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Abstract: - In our previous contributions [20, 21, 22], we have clearly demonstrated that the dynamic neural 

network concept (DNN-concept) for solving shortest path problems (SPP) and traveling salesman problems 

(TSP) outperforms the best heuristic methods proposed by the literature. However, in our numerous 

contributions and also according to the literature, the effects of the step sizes of both “decision neurons” and 

“multiplier neurons” on the convergence properties of the “DNN-concept” are still not investigated. The aim of 

our contribution is to enrich the literature by investigating, for the first time, the convergence properties of the 

DNN-concept for solving traveling salesman problems. We develop a mathematical model for the efficient and 

robust solving the traveling salesman problem (TSP). Based on the numerical study, the convergence properties 

of the model developed (i.e., the DNN-concept for solving TSP) is investigated. Ranges (or windows) of 

variation of the parameters of the developed mathematical model are determined (identified) to ensure 

(guarantee) the detection of the exact TSP solution/tour. In order to validate the mathematical model developed 

for solving TSP, a bifurcation analysis is carried out using the developed mathematical model. Various 

bifurcation diagrams are obtained numerically. The bifurcation diagrams obtained reveal the ranges of variation 

of some key parameters of the model developed to ensure (or guarantee) the convergence of the DNN-concept 

to the exact TSP-solution (i.e., global minimum). Concrete examples of graphs are considered and various 

numerical simulations are performed as proof of concept. Finally, a comparison of the results obtained with the 

results published in [17]-[18] lead to a very good agreement. 
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1  Introduction 
During the past couple of decades the traveling 

salesman problem (TSP) has been studied in many 

fields of science and engineering, leading to a great 

variety of applications such as:  ordering-picking in 

a warehouse [1], hot rolling scheduling  [2], ship 

scheduling [3], pickup and delivery  [4], carrier-

vehicle systems [5], information processing [6], 

optimization of drone-assisted parcel delivery [7], 

optimization of traffic factors [8], data clustering 

[9], X-ray crystallography [10], printed circuit board 

production [11], in-vehicle route guidance [12], 

automated guided vehicle systems [13], multipath 

traffic assignment [14], traffic light control [15], 

real-time traffic information [16], just to name a 

few. These applications witness the tremendous 

attention devoted during the past couple of decades 

to the development of new methods and algorithms 

for solving TSP. However most of the traditional 

methods and algorithms so far developed are 

generally prone to limitations/drawbacks described 

in [20, 21, 22]. These limitations/drawbacks do 

justify the focus (in this paper) on the development 

of a new concept for solving TSP. Some well known 

limitations of traditional methods and algorithms 

are: the weak robustness, low accuracy, weak 

stability, poor flexibility, low scalability potential, 
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and failures to converge to the exact/true TSP 

solution/tour. One can refer to [20, 21, 22] for a full 

description of the drawbacks/limitations of the 

heuristic methods. The new DNN solver concept 

developed (in this paper) is a systematic analytical 

framework, which does efficiently satisfy all key 

performance metrics (i.e., robustness, accuracy, 

flexibility, scalability, convergence to the exact TSP 

solution, subtours avoidance in TSP, etc.). A further 

limitation of the traditional 

methods/concepts/algorithms for solving TSP is the 

fact that they do not provide a systematic analytical 

framework, which could be used to handle or 

overcome the aforementioned limitations. 
Further significant studies on the topic addressed in 

this paper can be found in [24-25]. These references 

provide a theoretical framework that might help 

understanding the modeling framework developed 

in this paper. 

This paper is a contribution to the development 

of a systematic analytical concept which efficiently 

addresses and overcomes the aforementioned 

limitations (drawbacks) of the traditional concepts, 

methods, and algorithms for solving TSP. The main 

focus is on the mathematical modeling of the TSP 

problem and the analysis of the convergence of the 

resulting differential equations obtained as the 

mathematical model of the DNN-concept for 

solving TSP problems. A mathematical theory is 

developed to guarantee the convergence of the 

DNN- concept to the exact traveling salesman 

solution. The bifurcation analysis is further carried 

out in order to depict (or determine) the ranges of 

the control-parameters in which the convergence to 

the exact TSP-solutions is always ensured. Many 

bifurcation diagrams are obtained and depicted (i.e., 

represented) in order to confirm the convergence of 

the DNN concept to exact TSP solutions.  

The paper is organized as follows. Section 2 

focuses on the mathematical modeling of the TSP 

problem. A full description of the modeling 

methodology leading to the derivation of the 

mathematical model of the novel TSP solver-system 

(i.e., the DNN concept for solving TSP) is given. 

