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1 Introduction 
During the last decade, many scholars investigated 
the dynamic behaviors of the ecosystem, see [1]-[53] 
and the references cited therein. Such topics as ex-
tinction, persistence, and stability are extensively in-
vestigated. 

It is well known that many species take several 
stages throughout their life, and to model such kind 
of phenomenon, many scholars ([1]-[17],[30], [52]-
[53]) proposed the stage-structured population 
system. Aiello Freedman [30] proposed the following 
single-species stage-structured model 

     
𝑑𝑥1

𝑑𝑡
= 𝛼𝑥2 − 𝛾𝑥1 − 𝛼𝑒−𝛾𝜏𝑥2(𝑡 − 𝜏), 

22
2 2 .( )dx e x t x

dt
  −= − −                    (1.1) 

The authors of [30] showed that the system (1.1) ad-
mits a unique positive equilibrium that is globally as-
ymptotically stable. Based on the work of [30], many 
scholars proposed the delayed stage-structured 
model, for example, Lin et al[10] studied the persis-
tent property of the following stage-structured preda-
tor-prey model 

( )11 1
1 1 2 11 1 1 2 1( ) ( ) ( ) ,dx t r x t d x t re x t − = − − −  

( )11 1
2 1 2 1 12 2( ) ( )dx t re x t d x t − = − −  

                2 1 2 2
2

2 1

( ) ( )( ) ,
( )

a y t x tbx t
x t k

− −
+

 

( )22 2
1 2 2 22 1 2 2 2( ) ( ) ( ) ,dy t r y t d y t r e y t − = − − −  

 
 
 

( )22 2
2 2 2 2 21 2( ) ( )dy t r e y t d y t − = − −  

2
2 2

2 2

( )
( )

a y t
x t k

−
+

                                            (1.2) 

Their study indicates that for a stage-structured 
predator-prey community, both stage structure and 
the death rate of the mature species are the important 
factors that lead to the permanence or extinction of 
the system. For more work on the stage-structured 
model incorporating time delay, one could refer to 
[1]-[12] and the references cited therein. 

On the other hand, ecosystems in the real world are 
continuously disturbed by unpredictable forces 
which can result in changes in biological parameters 
such as survival rates. Of practical interest in ecology 
is the question of whether or not an ecosystem can 
stand those unpredictable disturbances that persist for 
a finite period of time. In the language of control 
variables, we call the disturbance functions control 
variables. Gopalsamy and Weng[26] proposed the 
following single-species feedback control ecosystem 

1 2( ) ( )1 a n t a n tn rn
K

+ −
= −


 

( )],cu t−                                     (1.3) 

( ) ( ).u au t bn t= − +  
They showed that the inequality a1 > a2 is enough 

to ensure the existence of a unique globally 
asymptotically stable positive equilibrium. Chen, 
Yang, and Chen [29] studied the following single-
species feedback control ecosystem 

( )2
1

2

( )
( ) ( ) 1

( )
N t t

N r t N t
K t

 −
= −


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( )2( ) ( ) ,c t u t t− −                        (1.4) 

( ) ( ) ( ) ( )u a t u t b t N t= − +  
 

By establishing a new integral inequality, they can 
show that the system (1.4) is always permanent. 
That is to say, the feedback control variable does not 
influence the persistent property of the system (1.4). 

Though there are many works on feedback control 
ecosystems ([26]-[49]), there is still little work on 
stage-structured ecosystems with feedback controls. 
Ding and Cheng[27] proposed the following single-
species stage-structured model with feedback control: 

1
2 1 1

( )     ( ) ( )= −
dx t bx t d x t

dt
 

1
2 ( ),dbe x t −

− −  

1 22
2 2

( )     ( ) ( ) −= − −ddx t be x t cx t
dt

          (1.5) 

2 ( ) ( ),cx t u t−  

 

2
( )     ( ) ( ).= − +

du t fu t ex t
dt

 

