them. 

 

 
Fig. 3: Isomorphic banyan-type networks. The 
network of (a) becomes equivalent to the network of 
(b) by exchanging the unit switch positions. 
 

Isomorphism can be assessed by using a graph 
isomorphism algorithm, [33], as described in, [30]. 
 

3.4  Definitions 
Figure 4 shows an example of a banyan-type network 
where n = 3 and s = 3. The figure also depicts how 
each inlet/outlet of a unit switch is indexed by an n-
bit binary number. Every input/output of the network 
is also indexed by a binary number. Each stage has 
2n − 1 unit switches indexed by (n − 1)-bit binary 
numbers. The indices 00…0, …, 11…1 are given by 
the direction from the top to the bottom. Because of 
this indexing rule, the two inlets (or outlets) of a unit 
switch b1b2…bn − 1 are b1b2…bn − 10 and b1b2…bn − 11, 
where bj = 0 or 1 (1 1)j n   . 

A set of links connecting two adjacent stages is an 
exchange. Exchanges are also defined between the 
inputs and stage 1 as well as between stage s and the 
outputs. The exchange between stages k and k + 1 is 
referred to as exchange k (1 1)k s   . Exchange 0 
is the link set between the inputs and stage 1, while 
exchange s is that between stage s and the outputs. 

 
Fig. 4: Banyan-type network with indices for 
network inputs/outputs, unit switches, and 
inlets/outlets of unit switches. 

 
The connecting rule of an exchange is represented 

by a cyclic permutation of bit positions of an 
inlet/outlet index. A cyclic permutation is 
represented by a format such as (2  3  4) or (1  5). In 
Figure 4, the permutation of exchange 1 is (1  2  3). 
This permutes the first bit to the second, the second 
bit to the third, and the third bit to the first. Thus, 
stage 2 outlet 101 is connected to stage 3 inlet 110, 
permuted from 101 according to (1  2  3). 

Notably, the permutations of exchanges 0 and s do 
not affect rearrangeability [30]. Thus, these 
permutations can be ignored to assess 
rearrangeability. 

A banyan-type network is specified by the 
permutations applied to exchanges 0, 1,..., s. Based 
on this, the notation format used in, [25], [30] is 
employed to specify a banyan-type network. The 
format is defined as follows: 

 [p0 : p1 :... : ps]n, 

where pk is the permutation applied to exchange k 

(0 )k s  . If no bits are permuted in an exchange, 
the symbol id is used. With this notation, the network 
in Figure 4 is described as follows: 

 [id : (1  2  3) : (2  3) : id]3. 

Let (i) denote the binary number obtained by 
moving the bit positions of a binary number i 
according to a permutation . For example, if  is 
(1  2  3) and i = 101, (i) = 110. 

By the cascade of two permutations  and , a 
binary number i is converted to ((i)). If ((i)) = i 
for an arbitrary i,  is the inverse of  and denoted by 
 −1. For example, if is (4  3  2), its inverse  −1 is 
(2  3  4). 

There exist various bit-position permutations, 
which may be applied to banyan-type networks. 
However, a limited number of permutations have 
been employed in the reported configurations. A 
banyan network employs permutations such as (1  4) 
and (2  4). Permutations such as (1  2  3  4) and 
(2  3  4) are used in a baseline network. In a shuffle-
exchange network, the permutation is (4  3  2  1). The 
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permutations used in the reported banyan-type 
networks can be categorized as follows. 
(1) Banyan permutation: defined as (m  n) and used 

in banyan networks, where 1 m n  . 
(2) Baseline permutation: defined as (m  m + 1 … n) 

and used in baseline networks. 
(3) Reverse baseline permutation: defined as 

(n  n – 1 … m + 1  m) and used in shuffle-
exchange or Beneš networks. 

Although it is also possible to employ other 
permutation types, no reported configurations have 
used other permutations, such as (1  3  4) or 
(1  3  2  4). Therefore, we focus on configurations 
constructed using the above three permutation types. 
 
 
4    Isomorphism Characteristics 

Section 3 shows that different but isomorphic 
banyan-type networks become identical by 
interchanging the positions of unit switches in a 
stage. This section specifies the rule for such position 
interchange by the insertion of bit permutations 
between a stage and its adjacent exchanges. The next 
lemma describes the method. 
Lemma 1: Let  denote a permutation that does not 
include n (e.g., (4 3 2) when n = 5). For a banyan-
type network X, the network X   is constructed by 

 inserting  between exchange k − 1 and the inlets of 
stage k (1 )k s   and 

 inserting  −1 between the outlets of stage k and 
exchange k. 