The mathematical model obtained is expressed in 

the form of coupled ordinary differential equations 

(ODE). Section 3 is focused on the numerical 

investigation of the convergence of the 

mathematical model developed to the exact TSP 

solution. The numerical study is mainly focused on 

the bifurcation analysis, aiming at determining and 

depicting the suitable values and/or ranges/windows 

of the parameters (or coefficients) of the 

mathematical model of the DNN concept for which 

the convergence to the exact TSP solution is ensured 

(guaranteed). Various bifurcation diagrams are 

obtained in terms of the control-parameters of 

bifurcation, which are the step sizes of both decision 

neurons and multiplier neurons. The resulting 

bifurcation diagrams (obtained numerically) clearly 

reveal the effects of the decision and multiplier 

neurons on the convergence of the DNN concept to 

the exact TSP solution. Section 4 is devoted to 

concluding remarks and outlook. In the outlook, 

several open research questions of interest for 

further investigations are briefly formulated. 

 

 

2 Mathematical Modeling of the TSP 
In subsections below we present the full details of 

the procedure leading to the derivation of the 

mathematical model of the DNN-concept for 

solving TSP (expressed into the form of coupled 

ordinary differential equations ODEs). 

 

2.1 Objective function  
The TSP in any given graph network 𝐺 is 

formulated by the objective function ℑ expressed in 

(1). The function 𝑓(𝑥⃗) represents the total cost 

corresponding to the full size of 𝐺. The integers 𝑗 
and 𝑘 are the indexes of nodes in 𝐺 and, 𝑀 is the 

magnitude of 𝐺. 

 

  ℑ = 𝑀𝑖𝑛 [𝑓(𝑥⃗) = ∑ ∑ 𝜔𝑘→𝑗𝑥𝑘→𝑗
𝑀
𝑘=1
𝑘≠𝑗

𝑀
𝑗=1
𝑗≠𝑘

]           (1)  

 

The generalized form of (1) is given by (2). The 

symbol "°" denotes the elementwise product (called 

Hadamard-product). 

 

       ℑ = 𝑀𝑖𝑛[𝑓(𝑥⃗) = ∑ 𝜔𝑝°𝑥𝑝
𝑁
𝑝=1 ]                      (2) 

 

where 𝑥𝑝 = [𝑥1, . . . , 𝑥𝑁]
𝑇 and 𝜔𝑝 = [ 𝜔1, … , 𝜔𝑁]

𝑇 

are respectively the states and weights of all edges 

of 𝐺 (𝑁 is the size of 𝐺). The components of 𝑥𝑝 are 

binary numbers and thus 𝑥𝑝 is a binary vector. The 

components of 𝑥𝑝 equal to “1” reveal the edges 

belonging to the TSP solution/tour, and components 

of  𝑥𝑝 equal to “0” stand for those edges which do 

not belong to the TSP solution/tour. 

 

2.2 Constraints  
The objective function in (2) is subject to a series 

constraints, which are formulated to fulfill all key 

requirements related to TSP.  

In our recent contribution (see [20]) we have 

defined the general condition for assigning attributes 

to nodes by (3). The notation 𝑘 ← 𝑗 stands for all 
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incoming edges to a node with index 𝑘. Similarly, 

the notation 𝑘 → 𝑗 stands for all outgoing edges 

from a node with index 𝑘.  

 

             ∑ 𝑥𝑘→𝑗
𝑀
𝑗=1
𝑗≠𝑘

− ∑ 𝑥𝑘←𝑗
𝑀
𝑗=1
𝑗≠𝑘

= 𝛿                    (3) 

 

2.2.1 Constraint 1  

This constraint insures the belonging of each node 

of 𝐺 to the TSP solution. To fulfil (or achieve) this 

constraint, each node of 𝐺 is assigned the attribute 

of intermediate node by choosing 𝛿 = 0 in (3) [20]. 

Thus, applying (3) to all nodes of 𝐺 (under the 

condition 𝛿 = 0) leads to the general form (4).   

 

                       𝑔1(𝑥𝑝) = 𝐴𝑥𝑝 = 0                         (4) 

The symbol 𝐴 in (4) stands for the incidence matrix 

of 𝐺.  

 

Remark 1. For the sake of providing a clear 

understanding of some fundamental issues like: a) 

the modeling procedure, b) the constraints 

formulated, c) the mathematical models obtained, 

and d) the parameters of the mathematical models 

obtained, we will be using (throughout the paper), 

for illustrative purposes, the example of the six-city 

graph network published in references [17]-[18] (see 

Fig. 1). 

The elements/values in rows 1 to 6 and columns 

1 to 30 of the matrix 𝐴 (see below) correspond to 

the specific case of Fig. 1. In row 1 of 𝐴 the values 

"1" reveal the connection to 𝑃1 of the outgoing 

edges (from 𝑃1) denoted 𝑥1, 𝑥3, 𝑥6, 𝑥8, and 𝑥9. The 

values " − 1" reveal the connection to  𝑃1 of the 

incoming edges (to 𝑃1) denoted 𝑥2, 𝑥4, 𝑥5, 𝑥7, 

and 𝑥10. Similarly, the columns 11 and 12 of the 

matrix 𝐴 reveal the connection of 𝑃2 and 𝑃3 by the 

pair of parallel edges (𝑥11, 𝑥12).      

