
 

We obtain an analytical estimation of the upper 
boundary of the Feistel-like block ciphers differential 
probabilities, resistance characteristics of unbalanced Feistel 
circuits to differential and linear cryptanalysis. Further, a 
formalized description and method of study of non-Markov 
symmetric block ciphers resistance to differential 
cryptanalysis are developed. New schemes of cascade block 
encryption are investigated and, in this case, we develop a 
method is used for evaluate the stability non-Markov 
ciphers. The estimates of R-block encryption schemes 
resistance to differential cryptanalysis are obtained. In 
addition, the crypto stability of the national standard of 
symmetric encryption GOST 28147: 2009 to fault attacks is 
considered. We both consider and compare different 
cryptanalysis methods [1]. 

Differential cryptanalysis was proposed by Israeli 
experts Eli Biham and Adi Shamir to break cryptosystems 
like DES [2]. Differential cryptanalysis was further 
developed in the works of such well-known cryptanalysts 
as V. Rudnitsky, R. Berdibayev, R. Breus, N. Lada, and M. 
Pustovit, [3] and one of most new result is [4].  We have 
made this ranking a typical cipher according to the degree 
of susceptibility by the method of cryptanalysis. In papers 
of Howard M. Heys [5, 6, 7] the key dependency of 
differentials in block ciphers was  investigated by 
examining the results of numerous experiments applied to 
the substitution-permutation network (SPN) [8,9] structure 
using 4-bit S-boxes. 

The focus of the research is block ciphers [11, 12] with a 
round function of the form  

( ) ( ( ))K m iG x L S x k  , 

where ik  is a round key. These ciphers are considered from 

the view of their belonging to the class of Markov or the 
generalized Markov. 

The subject of the research is the study of the above 
ciphers by the method of difference analysis, finding their 
properties, constructing estimates of the probabilities of 
integer differentials for round functions of the form that was 
mentioned earlier, processing and systematizing results. 

The research methods are the construction of a model 
which is used to describe the concepts or statements that are 
being analyzed. 

In discrete systems, both input and output signals are 
discrete signals. The variables in the discrete systems vary 
with time. In this type of system, the changes are 
predominantly discontinuous. The state of variables in 
discrete system changes only at a discrete set of points in 
time. Note that by a discrete system we mean a technical 
device or program that transforms a discrete sequence x(n) 
into a discrete sequence ( )y n  according to the determined 
algorithm. The algorithm for transforming the input 
sequence x n  to the output sequence ( )y n is described 

by the relation  
   y xR y n R x n       , 

where xR  and yR  are operators. Considering the type of 

operator, discrete systems can be divided into:  

 linear or non-linear,  

 stationary or non-stationary,  

 physically realizable (causal) or unrealizable (non-
causal).  

Linearity. A discrete system is called linear if and only if 
its operator R  satisfies additivity and homogeneity 
properties, namely if: 

1.         1 2 1 2[ ] [ ] [ ]R x n x n R x n R x n     for any 

1( )x n  and  2x n , and 
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2.    [ ]R a x n a R x n      , 

   [ ]R x n R x n        for any   and  x n .  

These properties may be expressed as the single condition 

       1 2 1 2[ ] [ ] [ ]R a x n b x n a R x n b R x n       . 

Note that the last condition implies the reaction of a linear 
system to a complex action is equal to the sum of reactions 
to individual actions taken with the same coefficients   
and  . 

Definition of Stationarity. A discrete system is called 
stationary (invariant in time) if its parameters do not 
change in time. In this case, the action applied to the input 
of the system will always lead to the same reaction, 
regardless of when the action is applied. 

We introduce the notation  

 0 ,..., rM   ,  

where GGG :μ i  with commutative group 

operations on the group G, baba i) ,(μ i , Gba  ,  

and 0,...,i r . 

The magnitude of the input differences 0ω  and 1ω  are 

the differences which appear in the first and second rounds, 
correspondently. 

Definition 3.1. The generalized differential characteristic 
(GDC) of cipher (1.1) is the sequence 

, 

where }0{\ω ii G  and 0,...,i r  [2].  