Then, X and X   are isomorphic. 
Proof: Let k − 1 and k denote the permutations 
assigned to exchanges k − 1 and k in X, respectively. 
Then, two k − 1 outlets, 1 2 10nbb b   and 1 2 11nbb b  , 
are connected to two inlets of switch 1 2 1nbb b   at 
stage k ( {0,1}, 1,2, , 1)jb j n   . By inserting 

1 2 10nbb b   is redirected to 1 2 10nbb b     in .X   
Because  does not include n, the last bit 0 does not 
change. Similarly, 1 2 11nbb b   is redirected to 

1 2 11nbb b     in X   because the first n − 1 bits of 
1 2 11nbb b   are identical to that of 1 2 10nbb b  , and 

the last bit is unchanged. Therefore, the two k − 1 
outlets are redirected and connected to the same 
switch 1 2 1nbb b     after the insertion of  in X  . In

,X   the outlets of the switch 1 2 1nbb b     are 
1 2 10nbb b     and 1 2 11nbb b    . By the insertion of  −1, 

these outlets are connected to two k inlets, 
1 2 10nbb b   and 1 2 11nbb b  . Thus, the k − 1 outlets 

are connected to the k inlets through a single unit 
switch. This means that the relation between k − 1 and 
k does not change before and after the insertion of  

and  −1. By reassigning the switch index from 
1 2 1nbb b     to 1 2 1nbb b  , X   becomes identical to X. 

Therefore, X   is isomorphic to X.   
An illustration of the proof of Lemma 1 is shown 

in Figure 5. Clearly, the network X   in Figure 5 (b) 
coincides with network X in Figure 5 (a). 

 

 
Fig. 5: Explanation of Lemma 1: (a) stage k of 
network X and (b) stage k of an isomorphic network 
X, constructed by inserting  and  −1. 
 

In the proof of Lemma 1, if the unit switch index 
is not rewritten, the permutations of exchanges k − 1 
and k are modified to permutation cascades. The 
following lemmas state the characteristics of the 
cascaded permutations. 
Lemma 2: Let  denote a baseline permutation 
(m  m + 1 … n), where 1 m n  , and  denote 
permutation (n – 1  n – 2 … m). Then, the cascade of 
 and  is a banyan permutation (m  n). 
Proof: Define the binary number i = 1 2 nbb b . Then, 
(i) is 1 2 1 1 1m m n m nbb b b b b b   . Applying  to this, 
((i)) is 1 2 1 1 2 1m n m m n mbb b b b b b b    . This is the 
number obtained by interchanging the m-th and n-th 
bits of i. Thus, the cascaded permutation is (m  n).   

Lemma 3: Let  denote a reverse baseline 
permutation (n  n – 1 … m), where 1 m n  , and  
denote permutation (m  m + 1 … n − 1). Then, the 
cascade of  and  is a banyan permutation (n – 1 n). 
Proof: Define the binary number i = 1 2 nbb b . Then, 
(i), is 1 2 1 1 1 2m n m m n nbb b b b b b b    . Applying  to 
this, ((i)) is 1 2 1 1 2 2 1m m m m n n nbb b b b b b b b     . This 
is the number obtained by interchanging the (n − 1)-
th and n-th bits of i. Thus, the cascaded permutation 
is (n – 1  n).   

Figure 6 illustrates an example to explain Lemma 
2. Figure 6 (a) shows permutation  = (1  2  3  4). By 
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cascading  = (3  2  1) and , the exchange becomes 
the configuration in Figure 6 (b). By clearing the link 
drawing, the configuration is as in Figure 6 (c). This 
configuration is clearly a banyan permutation (1  4). 

 

 
Fig. 6: Banyan permutation converted by the cascade 
of and a baseline permutation: (a) a baseline 
permutation  = (1  2  3  4), (b) the cascade of  = 
(3  2  1) and , and (c) obtained permutation (1  4). 
 
Lemma 4: Let  denote a banyan permutation (m  n), 
where 1 m n  , and  denote permutation (n – 1 
n – 2 … r), where 1 1r n   . Then, the cascade of 
, , and  −1 is a banyan permutation, which is 
determined based on the relation between m and r as 
follows: 

if m < r, (m  n), 
if 1r m n   , (m + 1  n), and 
if m = n − 1, (r  n). 

Proof: Define the binary number i = 1 2 nbb b . Then

1 2 1 1 2 1( ) r r r n r ni bb b b b b b b     . 

If m < r, 
1 2 1 1 2 1( ( )) n r r r n r mi bb b b b b b b b      . 