 
Fig. 1: Topology of a six-city graph published in 

[17]-[18]. This is a completed bidirectional graph of 

magnitude 6 and size 30. The states of edges are 

denoted by 𝒙𝒊 and the weights (i.e. edges costs) are 

𝝎𝒊. Examples of TSP tours are displayed in green 

color (the TSP solution proposed in [17]) and red 

color (the TSP solution proposed in [18]). 
 

Remark 2. The procedure (described above) to 

determine the incidence matrix 𝐴 is applicable to 

any graph network 𝐺 regardless of the topology, 

size and magnitude of the graph.   
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2.2.2 Constraint 2  

This constraint ensures the connection of each node 

of 𝐺 by exactly “one incoming edge” and “one 

outgoing edge”. This constraint is modeled by (5), 

assuming (4) is satisfied. Thus the constraints 1 and 

2 are complementary [20]. 

 

                     ∑ 𝑥𝑘→𝑗
𝑀
𝑗=1
𝑗≠𝑘

+ ∑ 𝑥𝑘←𝑗
𝑀
𝑗=1
𝑗≠𝑘

= 2                        (5) 

 

Applying (5) to all nodes of 𝐺 leads to the general 

form (6).    

                       

                       𝑔2(𝑥𝑝) = (|𝐴|𝑥𝑝 − 2) = 0                       (6) 

The quantity |𝐴| in (6) denotes the absolute value of 

𝐴. 
 

2.2.3 Constraint 3  

This constraint is formulated to avoid the 

simultaneous belonging of parallel edges 

(𝑥2𝑛−1, 𝑥2𝑛) to the TSP solution/tour. This 

constraint is modeled by applying (7) to each pair of 

parallel edges. Let’s mention that parallel edges are 

edges expressing the bidirectional communication 

between each pair of nodes. 

 

         (𝑥2𝑛−1 + 𝑥2𝑛)(𝑥2𝑛−1 + 𝑥2𝑛 − 1) = 0        (7) 

 
According to (7) each pair of parallel edges can take 

only one of the states (𝑥2𝑛−1, 𝑥2𝑛) ∈
{(0, 0), (0, 1), (1, 0)}; thus the case (𝑥2𝑛−1, 𝑥2𝑛) =
(1, 1) which corresponds to parallel edges is surely 

avoided under condition (7). An illustrative example 

of applying (7) to parallel edges (𝑥1, 𝑥2) =

𝑥̃(1,2), (𝑥3, 𝑥4) = 𝑥̃(3,4),…,(𝑥29, 𝑥30) = 𝑥̃(29,30) in 

Fig.1 is as follows: (𝑥1 + 𝑥2)(𝑥1 + 𝑥2 − 1) =
0, (𝑥3 + 𝑥4)(𝑥3 + 𝑥4 − 1) = 0,..,(𝑥29 + 𝑥30)(𝑥29 +
𝑥30 − 1) = 0. Applying (7) to all parallel edges of 

𝐺 denoted by (𝑥2𝑛−1, 𝑥2𝑛) = 𝑥̃(2n−1,2n) leads to the 

general expression (8). 
 

                𝑔3(𝑥𝑝) = 𝐷𝑥𝑝°(𝐷𝑥𝑝 − 1) = 0             (8) 
 

 

The matrix 𝐷 is of size (𝑁/2) × 𝑁 and 𝐷 expresses 

the connectivity of all pairs of parallel edges 

(𝑥2𝑛−1, 𝑥2𝑛) = 𝑥̃(2n−1,2n) in the graph 𝐺. Let’s 

mention here that, in the general form, the last pair 

of parallel edges in the graph 𝐺 is obtained for 𝑛 =
𝑁

2
 and this corresponds to   𝑥̃(𝑁−1,𝑁).  

    

   
                                                                                 

 

Remark 3. In the matrix 𝐷, only the pairs of parallel 

edges denoted by 𝑥̃(1,2), 𝑥̃(3,4), 𝑥̃(5,6), 𝑥̃(7,8), and  

𝑥̃(9,10) are represented. These pairs correspond 

respectively to (𝑥1, 𝑥2), (𝑥3, 𝑥4), (𝑥5, 𝑥6), (𝑥7, 𝑥8), 
and  (𝑥9, 𝑥10) in Fig. 1. One can deduce 𝐷 for the 

full size of Fig. 1. Note that the form of 𝐷 is 

standard. Thus, 𝐷 holds for any graph 𝐺 regardless 

of the topology, size, and magnitude.  

 

Remark 4. Note that the constraint formulated in (8) 

holds even for a numbering of edges which is 

different from the numbering chosen in the example 

of Fig. 1; in case the numbering differs from that 

currently used in Fig. 1, one obtains a matrix D 

which is not a diagonal matrix, but which still 

satisfies the constraint formulated in (8). For the 

sake of generalization and to facilitate programming 

or algorithmic-coding (in case we may consider a 

complex graph network, e.g., graph of huge size and 

fully connected), expressing the matrix D into 

diagonal form is convenient (highly recommended). 