We denote by mV  the m-dimentional vector space. 
For the Data Encryption Standard (DES) algorithm it is 
known [3, 10] that after finding 48-bits of the key [3,11] of 
the last round, the remaining 8-bits are found via a complete 
search. The following condition is necessary for a successful 
application of an attack by the RK method: 

2

( 1) ( 1)

, ( ) :

( ( ) ( ) ) ,
m n m

r r
K K

x y V K V x V

P E x x E x y p 

      

    
 

where 2 mp   and the probability is taken for mx V .  

To describe the essence of the RK method, we make use of 
the following notation. Let the encrypting key ( )KE x  be a 
function determined by the equality  

( ) ( ,  )KE x E K x ,  (1) 

where 1,  ( ) ,  ( ,..., ),  ,r
m n r i nx V K V K k k k V    ( )KE x  is 

the r-th block cipher and for any ( )r
nK V  display EK, 

where m mV V  is a bijection. 

Denote by 

( ) ( ,  ),  ,  k m nf x f k x x V k V    (2) 

where mmk VVf :  is the round function of the cipher E. 

Then, using our notation, we have that 

1 1
( ) ... ( )

r rK k k kE x f f f x


   (3) 

holds, where  1,..., rk k  is a sequence of round keys and r is 
number of rounds. 

In addition, for 1,l n , let  

1 1

( ) ( ) ... ( )
l l

l
K k k kE x f f f x


 .  (4) 

The definitions of the Markov cipher (MC) were given for 
the first time in the work [11]. 

Definition 4.1. (from [11]). The cipher is Markov if 

( β | α, )P Y X X Z      (5) 

does not depend on Z , provided the subkeys are randomly 
distributed.  

If the cipher is Markov, then Y  then almost all of 
them are the same, they do not change with a change in the 
subkeys  Z   so the dependence cannot be established. This 
makes them resistant to Differential Cryptoanalysis. 

Using our notation, where for convenience we set   from 
Z  and then the definition has the form 

( (γ α) (γ) β) =

= 2 δ( (γ α) (γ),β).
m

k k
n

k k
k V

P f f
f f



  

    (6) 

It is worth emphasizing that this probability does not depend 
on  . If instead the probability did depend on  , then the 
cipher is a non-Markov cipher.  The   in (6) can 

consequently be treated as an arbitrary element with mV  

and, if 0  then we obtain the expression  

2 δ( (α) (0),β).
m

n
k k

k V
f f



  

The definition of MC can in such case be rewritten as 
follows. 

Definition 4.2. A block G cipher [12, 13] with round 
function : , ,k n m nf V V k V   is MC if 

4. Main Result 
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α, β : 2 δ( (γ α) (γ),β)

2 δ( (α) (0),β).
m

m

n
m k k

k V

n
k k

k V

V f f

f f









    

 




 

Corollary. If the cipher is Markovian, then Y  then almost 
all of them are the same, they do not change with a change 
in the subkeys so the dependence cannot be established. 
This makes them resistant to Differential Cryptoanalysis. 
We check the possibility of a differential attack on AES and 
show the dependence of number of differetials in table 2.1.  

Table 2.1. Dependence of the  number of zero differentials depending on 
the round number. 

Number of rounds Number of Differentials  

2 56180 

3 12780 

4 880 

5 0 

6 0 

7 0 

8 0 

9 0 

This means we get better method even in [10-13]. 

Suppose that some mapping : nf V G G   is 

given such that for each nk V , the mapping 

( , ) : ( )kf k x f x  is a bijection on G . We will associate 

the set xM of matrices of dimension G G , x G  with 

this mapping. The elements of the matrix xM  are 

, [0,1]xa   , , G  , where , [0,1]xa    1 2, ( ; , )fd x    . 

It is assumed here that some linear order is fixed on a group 
G [25, 26]. If mG V , then the bit-vectors naturally 

correspond to the integers from 0 to 2 1m  . We denote by P 
the set of substitution matrices of dimension G G . 