By applying  −1 to this, 
1

1 2 1 1 2 2 1( ( ( ))) n r r r r n n mi bb b b b b b b b b  
     . 

Thus, the cascaded permutation is (m  n) for m < r. 
If 1r m n   , 

1 2 1 1 2 1 1( ( )) r r r n n r mi bb b b b b b b b       , 

where bn is m-th bit. Notably, the last bit is bm + 1 
because the m-th bit of (i) is bm + 1. By applying  −1 
to this, 

1
1 2 1 1 2 2 1 1( ( ( ))) r r r r n n n mi bb b b b b b b b b  

      . 

Because bn is moved to the (m + 1)-th bit by  −1, the 
cascaded permutation is (m + 1  n) for 1r m n   . 

If m = n − 1, 

1 2 1 1 2 1( ( )) r r r n n ri bb b b b b b b      . 

By applying  −1 to this, 
1

1 2 1 1 2 1( ( ( ))) r n r r n n ri bb b b b b b b b  
    . 

This permutation is clearly (r  n).   
Lemma 5: Let  denote a banyan permutation (m  n), 
where 1 m n  , and  denote permutation 
(r  r + 1 … n − 1), where 1 1r n   . Then, the 
cascade of , , and  −1 is a banyan permutation, 
which is determined depending on the relation 
between m and r as follows: 

if m < r, (m  n), 
if m = r, (n – 1  n), and 
if 1r m n   , (m − 1 n) 

Proof: Define the binary number i = 1 2 nbb b . Then

1 2 1 1 2( ) r n r n ni bb b b b b b    . 

If m < r, 

1 2 1 1 2( ( )) n r n r n mi bb b b b b b b     . 

By applying  −1 to this, 
1

1 2 1 2 1( ( ( ))) n r r n n mi bb b b b b b b  
    

Thus, the cascaded permutation is (m  n) for m < r. 
If m = r, 

1 2 1 2 1( ( )) r n r n ni bb b b b b b      

because the m-th bit of (i) is bn − 1. By applying  −1 
to this, 

1
1 2 1 2 1( ( ( ))) r r n n ni bb b b b b b  

    

Thus, the cascaded permutation is (n – 1  n) for m = 
r. 

If r < m, 

1 2 1 1 2 1( ( )) r n r n n mi bb b b b b b b       

because the m-th bit of (i) is bm − 1. By applying  −1 
to this, 

1
1 2 1 2 1 1( ( ( ))) r r n n n mi bb b b b b b b  

     

Because bn moves to the (m − 1)-th bit by  −1, the 
cascaded permutation is (m – 1  n) for r < m.   

Figure 7 shows an example where Lemma 4 
holds. The figure shows the case where  is (1  4) and 
 is (3  2  1). Thus, n = 4 and m = r = 1. Figure 7 (a) 
shows the cascade of , , and  −1. By redrawing 
links, the configuration shown in Fig. 7 (b) is 
obtainable. This is clearly represented by 
permutation (2  4). 
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Fig. 7: Example showing where Lemma 4 holds: (a) 
a cascade of  = (3  2  1),  = (1  4),  −1 = (1  2  3) 
and (b) banyan permutation (2  4) obtained by 
cascading , , and   −1. 
 
Lemma 6: Suppose that we have a banyan-type 
network X constructed as follows: 

 the permutations of exchanges 1, 2, k − 1 (k < s) 
are banyan permutations 

 the permutation of exchange k is a baseline 
permutation or reverse baseline permutation. 

Then, there exists a network X   isomorphic to X and 
can be constructed as follows: 

 the permutations of exchanges 1, 2, …, k are 
banyan permutations. 

Proof: Assume that the permutation of exchange k is 
a baseline permutation (m  m + 1 … n) in X. For this 
case, let us define  as (m  m + 1 … n − 1). Thus,  
is (n – 1  n – 2 … m). Then, assume that X is 
converted to a network by inserting before each of 
stages 1, 2, …, k and  −1 after each of stages 1, 2, …, 
k. By Lemma 1, the obtained network is isomorphic 
to X. In the converted network, the permutation of 
exchange k is a cascade of (n – 1   n – 2 … m) and 
(m  m + 1 … n). Lemma 2 asserts that this cascade is 
(m  n). In addition, the permutation for each of 
exchanges 1, 2, …, k − 1 is a cascade of 
(n – 1  n – 2 … m), (r  n), and (m  m + 1 … n − 1), 
where 1 r n  . By Lemma 4, this cascade is a 
banyan permutation. Thus, the permutations of 
exchanges 1, 2, …, k are banyan permutations.  