 

2.2.4 Constraint 4  

This constraint is formulated to avoid subtours in 

the TSP solution. Thus the condition (9) is used to 

ensure (or guarantee) only TSP solutions/tours with 

single- cycles.  

                ∏ (∑ 𝑥𝑗
ℵ 
𝑗=1
𝑥𝑗𝜖𝑆𝑘

− 𝑖)
(ℵ −1)
𝑖=0 = 0                (9)  

In (9), 𝑥𝑗 stands for edges belonging to a given 

subtour 𝑆𝑘, and ℵ  is the total number of edges in the 

subtour 𝑆𝑘.   

The expression (9) is applicable to any graph 𝐺 

of known topology. The knowledge of the graph 

topology leads to the straightforward determination 

of the sizes of subtours in 𝐺. Indeed the  subtours of 

𝐺 are obtained according to (9) when the 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2022.21.31

Elnur Norov, Shakhzod Tashmetov, 
Khabibullo Nosirov, Makhirakhon Rakhmatullaeva, 

Ahmed Yusupov, Jean Chamberlain Chedjou

E-ISSN: 2224-266X 288 Volume 21, 2022



characteristic relation 2 < ℵ < |𝑉| − 2 is fulfilled. 

The quantity |𝑉| stands for  the magnitude of 𝐺.  

In [19] the inequality ∑ 𝑥𝑒 ≤ |𝑆| − 1𝑒=(𝑢,𝑣)∈𝐸
𝑢,𝑣∈𝑆

 is 

proposed for the subtour elimination constraints 

(SEC), where 𝑆 is a non-empty subset of the set of 

nodes of graph 𝐺 and 𝑥𝑒 is a binary variable 

revealing the state of edges- connectivity. The 

advantage of (9) when compared to the SEC in [19] 

is that (9) is used both for the determination of all 

possible subtours and for the elimination of the 

subtours. Further advantage is that the equality 

constraint (9) is appropriate for the modeling of our 

Neuro-Processor solver while in contrast the 

inequality constraints SEC in [19] is not appropriate 

for the mathematical modeling of TSP by ordinary 

differential equations. 

We now consider Fig. 1 to illustrate the 

application of (9). Let us mention that in the specific 

case of Fig. 1, ℵ = 3 for all subtours 𝑆𝑘. Further, a 

total of 20 possible TSP solutions (each of which is 

made-up of a pair of subtours) can be found in Fig. 

1. The TSP solutions with two cycles (called multi-

tours TSP) are surely avoided when the condition 

(9) is satisfied. Amongst the TSP solutions with two 

cycles (in Fig. 1), let us mention, just for 

illustration, the pair of subtours 𝑆1 made-up of edges 
(𝑥1, 𝑥11, 𝑥4) and 𝑆1

′  with edges (𝑥26, 𝑥27, 𝑥29). 
Another TSP solution with two cycles (in Fig. 1) is 

𝑆2 with edges (𝑥6, 𝑥25, 𝑥7) and 𝑆2
′  with 

(𝑥11, 𝑥23, 𝑥18).  

 

Remark 5.  A total of 40 subtours corresponding to 

20 TSP solutions (with two cycles each) co-exist in 

Fig. 1 with several other TSP solutions with single-

cycles. Thus, (9) is applied to eliminate subtours and 

thus ensure only TSP solutions with single-cycles in 

a given graph network with known topology. 

For a given graph 𝐺, the subtours 𝑆𝑘 are 

expressed through the matrix 𝑀𝑆. Worth mentioning 

is that 𝑀𝑆 can be easily determined for any given graph 

network of known topology. 

We now consider Fig. 1 as a particular/specific 

example to illustrate the procedure leading to the 

determination of 𝑀𝑆. The subtour 𝑆1 (see first row of 𝑀𝑆) 

is made-up of edges (𝑥1 , 𝑥4, 𝑥11). According to (9) the 

subtour 𝑆1 is avoided by the following analytic equation: 

(𝑥1 + 𝑥4+𝑥11)(𝑥1 + 𝑥4+𝑥11 − 1)(𝑥1 + 𝑥4+𝑥11 − 2) =
0.  
It clearly appears that this equation does not admit as 

solution the case 𝑥1 = 𝑥4 = 𝑥11 = 1 (corresponding to 

𝑆1)    

 

 
 

 
 

Overall, for any given graph network, the 

application of (9) to all subtours of the graph leads 

to the general form (10).  
 
 

 

 𝑔4(𝑥𝑝) = 𝑀𝑆𝑥𝑝°(𝑀𝑆𝑥𝑝 − 1)°… . °(𝑀𝑆𝑥𝑝 − ℵ + 1) 

                                                                            = 0         
                                                                             (10)  
 
            

where 𝑥𝑝 = [𝑥1, . . . , 𝑥𝑁]
𝑇 is the state vector of the 

edges in 𝐺.  