Definition 5.1. The mapping : nf V G G   will be called  
a generalized Markov mapping (relative to operations 

1 2,  ) if , 'x x G   and , ' P    such that 

' ''x x x xM M     ,  (7) 

where multiplication is standard usual matrix multiplication 
and, in this case, is reduced to permutation of rows of the 
matrices xM  and yM . 

Definition 5.2. A block cipher E will be called a generalized 
Markov cipher (GMC) in restricted sense if their round 
functions ( ) ( , ), ,k k m nf x f k x x V k V     are generalized 

Markov mappings (GMM) 1 2,f f with corresponding 
operations  0, 1  . 

Proposition 5.3 (property of GMC). For a GMC f , using 

our notation, the equation is  

1 2 1 2, ,,
0 0

max ( ; , ) max (0; , )
n n

f f

x V V
G d x d   

 
 

    
 

 

   . 

The proof of this Lemma follows directly from the 
definition of  GMC, namely since the columns of xM  and 

0M  and the number   differ only by some permutation of 
their elements. In particular, the maximum element in the 
columns of xM and 0M  is the same, as stated above. 

Remark 5.4. If mG V , 1 2 XOR   , ' Id   and 
, 'x x G  , then the definition coincides with the classical 

definition of Markov  BC (see e.g. [10]).  

Note that Proposition 5.3 is equivalent to stating 1,i r   

and x G 
1, ix 


  , i.e. a permutation on G, such that 

, G    we have 

1 1, , 1 ,( ; , ) (0 ; ( ), )
i i i i i

f f
i xd x d        

    (8) 

In particular, if  1i i     , then 

( ; , ) (0 ; ( ), )f f
xd x d     .   (9) 

The following Theorem demonstrates the performance of 
the GMC for some estimates like those previously obtained 
for the MC [16, 22, 23]. 

Theorem 5.5. For any GMC (with respect to operations i ), 
the following statements hold: 

1. , 'x G  , 

1 ,max ( ; , ')
i i

f

G
d x 


 




1 ,max (0; , ')
i i

f

G
d 


 


, 

1,i r  .      (10)                                                    

2. , 'x G  , 

1 ,max ( , ')
i i

f

G
d 


 




1 ,max ( ; , ')
i i

f

G
d x 


 


  

1 ,max (0; , ')
i i

f

G
d 


 


 , 1,i r  .   (11) 

3. ( , )EDP M
1 ,

1

max (0; , )
i i

r
f

iGi
d 


 




 .    (12) 

4. max ( , )EDP M


 
1 ,, '1 ' 0

max (0; , ')
i i

i

r
f

Gi

d 
 


 


 

 . (13) 

Proof: Firstly, (12) follows directly from the definition of 
GMC and by applying Proposition 5.3  since 

1 ,max ( ; , ')
i i

f

G
d x 


 




1
0

, 0max (0; , ')
i i

fd 


 


, 

5. Generalized Markov Ciphers 
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where 
10 , ( )

ix   


  for x G  and 1,i r . 

Next, note that (13) follows from (12) because 

1 ,max ( , ')
i i

f

G
d 


 




1 ,
1max ( ; , ')

i i

f

G x G
d x

G  


 






1 1, ,
1 max ( ; , ') max (0; , ')

i i i i

f f

G Gx G
d x d

G    
 

   
  



   

holds. Finally, (12) follows from item 1 of Proposition 5.3 
and then (13) is a consequence (12), which concludes the 
proof. 

5 Non-Markov ciphers and Examples 

Two examples of non-Markov ciphers are the old GOST 
211428 and the new Belarusian BelT 34.101.31-2007. So 
Differential Cryptanalysis can be applied to them. 