If exchange k of X is a reverse baseline 
permutation (n   n – 1   …  m), define  as (n – 1  
n – 2  … m) and create a network by inserting  and 
 −1 before and after each of stages 1, 2, …, k − 1. By 
Lemma 1, the obtained network is isomorphic to X. 
Moreover, by Lemmas 3 and 5, the permutations of 
exchanges 1, 2, …, k are banyan permutations.   

Definition: A network constructed using only 
banyan permutations in exchanges 1, 2, …, s − 1 is 
defined as a “pure banyan network.”  

The next theorem shows that most banyan-type 
networks are isomorphic to pure banyan networks. 
Theorem 1: Consider a network X with permutations 
selected from the following: 

 baseline permutations, 

 reverse baseline permutations, and 

 banyan permutations. 

Then, there exists a pure banyan network isomorphic 
to X. 
Proof: Assume that the baseline and reverse baseline 
permutations appear at exchanges k1, k2, …, kt (0 < k1 
< k2 <  < kt < s). Then, by Lemma 6, there is an 
isomorphic network X   such that the permutations 
of exchanges 1, 2, , k1 are banyan permutations. 
Moreover, the network X   is isomorphic to a 
network X   such that exchanges 1, 2, , k2 are 
banyan permutations. By repeating this, we can find 
a network isomorphic to X and constructed by banyan 
permutations.   

According to Theorem 1, it is unnecessary to 
investigate the rearrangeability of a network that has 
baseline or reverse baseline permutations in their 
exchanges. The rearrangeability of such a network 
can be assessed by examining its isomorphic pure 
banyan network. Because the number of pure banyan 
networks is much smaller than that of networks 
including baseline or reverse baseline permutations, 
by Theorem 1, the rearrangeability assessment can be 
efficiently performed. 
 

 

5   Necessary Conditions 
 
5.1  Pure Banyan Networks 
This section explores the necessary conditions for a 
2n − 1 stage pure banyan network to be rearrangeable. 
Without loss of generality, we assume that no bits are 
permuted in exchanges 0 and 2n − 1 in the following. 

For the derivation of the conditions, it is necessary 
to understand how a banyan permutation (m  n) 
affects a connection path. Let us focus on an outlet of 
a switch in a certain stage. Let the index of the outlet 
be b1b2…bm…bn ( {0,1},jb  1 )j n  . If this outlet 
is connected to the inlet of the next stage through 
(m  n), its index will be b1b2…bn…bm. Because bn can 
be set to 0 or 1 by a switch, (m  n) determines the m-
th bit of the index assigned to the next stage outlet, at 
which the path arrives. Meanwhile, (m  n) does not 
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affect any bits other than bm and bn. This leads to the 
following lemmas. 
Lemma 7: If there is no permutation (m  n) for a 
certain m (1 1)m n    in exchanges 1, 2, …, 2n − 2 
of a 2n − 1 stage pure banyan network, it is 
impossible to connect input 00…0 to output 11…1. 
Proof: We focus on a path originating from input 
00…0. A unit switch can invert the n-th bit of the 
outlet index the path goes through. In addition, if 
there is a permutation (m  n), it is possible to invert 
the m-th bit by interchanging the m-th and n-th bits. 
However, if (m  n) does not exist in exchanges, there 
is no means to alter the m-th bit to 1 in any switch 
inlet/outlet indices that the path goes through. Thus, 
the path cannot reach the output with the index whose 
m-th bit is 1. Therefore, input 00…0 cannot be 
connected to output 11…1.   

Figure 8 illustrates Lemma 7’s proof. The figure 
shows the case for n = 4 and (2  4) is missing at any 
exchanges. In the figure, the red thick lines indicate 
possible routes of a path originating from 0000. The 
path routes cannot reach any switch inlet, switch 
outlet, or output with a second bit of 1. The number 
of possible routes from 0000 is 128 because one of 
two routes can be selected at each of 7 stages. 
However, the second bit of the destinations is always 
0 for these routes. Thus, the number of reachable 
outputs is limited to 2n – 1 = 8, a half of N.  

 

 
Fig. 8: Pure banyan network without permutation 
(2  4) in exchanges and possible route of a path that 
originated from 0000. 
 
Lemma 8: If permutation (m  n) appears only at a 
single exchange among exchanges 1, 2, …, 2n − 2 of 
a 2n − 1 stage pure banyan network, it is impossible 
to connect the following inputs and outputs: 

 2n − 1 inputs such that the m-th bit of the indices 
is 0 and 

 2n − 1 outputs such that the m-th bit of the indices 
is 0. 