In [27], it shows that if 𝑓𝑎 > 𝑐𝑒 then system (1.5) 
admits a unique positive equilibrium that is globally 
attractive. Recently, Yang[28] argued that the 
nonautonomous case is more suitable since the 
circumstance is varying with time. They proposed the 
following non-autonomous feedback control 
ecosystem 

1
2 1 1

( )     ( ) ( ) ( ) ( )= −
dx t b t x t d t x t

dt
 

1 ( )

2( ) ( ),
t

t
d s ds

b t e x t −
−− − −  

1 ( )2
2

( )     ( ) ( ) −
−= − −

t

t
d s dsdx t b t e x t

dt
 

                      2
2 2( ) ( ) ( ) ( ) ( ),a t x t c t x t u t− −  

2
( )     ( ) ( ) ( ) ( ).= − +

du t f t u t e t x t
dt

 

(1.6) 
Under the assumption 𝑏(𝑡), 𝑑1(𝑡), 𝑎(𝑡), 𝑓(𝑡) and e(t) 
are all  continuous positive T -periodic functions, by 
using the coincidence degree theory, the author 
showed that system (1.6) admits at least one positive 
T -periodic solution. 

Since the environment is varied with season, it is 
natural to consider the general non-autonomous case 
of the system (1.6), i.e., it is natural to consider the 
system (1.6) under the following assumption: 

(𝐻1) 𝑏(𝑡), 𝑑1(𝑡), 𝑎(𝑡), 𝑐(𝑡), 𝑓(𝑡),  and 𝑒(𝑡) are all 
continuous functions bounded above and below by 
positive constants. 

For general non-autonomous cases, the persistent 
property is one of the most important topics in the 
study of population dynamics, however, Yang[28] 
did not investigate the persistent property of the 
system (1.6). The aim of this paper is, by applying the 
comparison theorem of the differential equation and 
developing the analytical technique of Chen, Yang, 
and Chen[29], to obtain two sets of sufficient 
conditions that guarantee the permanence of the 
system (1.6). 

The rest of the paper is arranged as follows: We 
will state several lemmas in the next section, and give 
the first set of sufficient conditions in Section 3. Then 
we will use the idea of Chen, Yang, and Chen[29] to 
establish another set of sufficient conditions in 
Section 4. An example together with its numeric 
simulation is presented in Section 5 to show the 
feasibility of the main results. We end this paper with 
a brief discussion. 
 
2 Lemmas  
Now let us state several lemmas which will be useful 
in proving the main results. 
 
Lemma 2.1. [10]Consider the following equation: 
             2

1 2( ) ( ) ( ) ( ),x t bx t a x t a x t = − − −   
             ( ) ( ) 0, 0,x t t t =  −    
and assume that 𝑏, 𝑎2 > 0, 𝑎1 ≥ 0  and 𝛿 ≥ 0  is a 
constant. Then 

1
1

2

( )  ,  lim ( ) ;
→+

−
 =

t

b ai If b a then x t
a

 

1( )  ,  lim ( ) 0.
→+

 =
t

ii If b a then x t  

 
Lemma 2.2. [29] Assume that 𝑎 > 0, 𝑏(𝑡) > 0is a 
bounded continuous function and 𝑥(0) > 0 Further 
suppose that 
(i) 

( ) ( ) ( ),dx t ax t b t
dt

 − +  

Then for all 𝑡 ≥ 𝑠, 

( ) ( )exp{ } ( )exp{ ( )} .
s

t s
x t x t s as b a t d  

−
 − − + −  

Especially, if b(t) is bounded above with respect to M, 
then 

                      .l (imsup )
t

Mx t
a→+

  

 
(ii) 
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( ) ( ) ( ),dx t ax t b t
dt

 − +  

Then for all 𝑡 ≥ 𝑠, 

( ) ( )exp{ } ( )exp{ ( )} .
s

t s
x t x t s as b a t d  

−
 − − + −  

Especially, if b(t) is bounded below with respect to m, 
then 

                       .l (iminf )
t

mx t
a→+

  

 
3 Permanence of system (1.6) (I)  

The aim of this section is, by developing the 
analysis technique of Chen et al([1]-[4]), more 
precisely, by applying the differential inequality 
theory, to investigate the persistent property of the 
system (1.6). 

