Approach. Cambridge, University Press, 2012.
https://doi.org/10.1017/CBO9780511808982
[5]. H.K. Kwan and S.B. Arniker, Numerical
representation of DNA sequences. Proc. 2009
IEEE Int. Conf., Electro/Information
Technology, 2009, pp. 307-310.
http://dx.doi.org/10.1109/EIT.2009.5189632
[6]. C. Cattani, Complex representation of DNA
sequences, Commun. in Computer and Inform.
Sci., Vol. 13, 2008, pp. 528-537.
http://dx.doi.org/10.1007/978-3-540-70600-7_42
[7]. P.D. Cristea, Conversation of nucleotide
sequences into genomic signals, J. Cell. Mol.
Med., Vol. 6, 2002, pp. 279-303.
https://doi.org/10.1111/j.1582-
4934.2002.tb00196.x
[8]. F. Bai, J. Zhang, J. Zheng, C. Li, and L. Liu,
Vector representation and its application of DNA
sequences based on nucleotide triplet codons, J.
Mol. Graphics Modell., Vol. 62, 2015, pp. 150-
156. https://doi.org/10.1016/j.jmgm.2015.09.011
[9]. B. Brejová, T. Vinar, and M. Li, Pattern
discovery. In: Krawetz S.A., Womble D.D. (eds)
Introduction to Bioinformatics, Humana Press,
Totowa, NJ, 2003.
[10]. J. Zhang, Visualization for Information
Retrieval, Springer, 2007.
https://doi.org/10.1007/978-0-387-39940-9_954
[11]. M. Randic, M. Novic, and D. Plavsic.
Milestones in graphical bioinformatics, Int. J.
Quantum Chem., Vol. 113, 2013, pp. 2413-2446.
https://doi.org/10.1002/qua.24479
[12]. P.P. Vaidyanathan, Genomics and
proteomics: A signal processing tour, IEEE Circ.
Syst. Mag., 4th Quarter, 2004, pp. 6-29.
https://doi.org/10.1109/MCAS.2004.1371584
[13]. J.V. Lorenzo-Ginori, A. Rodríguez-
Fuentes, R.G. Ábalo, R. Grau, and R.S.
Rodríguez, Digital signal processing in the
analysis of genomic sequences, Current
Bioinformatics, Vol. 4, 2009, pp. 28-40.
https://doi.org/10.2174/157489309787158134
[14]. L. Das, S. Nanda, and J.K. Das, An
integrated approach for identification of exon
locations using recursive Gauss-Newton tuned
adaptive Kaiser window, Genomics, Vol. 111,
2019, pp. 284-296.
https://doi.org/10.1016/j.ygeno.2018.10.008
[15]. A. E. Lamairia, Nonexistence results of
global solutions for fractional order integral
equations on the Heisenberg group, WSEAS
Trans. Systems, Vol. 21, 2022, pp. 382-386.
http://dx.doi.org/10.37394/23202.2022.21.42
[16]. N. Viriyapong, Modification of
Sumudu Decomposition method for nonlinear
fractional Volterra integro-differential equations,
WSEAS Trans. Math., Vol. 21, 2022, pp. 187-
195. DOI: 10.37394/23206.2022.21.25
[17]. A. Czerniecka, D. Bielinska-Waz, P.
Waz, and T. Clark, 20D-dynamic representation
of protein sequences, Genomics, Vol. 107, 2016,
pp. 16-23.
https://doi.org/10.1016/j.ygeno.2015.12.003
[18]. E.R. Hamori and J. Raskin, H curves, a
novel method of representation of nucleotide
series especially suited for long DNA sequences,
J. Biol. Chem., Vol. 258, 1983, pp. 1318-1327.
https://doi.org/10.1016/S0021-9258(18)33196-X
[19]. M.A. Gates, Simpler DNA
representation, Nature, Vol. 316, 1985, pp. 219.
https://doi.org/10.1038/316219a0
[20]. C.L. Berthelsen, J.A. Glazier, and M.H.
Skolnick, Global fractal dimension of human
DNA sequences treated as pseudorandom walks,
Phys. Rev. A., Vol. 45, 1992, Paper No
89028913.
https://doi.org/10.1103/PhysRevA.45.8902
[21]. P. Licinio and R.B. Caligiorne,
Inference of phylogenetic distances from DNA-
walk divergences, Physica A, Vol. 341, 2004, pp.
471-481.
http://dx.doi.org/10.1016/j.physa.2004.03.098
[22]. J.A. Berger, S.K. Mitra, M. Carli, and
A. Neri, Visualization and analysis of DNA
sequences using DNA walks, J. Franklin Inst.,
Vol. 341, 2004, pp. 37-53.
https://doi.org/10.1016/j.jfranklin.2003.12.002
[23]. A. Rosas, E. Nogueira Jr., and J.F.
Fontanari, Multifractal analysis of DNA walks
and trails, Phys. Rev. E, Vol. 66, 2002, Paper No
061906.
WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.35
Alexandra Belinsky, Guennadi A. Kouzaev