Proof: Consider that (m  n) appears at exchange k 
(1 2 1)k n   and does not appear at any other 

exchange. Then, we focus on a path originating from 
an input such that the m-th bit of the index is 0. At 
stage k, because (m  n) does not appear in exchanges 
1, 2,.., k − 1, the path must go through the unit switch 
inlet such that the m-th bit of the index is 0. Because 
the index of a unit switch is the first n − 1 bits of its 
inlet index, the m-th bit of the switch index is also 0. 
The number of such unit switches is 2n − 2. 
Meanwhile, there are 2n − 1 paths originating from 
inputs such that the m-th bit of their indices is 0. 
Therefore, two of these paths must go through a stage 
k switch such that the m-th bit of the index is 0. For 
this switch, the n-th bit of the index is 0 for one outlet 
and 1 for the other. Thus, half of the 2n − 1 paths pass 
the outlets with the n-th bit of 1. Then, these 2n − 2 
paths go through (m  n) of exchange k and reach the 
inlets of stage k + 1 switches, where the m-th bit of 
the indices is 1. Exchanges k + 1, …, 2n − 2 do not 
have (m  n) and thus do not invert the m-th bit. 
Therefore, the 2n − 2 paths cannot reach the outputs 
such that the m-th bit of the indices is 0.   

Figure 9 illustrates how the connection requests 
shown in Lemma 8 are not satisfied. The figure 
shows the case where permutation (2  4) appears 
once at exchange k. The red thick lines indicate 
possible routes from inputs such that the second bit 
of the indices is 0. Each of these paths goes through 
one of the four switches 000, 001, 100, and 101 at 
stage k. Therefore, four of the eight paths must pass 
outlets 0001, 0011, 1001, and 1011, with the fourth 
bit of 1. The blue thick lines indicate possible routes 
stemming from outlets 0001, 0011, 1001, and 1011. 
Exchange k interchanges the second and fourth bits; 
hence, the paths from 0001, 0011, 1000, and 1011 
reach stage k + 1 inlets 0100, 0110, 1100, and 1110. 
Afterward, there is no means to invert the second bit. 
Thus, the blue lines do not reach outputs with the 
second bit of 0, e.g., 0000 or 1011. 

 
Fig. 9: Pure banyan network where permutation (2 4) 
appears only once in exchanges. The blue line paths 
cannot reach the outputs such that the second bit of 
their indices is 0. 
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From Lemmas 7 and 8, it becomes possible to 

derive the condition that must be satisfied for 
rearrangeability. 
Theorem 2: If a 2n − 1 stage pure banyan network is 
rearrangeable, each of (1  n), (2  n), …, (n – 1  n) 
appears twice among exchanges 1, 2, …, 2n − 2. 
Proof: Let Pm denote how many times (m  n) appears 
among exchanges 1, 2, …, 2n − 2, where 1 m n  . 
Because the number of exchanges is 2n − 2, 

 
1

1

2 2
n

m

m

P n




  . (1) 

If the network is rearrangeable, Lemma 7 asserts Pm 
 0 for all m. Moreover, Lemma 8 states that Pm  1 
for all m. Thus, 

 2,  for 1 1mP m n     (2) 

Both of (1) and (2) are satisfied only if Pm = 2. This 
proves the theorem.   

Theorem 2 provides a necessary condition. Thus, 
even if a network satisfies this condition, it may be a 
blocking network. A stronger necessary condition is 
derived as follows. 
Lemma 9: Assume that Theorem 2 holds. Assume 
further that (m  n) (1 )m n  appears at exchanges k1 
and k2 1 2(1 2 2)k k n     in a 2n − 1 stage pure 
banyan network. If a permutation (r  n) (1 ,r n 

)r m  does not appear at any of exchanges 1, 2, …, 
k2 − 1, it is impossible to simultaneously connect the 
following inputs and outputs: 

 2n − 1 inputs such that the r-th bit of their indices 
is 0 and 

 2n − 1 outputs such that the m-th bit of their 
indices is 0. 