We adopt the following notations throughout this 
paper: 

[0, )
   sup ( , )

 +

=M

t
g tg  

[0, )
   inf ( , )  

 +
=L

t
g g t                  (3.1) 

where g(t) is a continuous function on [0,+  ). 
Lemma 3.1. The first equation of system (1.6) is 
equivalent to 

1 ( )

1 2( )  ( ) ( ) .
−

= 
t

s
t d u du

t s
x t b s e x s ds  

Proof. From (3.2), one has 

1( )x t  

1 ( )

2  ( ) ( )
−=

t

t
d u du

b t e x t  

1 ( )

2( ) ( )
t

t
d u du

b t e x t −
−− − −  

( )1 ( )

2 1( ) ( ) ( )
t

s
t td u du

t s t
b s e x s ds d u du




−

−

+ −   

1 ( )

2 2  ( ) ( ) ( ) ( ) −
−= − − −

t

t
d u du

b t x t b t e x t  

( )
1 ( )

2 1( ) ( ) ( )
t

s
t d u du

t
b s e x s ds d t



−

−

+ −  

2 1 1  ( ) ( )= −b t x d t x  

1 ( )

2( ) ( ).
t

t
d s ds

b t e x t −
−− − −  

The above analysis shows that the conclusion of 
Lemma 3.1 holds. This ends the proof of Lemma 3.1. 
 
Theorem 3.1. In addition to(𝐻1) , assume further 
that 

1 1
U Ld dL L L U U Ub e f a c e b e − −

           (3.2) 
holds, then system (1.6) is permanent. 

The proof of Theorem 3.1 immediately follows 
from the proof of Theorem 3.2 and 3.3. 

 
Remark 3.1. If we assume that the coefficients of 

the system (1.6) are all positive constants, then con-
dition (3.2) degenerates to 

,fa ce                                        (3.3) 
from the introduction section, we know that condition 
(3.3) is enough to ensure that system (1.5) admits a 
unique globally asymptotically stable positive equi-
librium. 
 
Theorem 3.2. Let(𝑥1(𝑡), 𝑥2(𝑡), 𝑢(𝑡))be any positive 
solution of the system (1.6), then 

sup ( ) , 1,2,lim i i
t

x t M i
→+

 =  

3lim .sup ( )
t

y t M
→+

                           (3.4) 

where 

                     1
1 2  ,  −

=
LdUM b e M  

                       
1

2   ,  
−

=

LdU

L

b eM
a

 

2
3   .  =

U

L

e MM
f

 

Proof. Let (𝑥1(𝑡), 𝑥2(𝑡), 𝑢(𝑡)) be any positive solu-
tion of system (1.6), then from the second equation 
of (1.6), we have 

2dx
dt

 

1 ( )

2  ( ) ( ) −
−= − −

t

t
d s ds

b t e x t  
2
2 2( ) ( ) ( ) ( ) ( )a t x t c t x t y t− −                 (3.5) 

1 ( )

2  ( ) ( ) −
− − −

t

t
d s ds

b t e x t  
2
2( ) ( )a t x t−  

2
2 2  ( ) ( ). − − −

LU d Lb e x t a x t  
By applying Lemma 2.1 to (3.5), it immediately 

follows that 
 def 

2 2lim .sup ( )
LU d

L
t

b ex t M
a

−

→+

 =         (3.6) 

For any enough small positive constant 𝜀1 > 0, there 
exists a 𝑇1 > 0 such that 

2 2 1 1( )    .x t M for all t T +                 (3.7) 
(3.7) together with the third equation of system (1.6) 
leads to 