The symbol "°" denotes the elementwise product. 

The constraint modeled by (10) is used to eliminate 

the subtours 𝑆𝑃 described by the matrix 𝑀𝑆. 𝑀𝑆 is of 

size ℕ × 𝑁 and can be obtained for a given graph 

network  𝐺. 𝑁 is the size of 𝐺 and ℕ is the total 

number of subtours in 𝐺. Note that ℕ = 40 in the 

specific case of Fig. 1. Also note that only 7 

subtours are represented in 𝑀𝑆. The full matrix 𝑀𝑆 

corresponding to Fig. 1 can be deduced by 

representing all the 40 subtours. As already defined 

above, ℵ  stands for the total number of edges in a 

given subtour 𝑆𝑘. The range of variation of ℵ  is 2 <
ℵ < |𝑉| − 2, where  |𝑉| stands for the magnitude of 

𝐺. In the particular case of Fig. 1, we have ℵ = 3 as 

all the 40 subtours identified are each with three 

edges.   

 

2.2.5 Constraint 5  

This constraint expressed into the general form (11) 

ensures the binarization of all edges of 𝐺  [20].  

                      𝑔5(𝑥𝑝) = 𝑥𝑝(𝑥𝑝 − 1) = 0            (11) 

 

where 𝑥𝑝 = [𝑥1, . . . , 𝑥𝑁]
𝑇 is the state vector of edges 

in 𝐺. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2022.21.31

Elnur Norov, Shakhzod Tashmetov, 
Khabibullo Nosirov, Makhirakhon Rakhmatullaeva, 

Ahmed Yusupov, Jean Chamberlain Chedjou

E-ISSN: 2224-266X 289 Volume 21, 2022



2.2.6 Constraint 6 

This constraint improves the robustness of the 

binarization constraint (11). According to [20], the 

improvement of the robustness of the convergence 

properties of all edges of 𝐺 to binary variables (i.e. 

“1” and/or “0”) is ensured by the augmented 

Lagrange method. This method is derived from (11) 

by introducing an additive penalty force expressed 

in the form of quadratic energy. This justifies the 

constraint expressed in the general form (12). This 

constraint was also reported in our references [20].  
 

 𝑔6(𝑥𝑝) = [𝑔5(𝑥𝑝)]
2
= (𝑥𝑝

4 − 2𝑥𝑝
3 + 𝑥𝑝

2) = 0  (12)  

 
    

The next section is concerned with the 

formulation of the Lagrange function as the total 

energy of the system (see our Refs. [20], [21], [22], 

[23]). 

 

2.3 The Basic Differential Multiplier Method  
We now transform the constrained optimization 

problem into an unconstrained optimization 

problem. This is done by expressing the Lagrange 

function as a combination of the objective function 

with the formulated constraints. The overall 

procedure consists of introducing new vectors of 

multiplier variables λ1, λ2, λ3, λ4, λ5, and λ6 for the 

six groups of constraints (4), (6), (8), (10), (11) and 

(12). Combining the objective function (2) with 

these constraints leads to the Lagrange function 

denoted by ℒ.  

 

ℒ = 𝑓(𝑥𝑝) + 𝜆1𝑔1(𝑥𝑝) + 𝜆2𝑔2(𝑥𝑝) + 𝜆3𝑔3(𝑥𝑝) 

         +𝜆4𝑔4(𝑥𝑝) + 𝜆5𝑔5(𝑥𝑝) + 𝜆6𝑔6(𝑥𝑝)           (13) 

 

Eq. (13) is now used to obtain the model for solving 

TSP. The Basic Differential Multiplier Method 

(BDMM) expressed in (14) is used to obtain the set 

of coupled ordinary differential equations describing 

the mathematical model for solving TSP. More 

details on the application of BDMM is also provided 

in our refs.[20], [21], [22], [23].  

{
 
 
 

 
 
 

𝑑𝑥𝑝

𝑑𝑡
= −𝛼

𝜕ℒ

𝜕𝑥𝑝

𝑑𝜆1

𝑑𝑡
= 𝛽1

𝜕ℒ

𝜕𝜆1
 ;  
𝑑𝜆2

𝑑𝑡
= 𝛽2

𝜕ℒ

𝜕𝜆2
 ;  
𝑑𝜆3

𝑑𝑡
= 𝛽3

𝜕ℒ

𝜕𝜆3
 

  
𝑑𝜆4

𝑑𝑡
 = 𝛽4

𝜕ℒ

𝜕𝜆4 
;  
𝑑𝜆5

𝑑𝑡
 = 𝛽5

𝜕ℒ

𝜕𝜆5
 ;  
𝑑𝜆6

𝑑𝑡
 = 𝛽6

𝜕ℒ

𝜕𝜆6
 

   

(14) 
                                                                                    
The expression (14) corresponds to a neural network 

with anti-symmetric connections between the 

vectors of multiplier neurons (also called multiplier 

variables) 𝛌𝟏, 𝛌𝟐, 𝛌𝟑, 𝛌𝟒, 𝛌𝟓, 𝛌𝟔 and all components 

of the vector of decision neurons (also called 

decision variables) 𝒙𝒑 = [𝒙𝟏, . . . , 𝒙𝑵]
𝑻. The step 

sizes for updating decision variables and multiplier 

variables are denoted by 𝜶 and 𝜷𝒊 (𝒊 =
𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔) respectively.  