Proof: We focus on a path originating from an input 
such that the r-th bit of its index is 0. At stage k2, this 
path reaches a switch inlet such that the r-th bit of its 
index is 0 because it does not go through (r  n) from 
the input to stage k2 and the r-th bit is not inverted. 
The r-th bit of the switch index is also 0 because the 
switch index is the first n − 1 bits of the inlet index. 
There are 2n − 1 paths originating from the 2n − 1 inputs 
such that the r-th bit of their indices is 0. At stage k2, 
these paths reach 2n − 2 switches such that the r-th bit 
of the indices is 0. Half of these 2n − 2 switches have 
the indices whose m-th bit is 1. Thus, the 2 − 2 paths 
must go through stage k2 switches such that the m-th 
bit of the index is 1. For these switches, the m-th bit 
of the outlet indices is also 1. Because Theorem 2 
holds, the permutations of exchanges k2 + 1, …, 
2n − 2 are not (m  n) and thus do not invert the m-th 

bit. Therefore, the 2n − 2 paths cannot reach outputs 
where the m-th bit of their index is 0.   
Theorem 3: If a 2n − 1 stage pure banyan network 
is rearrangeable, each of (1  n), (2  n), …, (n – 1  n) 
appears once at its exchanges 1, 2, …, n − 1 and 
appears once at its exchanges n, n + 1, …, 2n − 2. 
Proof: Assume that (r  n) appears twice at exchanges 
1, 2, …, n − 1 and are assigned to exchanges k1 and 
k2 (1 ,r n  1 21 1)k k n    . Then, for some m 

(1 , )m n m r   , (m  n) does not appear at any of 
exchanges 1, 2, ..., n − 1. By Lemma 9, this 
configuration is not rearrangeable. Therefore, if the 
network is rearrangeable, each of (1  n), (2  n), …, 
(n – 1  n) appears once at exchanges 1, 2, …, n − 1. 
Theorem 2 asserts that each of (1  n), (2  n), …, 
(n – 1  n) must appear one more time at exchanges n, 
n + 1, …, 2n − 2 to be rearrangeable.   

There are (n − 1)! ways of assigning n − 1 
permutations to n − 1 exchanges. Therefore, 
((n − 1)!)2 pure banyan networks satisfy the 
necessary condition of Theorem 3. When n = 4, 
((4 − 1)!)2 = 36. Thus, for the discovery of 
rearrangeable networks, the number of candidate 
networks is as small as 36. Meanwhile, the total 
number of possible pure banyan networks is 
(n − 1)2n − 2, which is 729 for n = 4. As this numerical 
example shows, Theorem 3 suggests that it is 
necessary to test a very small number of possible 
networks as candidates. 

 
5.2  Beneš-Type Structure 
Let Bn denote a Beneš network that has 2n inputs and 
outputs. Then, the Beneš network definition is shown 
in Figure 10. As shown in Figure 10 (a), B1 is a unit 
switch. For n > 1, Bn is recursively constructed using 
two Bn − 1’s (Figure 10 (b)). 
 

 
Fig. 10: Definition of the Beneš network: (a) 
configuration for n = 1 and (b) configuration for n > 
1. 
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We consider a network configured by replacing 
Bn − 1 with a different network Cn − 1 (Cn − 1  Bn − 1) in 
Figure 10 (b). The network is shown in Figure 11. 

 

 
Fig. 11: Beneš-type configuration. This network is 
blocking if subnetwork Cn − 1 is blocking. 
 

The network in Figure 11 is rearrangeable if Cn − 1 
is rearrangeable. This is obvious because of the 
sufficient condition for the rearrangeability of three-
stage switching networks. Therefore, for n = 4, the 
network is rearrangeable when C3 is the 5-stage 
omega (or shuffle-exchange) network with eight 
inputs/outputs because the 5-stage omega network is 
rearrangeable. We call this configuration a 7-stage 
omega–Beneš network because it is a hybrid of Beneš 
and omega networks. 

For n = 5, rearrangeable networks are obtainable 
by setting C4 to the 7-stage omega network and the 7-
stage omega-Beneš network. Hereinafter, the former 
is called a 9-stage omega–Beneš network, while the 
latter is called a 9-stage omega–Beneš–Beneš 
network. 

The next theorem provides another characteristic 
of the network in Figure 11. 
Theorem 4: If Cn − 1 is a blocking network, the 
network in Figure 11 is also a blocking network. 
Proof: Suppose that a connection request set  cannot 
be satisfied by Cn − 1. For , assume that input x must 
be connected to output p(x). Let x and p(x) be, 
respectively, represented in binary form as follows: 

 x = b1b2...bn − 1 

 p(x) = c1c2…cn − 1. 

Then, suppose that the following connection 
request is given to the network in Figure 11: 

 connect input b1b2…bn − 10 to output c1c2…cn − 10 

 connect input b1b2…bn − 11 to output c1c2…cn − 11. 

To satisfy this request, Cn − 1 must connect  
independently of how the unit switches of the first 
and final stages are set up. This is impossible. Thus, 
the connection request set is blocked.   
 