2( ) ( ) ( ) ( )dy f t y t e t x t
dt

= − +  

       ( )2( ) .L Uf y t e M  − + +                     (3.8) 
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Applying Lemma 2.2 to (3.8) leads to 
( )2 1 .l sup ( )im

U

L
t

e M
y t

f


→+

+
              (3.9) 

Setting 𝜀1 → 0 in (3.9) leads to 
 def 

2
3lim .sup ( )

U

L
t

e My t M
f→+

 =            (3.10) 

From Lemma 3.1 we have 
1 ( )

1 2( ) ( ) ( ) .
t

s
t d u du

t
x t b s e x s ds



−

−

=     (3.11) 

This, together with (3.7) leads to 
( )1

1 2 1( ) .
LdUx t b e M − +              (3.12) 

Setting 𝜀1 → 0 in (3.12) leads to 
1

 def 

1 2 1lim .sup ( )
LdU

t
x t b e M M−

→+

 =         (3.13) 

(3.6), (3.10), and (3.13) show that the conclusion of 
Theorem 3.1 holds. This ends the proof of the Theo-
rem 
3.1. 
 
Theorem 3.3. In addition to (H1), assume further that 
(3.2) holds, then 

inf ( ) , 1, 2,lim i it
x t m i

→+
 =  

3lim ,inf ( )
t

y t m
→+

                                 (3.14) 

where 
1

1 2  ,  −
=

UdLm b e m  

1
3

2   ,  
−
−

=

UdL U

L

b e c Mm
a

                 (3.15) 

1 2
3     .=

L

U

e mm
f

 

 
Proof. Let (𝑥1(𝑡), 𝑥2(𝑡), 𝑢(𝑡)) be any positive so-

lution of system (1.6). One could easily check that 
inequality (3.2) is equivalent to 

1
3.

UdL Ub e c M−
  

Hence, for enough small positive constant𝜀2 > 0 , 
the inequality 

( )1
3 2

UdL Ub e c M −  +                      (3.16) 
holds. It follows from (3.6) that for the above 𝜀2 > 0, 
there exists a 𝑇2 > 𝑇1, for 𝑡 > 𝑇2, 

3 2( )y t M  +                                      (3.17) 
holds. Hence, for 𝑡 ≥ 𝑇2, from the second equation 
of (1.6), one has 

2dx
dt

 

1 ( )

2  ( ) ( ) −
−= − −

t

t
d s ds

b t e x t  
2
2 2( ) ( ) ( ) ( ) ( )a t x t c t x t y t− −  

1 ( )

2  ( ) ( ) −
− − −

t

t
d s ds

b t e x t                 (3.18) 

( )2
2 3 2 2( ) ( ) ( ) ( )a t x t c t M x t− − +  

2
2 2  ( ) ( ) − − −

LU d Lb e x t a x t  

( )3 2 2( ).Uc M x t− +  
Applying Lemma 2.2 to (3.18) leads to 

( )3 2
2 .l inf ( )im

LU d U

Lt

b e c M
x t

a

 −

→+

− +
        (3.19) 

Setting 𝜀2 → 0 in(3.19) leads to 
 def 

3
2 2lim .inf ( )

LU d U

Lt

b e c Mx t m
a

−

→+

−
 =           (3.20) 

For any enough small positive constant 𝜀3 > 0 (with-
out loss of generality, we may assume that 𝜀3 >
1

2
𝑚2), it follows from (3.20) that there exist a 𝑇3 >

𝑇2,such that 

2 2 3 3( )   . x t m for all t T −             (3.21) 
For 𝑡 > 𝑇3, it follows from the third equation of sys- 
tem (1.6) that 

2    ( ) ( ) ( ) ( )= − +
dy f t y t e t x t
dt

 

( )2  ( ) . − + −U Lf y t e m               (3.22) 
Applying Lemma 2.1 to (3.22) leads to 

( )2 3 .l inf ( )im
L

Ut

e m
y t

f


→+

−
                (3.23) 