Using (13), the partial derivatives are calculated in 

the BDMM model in (14) and, the resulting 

mathematical model obtained is expressed in (15).   

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒅𝒙𝒑

𝒅𝒕
= −𝜶 {𝑨𝑻𝝀𝟏 + |𝑨|

𝑻𝝀𝟐 + (𝟐𝑫
𝑻𝑫𝒙𝒑 − 𝟏)°𝑫

𝑻𝝀𝟑

[(𝑴𝒔
𝑻𝑴𝑺𝒙𝒑)°(𝑴𝒔

𝑻𝑴𝑺𝒙𝒑 − 𝟏)°… °

(𝑴𝒔
𝑻𝑴𝑺𝒙𝒑 − ℵ + 𝟏) ] [(𝑴𝒔

𝑻𝑴𝑺𝒙𝒑)
−𝟏
+ (𝑴𝒔

𝑻𝑴𝑺𝒙𝒑 − 𝟏)
−𝟏

+⋯+ (𝑴𝒔
𝑻𝑴𝑺𝒙𝒑 − ℵ + 𝟏)

−𝟏
] °𝑴𝒔

𝑻𝝀𝟒

+ (𝟐𝒙𝒑 − 𝟏)°𝝀𝟓 + (𝟒𝒙𝒑
𝟑−𝟔𝒙𝒑

𝟐 + 𝟐𝒙𝒑)°𝝀𝟔 +𝝎𝒑 }

𝒅𝝀𝟏
𝒅𝒕

  = 𝜷𝟏[𝑨𝒙𝒑]

 
𝒅𝝀𝟐
𝒅𝒕

  = 𝜷𝟐[|𝑨|𝒙𝒑 − 𝟐]

𝒅𝝀𝟑
𝒅𝒕

  = 𝜷𝟑[𝑫𝒙𝒑°(𝑫𝒙𝒑 − 𝟏)]

𝒅𝝀𝟒
𝒅𝒕

  = 𝜷𝟒[𝑴𝑺𝒙𝒑°(𝑴𝑺𝒙𝒑 − 𝟏)°… °(𝑴𝑺𝒙𝒑 − ℵ𝒑 + 𝟏)]

𝒅𝝀𝟓
𝒅𝒕

  = 𝜷𝟓[𝒙𝒑(𝒙𝒑 − 𝟏)]

𝒅𝝀𝟔
𝒅𝒕

  = 𝜷𝟔[𝒙𝒑
𝟒−𝟐𝒙𝒑

𝟑 + 𝒙𝒑
𝟐]

 

                                                                                      (15) 

In Eq. (15), the quantities 𝑨𝑻, |𝑨|𝑻, 𝑫𝑻 and 𝑴𝒔
𝑻 denote 

the transpose of matrices 𝑨, |𝑨|, 𝑫 and 𝑴𝒔, respectively. 

 

 

3 Numerical Study  
The aim of the numerical study is twofold.  

 Validating the mathematical model obtained 

in this work (see (15)) for solving the 

traveling salesman problem (TSP). This is 

achieved by comparing the numerical 

results obtained when solving the TSP in 

Fig. 1 using Eq. (15) with the results 

published in refs. [17]-[18]. 

 Determining the ranges of parameters 𝛼  

(decision variable) and 𝛽𝑖 (𝑖 = 1, 2,3,4,5,6) 
(multiplier variables) for which the 

mathematical model in Eq. (15) always 

converges to the exact TSP solution. This is 
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achieved by carrying out a bifurcation 

analysis. This analysis consists of varying 

the control parameters of bifurcation 𝛼 and 

𝛽𝑖 (𝑖 = 1, 2,3,4,5,6) in order to depict (i.e., 

identify and detect) the regions in which the 

mathematical  model in Eq. (15) always 

converges to the exact/true TSP solution.  

 

In order to compare our results with the published 

results, we use the same values of weights (i.e., 

costs of edges) proposed in [18] for the six-city 

graph in Fig. 1: 𝜔1 = 𝜔2 = 25; 𝜔3 = 𝜔4 = 25; 

𝜔5 = 𝜔6 = 22; 𝜔7 = 𝜔8 = 25; 𝜔9 = 𝜔10 = 28 ;   

𝜔11 = 𝜔12 = 25 ;   𝜔13 = 𝜔14 = 45 ;   𝜔15 =
𝜔16 = 45 ;   𝜔17 = 𝜔18 = 35 ;   𝜔19 = 𝜔20 = 30 ;   

𝜔21 = 𝜔22 = 55 ;  𝜔23 = 𝜔24 = 50 ;   𝜔25 =
𝜔26 = 25 ;   𝜔27 = 𝜔28 = 50 ; 𝜔29 = 𝜔30 = 27.  