 

6   Empirical Observations 
To identify the class of rearrangeable banyan-type 
networks, two computer experiments were performed 
for n = 4 and 5. As in the base method, candidate 
networks were first generated by assigning bit 
permutations to exchanges. Then, the 
rearrangeability of each network was assessed by 
solving CNF-SAT problems for many connection 
request sets. In this study, based on Theorems 1–4, 
the number of examined banyan-type networks was 
significantly reduced compared with that in [30]. 
First, the study concentrates on the assessment of 
pure banyan networks based on Theorem 1. 
Moreover, by Theorems 2 and 3, only ((n − 1)!)2 of 
pure banyan networks are sufficient for assessment. 
For example, if n = 4, only 36 networks should be 
examined, while the study of [30] tested as many as 
117,649 networks. In addition, Theorem 4 asserts that 
some of ((n − 1)!)2 pure banyan networks are 
blocking networks because of the isomorphism to the 
network in Figure 11 with blocking subnetwork Cn − 1. 

In the experiments, graph isomorphism was 
checked by Nauty [34]. CaDiCal was employed as 
the SAT solver, [35]. Some custom programs were 
developed for banyan network generation, graph 
generation for isomorphism, random connection 
request generation, and SAT problem formulation 
from a network and a connection request set. 
 
6.1  Case of n = 4 
Rearrangeability was assessed for n = 4. First, 
((4 − 1)!)2 = 36 pure banyan networks that satisfy the 
necessary conditions of Theorems 2 and 3 were 
generated. The networks are divided into five subsets, 
each comprising isomorphic networks. Among these, 
the networks of three subsets are isomorphic to 
known rearrangeable networks. One of the subsets 
comprises six networks, each of which is isomorphic 
to the Beneš network. The other two subsets also 
comprise six networks, respectively. For one of these 
subsets, each network is isomorphic to the 7-stage 
omega network. For the other subset, each network is 
isomorphic to the 7-stage omega–Beneš network. For 
the remaining two subsets, no network is isomorphic 
to a known rearrangeable network. We call these 
subsets groups 1 and 2. Group 1 comprises 12 
isomorphic networks, one of which is 

[id : (1  4) : (2  4) : (3  4) : (1  4) : (3  4) : (2  4) : id]4. 

Meanwhile, group 2 comprises six isomorphic 
networks, one of which is 

[id : (1  4) : (2  4) : (3  4) : (3  4) : (1  4) : (2  4) : id]4. 

For each network of groups 1 and 2, SAT 
problems were generated and solved by randomly 
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generating 105 connection request sets. As a result, it 
was found that the networks of groups 1 and 2 are 
blocking networks. From this result, it is concluded 
that a rearrangeable banyan network is inevitably 
isomorphic to one of the Beneš network, 7-stage 
omega network, and 7-stage omega–Beneš network 
for n = 4. 
 
6.2 Case of n = 5 
For n = 5, it is sufficient to consider ((5 − 1)!)2 = 576 
pure banyan networks for assessing rearrangeability. 
Among these networks, the following are isomorphic 
to known rearrangeable networks and thus 
rearrangeable: 

 24 networks isomorphic to the 9-stage omega 
network 

 24 networks isomorphic to the Beneš network 

 24 networks isomorphic to the 9-stage omega–
Beneš network, and 

 24 networks isomorphic to the 9-stage omega–
Beneš–Beneš network. 

According to Theorem 4 and the result for n = 4, 
the configuration in Figure 11 is blocking if Cn − 1 is 
[id : (1  4) : (2  4) : (3  4) : (1  4) : (3  4) : (2  4): id]4 
or [id : (1  4) : (2  4) : (3  4) : (3  4) : (1  4) : (2  4): 
id]4. It was found that 48 networks are isomorphic to 
the former configuration, while 24 networks are 
isomorphic to the latter configuration. Thus, these 72 
networks are blocking networks. 

For the remaining 408 networks, the 
rearrangeability was assessed. These networks are 
divided into 11 subsets, each comprising isomorphic 
networks. Hereinafter, these subsets are called groups 
1, 2, …, 11, comprising 48, 24, 48, 48, 48, 24, 48, 24, 
24, 48, and 24 networks, respectively. For each group, 
a network was selected as a representative as follows: 

 

 Group 1: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(1  5) : (2  5) : (4  5) : (3  5) : id]5 

 Group 2: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(1  5) : (3  5) : (2  5) : (4  5) : id]5 

 Group 3: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(1  5) : (3  5) : (4  5) : (2  5) : id]5 

 Group 4: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(1  5) : (4  5) : (2  5) : (3  5) : id]5 

 Group 5: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(1  5) : (4  5) : (3  5) : (2  5) : id]5 

 Group 6: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(2  5) : (1  5) : (4  5) : (3  5) : id]5 

 Group 7: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(2  5) : (4  5) : (1  5) : (3  5) : id]5 

 Group 8: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(3  5) : (4  5) : (1  5) : (2  5) : id]5 

 Group 9: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(4  5) : (1  5) : (2  5) : (3  5) : id]5 

 Group 10: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(4  5) : (1  5) : (3  5) : (2  5) : id]5 

 Group 11: [id : (1  5) : (2  5) : (3  5) : (4  5) : 
(4  5) : (3  5) : (1  5) : (2  5) : id]5. 