Since 𝜀3 is enough small positive constant, setting 
𝜀3 → 0 in (3.23) leads to 

 def 
2

3lim .inf ( )
L

Ut

e my t m
f→+

 =                (3.24) 

It follows from Lemma 3.1 that 
1 ( )

1 2( ) ( ) ( ) .
t

s
t d u du

t
x t b s e x s ds



−

−

=     (3.25) 

(3.25) combine with (3.21) leads to 
( )1

1 2 3 3( )  .   − − 
UdLx t b e m for all t T

Setting 𝜀3 → 0 in the above inequality, we have 
1

1 2inf ( ) .lim
UdL

t
x t b e m−

→+
         (3.26) 

(3.20), (3.24), and (3.26) show that the conclusion of 
Theorem 3.3 holds. This ends the proof of Theorem 
3.3. 
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In the previous section, we showed that under the 
assumption (3.2) holds. System (1.6) is permanent. 
One interesting issue is to investigate the dynamic be-
haviors of the system (1.6) if inequality (3.2) does not 
hold. 

To give some hints on this direction, already, 
Yang[28] had showed that system (1.6) admits at 
least one positive T -periodic solution if the coeffi-
cients of the system are all positive T-periodic func-
tions. Since the periodic solution means the species 
could be survived in a fluctuating form. This moti-
vated us to propose the conjecture: 
 
Conjecture. System (1.6) is permanent if the condi-
tion ( )2H holds. 
 

The aim of this section is to give the affirmative 
answer to this conjecture. More precisely, we will ob-
tain the following result. 
 
Theorem 4.1. System (1.6) is permanent if condi-
tion ( )2H  holds. 
 
Proof. We will prove Theorem 4.1 by developing the 
idea of Chen et al[29]. 
Let ( ) ( ) ( )( )tutxtx ,, 21   be any positive solution of 
system (1.6). Theorem 3.2 had shown that 

( )

( ) ,suplim

,2,1,suplim

3Mty

iMtx

t

ii
t



=

+→

+→  
 

 (4.1) 

Hence, for any enough small positive constant 0
, 
there exists a 0T , such that 

  

( )

( )

( ) .

,

,

33

222

111













MMty

MMtx

MMtx

def

def

def

=+

=+

=+

 

 
 
 

  ( )2.4    

for all Tt  . 
From the second equation of system (1.6), we have 

 
( )

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) 

( ),2

322

2
2
2

2
2
2

2
2 1

tx

McMatx
tytxtctxta

tytxtctxta

txetb
dt

dx

UU

dssd
t

t

=

−−

−−

−−

−


−=



−
−



 

 

 
 
 
 

( )3.4  

Obviously, 
 .0  ( )4.4  

Integrate (4.3) from 1 to t  lead to 

 ( )
( )

 .exp
112

2
 

t
ds

x
tx


 

 
( )5.4  

Thus, 
 ( ) ( ) ( )}.exp{ 1212  −− ttxx  ( )6.4  

From the third equation of system (1.6), we have 
 

( ) ( ).2 txetyf
dt
dy UL +−  

 
( )7.4  

Applying Lemma 2.2 to the above inequality, we 
have 
 ( )

( )  

( ) ( ) 
( ) ( ) 

( ) ( ) 

( ) 
( )  

( ) ( ) 

( )  

 ( ) ( ),exp1

exp

exp

exp
exp

exp

exp

exp

exp

2

1112

11

112

1

1112

txse
sfsty

dtxe

sfsty
dtf

txe

tsty

dtfxe

sfsty
ty

U

L

t

st

U

L

L

t

st

U

t

st

LU

L

−−


+

−−

−−+

−−

−

−−+

−−−

−+

−−







−

−

−











 

 

 
 
 
 
 
 
 
 
 
 
 

( )8.4  

here we have to use the fact 
 

 
( )    .10expexpmax 1,1

==−
−

tf L

tst



  