 

The numerical simulation of (15) is performed using 

the following values of parameters: α = 0.6 ;  𝛽1 =
𝛽2 = 50 ; 𝛽3 = 0.01; 𝛽4 = 𝛽5 = 50 ; 𝛽6 = 0.01. 

The 4th order Runge-Kutta algorithm is used for the 

numerical solving of (15) using the step size ℎ =
0.001. The results of 𝑥𝑝 obtained as numerical 

solutions of (15) are depicted in Fig.2. As it appears 

in Fig. 2 the system (15) undergoes a short transient 

behavior characterized by damped oscillations, 

followed by the detection of subtours S1, S2, and 

S3. Finally the system (15) converges to the optimal 

TSP tour characterized by the following binary 

values obtained as numerical solutions of (15):   

𝑥4 = 𝑥6 = 𝑥11 = 𝑥18 = 𝑥25 = 𝑥30 = 1 (see Fig. 2). 

The remaining components of 𝑥𝑝 are equal zero (see 

Fig. 2). Thus the trajectory in red color (see Fig.1) 

corresponds to the “optimal TSP- tour” denoted 

𝑃1 → 𝑃4 → 𝑃5 → 𝑃6 → 𝑃2 → 𝑃3 → 𝑃1 . The total 

cost of the optimal TSP solution/tour corresponding 

to the values of 𝑥𝑝 is 𝐶𝑡𝑜𝑡𝑎𝑙 = 159. These results 

are confirmed by [18]. 

 

We now consider the bifurcation analysis through 

the numerical solving of (15). The following values 

are used: 0.25 ≤ α ≤ 0.4; 1 ≤ 𝛽1 ≤ 1.25; 𝛽2 = 1; 

𝛽3 = 1; 𝛽4 = 1; 𝛽5 = 1; 𝛽6 = 0.001. The results 𝑥𝑝 

obtained as solution of (15) are used  to plot the 3D-

bifurcation diagram in Fig. 3. As already mentioned, 

the components of 𝑥𝑝 converge to binary values (see 

illustrative examples in Fig. 2). These values are 

used to evaluate the total cost ℒ∗ of the optimal TSP 

solution using the expression (13).  

 
Fig. 2: Results of the numerical solution of the DNN 

model (15). Damped oscillations occur during the 

following transitions: 𝑆4 →  𝑆7 ; 𝑆7 →  𝑆2 ; 𝑆2 →
𝑆𝑖𝑛𝑔𝑙𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑇𝑆𝑃 𝑡𝑜𝑢𝑟 (corresponding to 

the end of the optimization process). 
 

As it appears in Fig. 3 the monitoring (i.e., the 

variation) of the selected bifurcation parameters in 

windows/ranges 0.25 ≤ α ≤ 0.4 and  1 ≤ 𝛽1 ≤
1.25 clearly shows that the optimal TSP- tour (also 

called exact/true TSP- tour) corresponds to the total 

cost of ℒ∗ = 159. This value depicted in Fig. 3 by 

blue color cells represents the global minimum point 

at which the exact/true TSP- tour is obtained. Also, 

several TSP- tours with the total cost of ℒ∗ = 160 

are depicted in Fig. 3. The TSP-tours with total 

costs ℒ∗ = 160  correspond to local minima which 

are very  close to the optimal TSP- tour. Therefore, 

as the chosen (or selected) bifurcation parameters α 

and 𝛽1 are varied (i.e., monitored), the convergence 

of the optimization algorithm alternates between the 

exact/true TSP- solution/tour (global minimum with 

the total cost of ℒ∗ = 159) and several other TSP-

tours (corresponding to local minima) with the total 

costs (ℒ∗ = 160) which are very close to the cost of 

the global minimum. 

Worth mentioning is that the alternation of the 

convergence of the optimization algorithm from the 

global minimum to several closest local minima 

(and vice-versa) is a challenging situation 

commonly faced (or encountered) by the classical 

optimization algorithms (e.g., traditional neural 

networks, genetic and heuristic algorithms, etc.). 

This situation is clearly reported in [18]. Thus, 

based on the results in Fig. 3, it is clearly 

demonstrated that using the new mathematical 

model developed in (15), a suitable choice of the 

bifurcation parameters α and 𝛽1 can help to 

overcome the aforementioned challenging situation. 

For example (see Fig. 3) a suitable choice of the 

following chosen/selected two bifurcation 

parameters in the ranges 0.25 ≤ α ≤ 0.30  and 
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1.05 ≤ 𝛽1 ≤ 1.25 ensures (or guarantees) the 

convergence of the mathematical model in (15) to 

the exact/true TSP- tour corresponding to the global 

minimum ℒ∗ = 159 (see blue cells in Fig. 3). This 

is a pro (advantage) of the mathematical model in 

(15) as it is clearly demonstrated (through Fig. 3) 

that a suitable choice of the parameters of the 

mathematical model in (15) can help avoiding 

convergence to local minima and thereby ensuring 

sure convergence to the unique global minimum 

corresponding to the exact TSP- solution/tour.  