At the current time, the general theory of evaluating the 
practical stability of Markov ciphers with respect to 
difference (or linear) cryptanalysis has been developed, 
where some of the fundamental works in this direction are 
[9, 10, 11, 12]. As a rule, when constructing estimates, 
several consequences of formula (17) are used, namely 

max ( )EDP


 
1 2

1 2max ( )max ( )EDP EDP
 

  ,  (14) 

where  1 2( , )     and                                                

max ( )EDP


 
1 2

1 2, 0
( max ( , ))f rd
 

 


. (15) 

Similarly, we have  

max ( )EDP


  #max sp 


,    (16) 

where   is minimum possible number of active S-boxes 

in Ω, 
1 2

1 2,
max max ( , )s

s s S
p d

 
 


 , where S is the set of S-

blocks of the cipher [5-7] (if its round function is a 
composition of linear transformations and a block of 
substitutions. As for non-Markov BC [19- 21], the property 
of Theorem 1 for them does not hold, which makes it 
difficult to obtain estimates of the form (1) - (3) by 
analogous methods. Instead, when constructing analogues of 
these estimates, it is necessary to consider the dependence in 
(7) on x. 

Statement 5.1. (about the estimate for non-Markov block 
ciphers). For the value EDP(Ω, M) the following 
inequalities hold: 

( , )EDP M
1 , 1

1

max ( ; , )
i i

r
f

i ix Gi
d x   

 




 ,  (17) 

1,1

1 1

1,, 1
0
0

max ( , ) max max ( ; , )
i ii i

i i

i i

r
f

i iM x Gi

EDP M d x  





 




 


 






  . (18) 

Proof: For simplicity, we instead prove (17) for the two-
round characteristic 

0 0 1 1 2 2( , ) (( , ),( , ),( , ))M         

and then deduce (18) as a direct consequence of (17). Note 

( , )EDP M 
1 2 2 3

0

, 0 1 2 , 1 2 3
1 ( ; , ) ( ; , )f f

x G
d x d x

G       


 , 

where  
11 0( )kx f x , 1 nk V  is key of first round,  then  

( , )EDP M   

1 2 2 3

0

, 1 2 , 2 3
1 max ( ; , ) max ( ; , )f f

x G x Gx G
d x d x

G       
 



    

1 2 2 3, 1 2 , 2 3max ( ; , ) max ( ; , )f f

x G x G
d x d x      

 
  , 

which concludes the proof. 

It is worth noting that the presence of an additional 
parameter x G  in (17) and (18) significantly complicates 
the construction of numerous estimates and, at the same 
time, makes the estimates obtained rougher, which in some 
cases may become trivial. Because of this one cannot 
generally use this approach in practice.  

6.1 Conventions and approval 

Firstly, let us introduce some notation. For any n N , let 
{0,1}n

nV     an array of n -dimensional vectors. If 

, 2n pu p   then nx V   we can represent such an x as 
( ) (1) (1)( ,..., ), , 1,p

ux x x x V i p   . 

Denote by :m n nL V V  the mapping which produces a left 

shift by m -bits of the vector nV . On the set nV , we define 

the following subsets: 

m ( ) { | : ( ) ( ) };n n m mГ V k V L k L k           

1( ) { | : ( ) ( ) };m n n m mГ V k V L k L k            

then a bijective mapping : n nS V V  is defined 

( ) ( ) (1) (1) ( ): ( ) ( ( ),..., ( ), , 1, .p p i
n ux V S x S x S x x V i p      

We also denote by 

6. Construction of Upper Estimates for the  

Probabilities of the Integer Differential of  

the Round Functions Module 2 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2023.22.2 Ruslan Skuratovskii

E-ISSN: 2224-266X 13 Volume 22, 2023



( ) (2)( ,..., ) ; : ,p
n u n u n ux x x V S V V      

where ( ) ( ) (2) (2)( ) ( ( ),..., ( ))p pS x S x S x .  

Further, we introduce  

 (1) (1)0, ( ),
( , )

1, ;
if S k S k

k
else


 

  
 


 . 