Choose K enough large, such that 
 

 
,0,

exp
2ln1max

11

3









−






UL

U

L db
Mc

f
K   

then 
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For above K, there exists a KTT +1 , for 1Tt  , 
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Substituting (4.9) and (4.10) to the second equa- 

4 Permanence of system (1.6)(II)
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tion of the system (1.6), for 1Tt  , one has 
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( )11.4  

Applying Lemma 2.1 to (4.11) leads to 
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( )12.4  

where  KfMceb LUdL U

−−=
− exp3

1  . For any 
enough small positive constant 01  , without loss 

of generality, we may assume that 21 2
1 m , it fol-

lows from (4.12) that there exists a 12 TT   such that 
  

( ) 122 −mtx for all .2Tt   
 

( )13.4  

From (4.13) and the third equation of system (1.6), 
for  2Tt  , we have 
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Applying Lemma 2.2 to (4.14) leads to 
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( )15.4  

Since 1 is an arbitrarily small positive constant, set- 
ting 01 →  in (4.15) leads to 
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Lemma 3.1 had shown that 
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(4.17) together with (4.13) leads to 
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( )18.4  
 Setting 01 → leads to 
 ( ) .inflim 21

1 mebtx
UdL

t
−

+→
  ( )19.4  

Theorem 3.2, (4.12), (4.16), and (4.19) show that sys-
tem (1.6) is permanent. This ends the proof of Theo-
rem 4.1. 
 
5 Numeric simulations 

The aim of this section is to give some numeric 
simulations to show the feasibility of the main re-
sults. 
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Here, corresponding to the system (1.6), we take 
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It follows from Theorem 4.1 that system (5.1) is per-
manent, also, from the main result of Yang[27], sys-
tem (1.6) admits at least one positiveT -periodic so-
lution. Fig.1-3 support those assertions. 
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Figure 1: Dynamic behaviors of the first component 
of the system (5.1). 
 

 
 
Figure 2: Dynamic behaviors of the second compo- 
nent of the system (5.1). 

 

Figure 3: Dynamic behaviors of the third component 
of the system (5.1). 
 
 
Here, all the other coefficients are the same as that of 
the system (5.1), only with ( )tc  be determined late. 
Now let’s choose ( ) ( ) ( )tttc sin2,sin3 ++= and 

( ),sin1 t+  respectively, Fig.4 shows that in this case, 
for the same initial value, with the increasing of the
( )tc , the density of mature species ( )tx2  is decreas-

ing. 
 

 
 
Figure 4: Numeric simulation of the system (5.2). 
Here we choose ( ) ( ) ( )tttc sin2,sin3 ++= and 

( ),sin1 t+  respectively. 
 
 
6 Discussion 

Yang[28] proposed system (1.6), under the as-
sumption all the coefficients are positive T -period  
function, they showed that system (1.6) admits at 
least one positive periodic solution.However, they 
did not investigate the persistent property of the sys-
tem. In this paper, by using the differential inequality 
theory,we first obtain a set of sufficient conditions 
(Theorem3.1) which ensure the permanent of the sys-
tem. After that, by comparing the results of Yang [28] 
and Chen et al[29], we propose a conjecture: the feed-
back control has no influence on the system. We give 
a strict proof of this conjecture in section 4. Numeric 
simulation (Fig. 1-3) also supports our findings. 

Though feedback control has no influence to the 
persistent property of the system, example 5.2 shows 
that with the increasing of the coefficient ( )tc , the fi-
nal density of the species is decreasing, it is well 
known that with the decreasing of the density, the less 
chance for the species to meet suitable partner, and 
this increasing the extinct chance of the species. It is 
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in this sense that the feedback control variable has the 
in stable effect. 

We mention here that this is the first time that we 
find the feedback control variables has no influence 
to the persistent property of the stage structured eco- 
logical modelling. However, whether this conclusion 
still hold or not for the complicate system, for exam-
ple, stage structured predator prey system is still un-
known. We will try to investigate some more compli-
cated ecological modelling in the future. 
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