 

Fig. 3: A 3D-representation of the results of the 

bifurcation analysis (in terms of α and  𝛽1) obtained 

using the mathematical model in (15). The total cost 

of the optimal TSP tour is ℒ∗ = 159. This 

corresponds to the global minimum (Blue cells). 

The pics (or pulses) correspond to ℒ∗ = 160 (total 

cost of local minima which are very close to the 

global minimum). The parameters used are: 0.25 ≤
α ≤ 0.4; 1 ≤ 𝛽1 ≤ 1.25; 𝛽2 = 1; 𝛽3 = 1;  𝛽4 = 1;  

𝛽5 = 1;  𝛽6 = 0.001;  ℎ = 0.05. One can easily 

identify from this figure the ranges (or windows) of 

parameters leading to the sure convergence of the 

DNN-solver in (15) to the exact TSP solution/tour.   

     

For the sake of benchmarking it should be 

mentioned that this application example is published 

in [18] and also that the same optimal TSP-tour 

denoted by 𝑃1 → 𝑃4 → 𝑃5 → 𝑃6 → 𝑃2 → 𝑃3 → 𝑃1 

(see red lines in Fig. 1) with the total cost ℒ∗ = 159 

is obtained. This shows the good agreement between 

the DNN model developed in this work (see Eq. 

(15)) and the GA and SA algorithms used in [18].  

   Similarly to the previous comment (on Fig. 3) 

regarding the guarantee of convergence of the DNN 

model in Eq. (15) to the exact TSP solution/tour, it 

can be found, according to Fig. 4, that the choice of 

the following chosen/selected bifurcation 

parameters in the ranges 1 ≤ 𝛽1 ≤ 1.2  and 1 ≤
𝛽2 ≤ 1.2 ensures (or guarantees) the convergence of 

the DNN model in Eq. (15) to the exact TSP- tour 

corresponding to the global minimum ℒ∗ = 159 

(see blue cells in Fig. 4). The pics/pulses in Fig. 4 

correspond to TSP- tours representing closest local 

minima with ℒ∗ = 160. 

 
Fig. 4. A 3D-representation of the results of the 

bifurcation analysis (in terms of  𝛽1 and 𝛽2) 

obtained using the new DNN model in (15). The 

total cost of the optimal TSP tour is ℒ∗ = 159. This 

corresponds to the global minimum (Blue cells). 

Pics (or Pulses) correspond to ℒ∗ = 160 (this total 

cost corresponds to local minima very close to the 

global minimum). The values of parameters used 

are: α = 0.3; 1 ≤ 𝛽1 ≤ 1.25; 1 ≤ 𝛽2 ≤ 1.25;  𝛽3 =
1; 𝛽4 = 1; 𝛽5 = 1; 𝛽6 = 0.001;  ℎ = 0.05. One can 

easily identify from this figure the ranges (or 

windows) of parameters leading to the sure 

convergence of the DNN-solver in (15) to the exact 

TSP solution/tour.   

 

 

4  Conclusion   
This paper has developed a new dynamic neural 

network (DNN) solver concept for the efficient 

solving of traveling salesman problems (TSP). The 

modelling of TSP has been carried out and a 

mathematical model of the new DNN- solver has 

been obtained in the form of coupled nonlinear 

ordinary differential equations. 

To validate the DNN-solver model developed in 

this paper, two application examples published in 

[17]-[18] have been considered. The DNN model 

developed has been used to solve the 

aforementioned application examples. Using the 

same values of parameters as in [17]-[18], a 

bifurcation analysis has been carried out 

numerically based on the mathematical model 

developed in this work for solving TSP. Using this 

mathematical model, the ranges/windows of the 

system parameters have been identified (or detected) 

under which the mathematical model developed 

surely and always converges to the exact TSP 

solution/tour. Finally, a comparison of the TSP 

solution obtained using the mathematical model 

developed with the results published in [17]-[18] 

has led to a very good agreement.  
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An ongoing work (this for outlook) currently 

under consideration is the development of a 

theoretical framework for the analytical 

investigation of the convergence in order to ensure 

(or guarantee) the convergence of the new DNN-

solver concept developed to the exact TSP solution. 

The guarantee of convergence has been done in this 

work numerically. Therefore, it would be very 

interesting and even challenging to develop a 

universal and scalable theoretical framework that 

could help derive and propose the analytical 

conditions that will ensure (or guarantee) the 

convergence of the DNN-solver to the exact TSP 

solution/tour. This could be a significant 

contribution to the enrichment of the literature as 

this analysis has not yet been considered by the 

literature regarding TSP solving. 
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