Let  (1)
1 2, \{0}

max max{ , }
nV

I I
 




    

(1) (1) (1)

(1) (1)

, \{0}
: ( , ) 0

max max{2 ( (
n

u

u

V
k V k

S k
 

 




 

   

(1) (1) (1)

(1) (1) (1) (1) (1) (1)

: ( , ) 1

) ( ), ),2 ( (
u

u
j

k V k

S k S k
 

  

 

    

(1) (1) (1) (1)) ( ), )}jS k    

and, in addition, for any nV  with  

2 ,  0 2 1,  0 2 1m t mq r q r           

we introduce the following notation to work with elements 
of the set -1

m ( ) :Г   

1 1 2 2 1

3 3 1 4 4 1

( ) 2 ,  ( ) 1,

( ) 2 ,  ( ) 2 1

t

t t

q       

       

      

      
 

1,j p   and assuming that 
( ) ( ) ( )

, \{0}
max 2 ( ( ) ( ), )

j

n

S u j j

V
d S k S k

 
  




   .  

then 
( )

1,
max .

jS

i p
d 


   

Finally, we will use round functions, which are the 
composition of a key adder, a substitution block and a shift 
operator with form 

( ) ( ( ))k m iG x L S x k  . (19)  

6.2 Berson’s result 

When obtaining further results, we will use the main result, 
which we reformulate here using our notation in a more 
convenient form. Using our notation, the following holds. 

Theorem 6.1. For any , , 2 ,t
nm N V q r       

with 0 2 1,tr    we have 

( ) { , 1, 2 , 2 1},m m
m           

with 2mq r    and all operations are performed mod 2n . 

7  Construction of upper bounds for the 

probabilities of integer differentials of round functions  

Theorem 7.1. Let , 2t u p  . If the round function has the 
form (19) as in [15], then the inequality  

(1), \{0}: ( , ) max{2 ,4 }G
nV d           

holds. 

Proof: Average probabilities of integer round differentials 
for functions of the form (3.1) have form 

      
( ; ; ) 2 ( ( (( ) ))

( ( )), ).
n

G n
m

k V

m

d x L S x k

L S x k

   









   

 


         (20) 

Examples of such probabilities for cipher Threefish we have 
in table 3.1. It is the mean (behind the keys) probability of 
the differential of the mapping at the point x  

2

,
( ; ) 2 ( ( (( ) ))

n

G n
m

x k V
d L S x k   





   

( ( )), ).mL S x k                                                            (21) 

Let ( ; ) ( )x x x       , then 

( ; ; ) 2 ( ( (( ) ))
n

G n
m

k V
d x L S x k   





   

( ( )), ) 2 ( ( ( ( ; )))
n

n
m m

k V
L S x k L S x k x    



      . 

Let us introduce further notation to simplify, namely  

'; ( ; ) ' '( ; ); '.x k k x x k k            

We then write our expression using the new notation as  

( ; ; ) 2 ( ( ( ' )) ( ( ), ))

(0; ; ).
n

G n
m m

k V

G

d x L S k L S k

d

    

 









   




 

So, we deduce that  

\{0} ' \{0}
max ( ; ; ) max (0; ; ).

n n

G G

V V
d x d

 
    

 
  

hence ( )iS Sd d  , which concludes the proof.  

Table. 3.1 The value of the upper limits of the probability of the appearance 

of zero differentials depending on the number of the round 

Round number The value of the upper limit of the probability of 
differentials 

2 2-21 

3 2-33.1689 

4 2-33.1689 

5 2-33.1689 

6 2-33.1689 

7 2-33.1689 

8 2-33.169- 

9 2-33.1690 

 

Remark 6.2. Theorem 6.1 admits generalization to the case 
of several subsets  1,...,k  and several G . 
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The national standard for block ciphering GOST 28147-89 
is UMC in a broad sense is related to the bitwise addition 
operation. Indeed, in this case with 64G V  and 32G V  ,  

( ; , ) ( , ) ( ; , )fd x d x         , 

where 2 1( , ) ( , )      , 2( )x x x  , 2( , )     ,      
k  is a round transformation, which is a generalized 

Markov mapping (see e.g. [16, 17, 18, 19, 23]). 

An upper estimate of the probability of integer differential 
of round functions has been found. This result can be 
implemented for analysis of crypto stability of block cipher 
in relation to round crypto analysis. Note that our method 
and bounds can be extended on stream ciphers [21]. 
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