 
For the representative network of each group, 

rearrangeability was assessed using the CNF-SAT 
approach. For each network, the SAT problems were 
solved for more than 106 randomly generated 
connection request sets. After computations that 
lasted several weeks, unsatisfiable, i.e., blocking, 
cases were found for groups 3, 4, ..., 11. Thus, 336 
networks included in these nine groups are blocking 
networks. For some groups, blocking rarely occurred. 
Therefore, many connection request sets had to be 
examined to find an unsatisfiable case. For example, 
the representative network of group 3 caused 
blocking for only a single connection request set 
among 2.6  108 connection request sets.  

For the networks of groups 1 and 2, no 
unsatisfiable cases were found after 7  108 
connection request sets were examined. Unsatisfiable 
cases may also appear for these networks if a larger 
number of connection request sets are examined. 
Unfortunately, it is not easy to increase the number 
of connection request sets because of the enormous 
computational time. Meanwhile, the networks of 
groups 1 and 2 may be nonblocking. Therefore, the 
rearrangeability is inconclusive for 72 networks 
belonging to groups 1 and 2. 
 
 
7   Conclusion 
This study classified rearrangeable 2n − 1 stage 
banyan-type networks. This is done by first 
generating candidate networks and then checking 
their rearrangeability through the CNF-SAT 
modeling method. The problem with this approach is 
poor scalability due to the enormous number of 
candidate networks. This study effectively reduced 
the number of candidate networks by revealing the 
theoretical characteristics of banyan-type networks. 
First, it was shown that any banyan-type network 
constructed with a baseline, reverse baseline, or 
banyan permutation is isomorphic to a pure banyan 
network. A pure banyan network is constructed 
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exclusively using banyan permutation (m  n). Next, 
necessary conditions for the rearrangeability of a 
pure banyan network were presented. It is 
unnecessary to assess the rearrangeability of 
networks that do not satisfy the conditions. As a 
result, the number of candidate networks is reduced 
to ((n − 1)!)2. A condition for a blocking network was 
also revealed by observing the Beneš network 
structure. The number of candidate networks further 
decreases by removing the networks that are 
isomorphic to a blocking network. 

Based on the theoretical results, computer 
experiments were performed to assess the 
rearrangeability of pure banyan networks for n = 4 
and 5. For n = 4, 36 candidate networks are 
categorized into five groups, each comprising 
isomorphic networks. Among the groups, the 
networks of three groups are isomorphic to known 
rearrangeable networks. It was found through the 
CNF-SAT method that 18 networks of the remaining 
two groups are blocking networks. 

For n = 5, 96 of 576 candidate networks are 
isomorphic to known rearrangeable networks. 
Moreover, 72 networks are isomorphic to blocking 
networks. The remaining 408 networks are 
categorized into 11 groups, each comprising 
isomorphic networks. The CNF-SAT method was 
applied to these groups. The result shows that 336 
networks of nine groups are blocking networks. For 
72 networks of the other two groups, the blocking 
cases were not found. The rearrangeability of these 
networks is inconclusive. 

In this study, the rearrangeability of banyan-type 
networks was assessed for n = 4 and 5 to some extent. 
However, the approach has a scalability problem, 
although the number of candidate networks 
significantly decreased compared with that reported 
in [30]. This problem is because blocking rarely 
occurs in some networks for a larger n value, and the 
occurrence of blocking must be checked for an 
extremely large number of connection request sets. 
Because of this problem, rearrangeability could not 
be determined for some networks when n = 5. To 
completely clarify the rearrangeability for larger n 
values, a different theoretical approach is required. 
The development of such a theory is an open problem. 

Among the theorems derived in this paper, 
Theorems 2, 3, and 4 provide the necessary 
conditions for rearrangeability. A future work is to 
show the necessary and sufficient condition for the 
rearrangeability. Another future work is to focus on 
the reliability of the networks, as found in, [36], [37]. 
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