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Abstract: - For linear discrete-time stochastic systems with uncertainties, this paper proposes a tracking control 
method based on the H-infinity tracking controller and the robust recursive least-squares (RLS) Wiener filter. 
In linear discrete-time deterministic systems without input and observation noises, the equations for the 
quantity 𝑢𝑢(𝑘𝑘) with the components of the control and exogenous inputs are as previously described. In Section 
2, we show that 𝑢𝑢(𝑘𝑘) satisfies the same equations for linear discrete-time stochastic systems with white input 
and observation noises as for deterministic systems, based on the separation principle of control and estimation. 
The results show that the H-infinity tracking control algorithm for linear discrete-time stochastic systems is the 
same as that for linear discrete-time deterministic systems. The filtered estimate 𝑥𝑥�(𝑘𝑘) of the system state 𝑥𝑥(𝑘𝑘) 
is used to compute the estimate 𝑢𝑢�(𝑘𝑘) of 𝑢𝑢(𝑘𝑘). The robust RLS Wiener filter of Theorem 2 computes the filtered 
estimate 𝑥𝑥�(𝑘𝑘) of the system state 𝑥𝑥(𝑘𝑘) for degraded stochastic systems with uncertainties in the system and 
observation matrices. 𝑥𝑥�(𝑘𝑘)  is updated from 𝑥𝑥�(𝑘𝑘 − 1)  with the degraded observed value 𝑦𝑦�(𝑘𝑘) , the filtered 
estimate 𝑥𝑥��(𝑘𝑘 − 1) of the degraded state 𝑥𝑥�(𝑘𝑘 − 1), and the estimate 𝑢𝑢�(𝑘𝑘 − 1) of 𝑢𝑢(𝑘𝑘 − 1).  
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1 Introduction 
Linear quadratic Gaussian (LQG) control issues 
have been thoroughly studied, for example, in [1–6]. 
The discrete-time LQG control problem is described 
in [2] for stochastic systems with input and 
observation noises. The optimal control law for the 
stochastic systems is the same as that for the 
discrete-time deterministic systems without input 
and observation disturbances. For state feedback, 
the control law uses the estimate of the state 
computed by the Kalman filter. In [6], the discrete-
time LQG control that minimizes Massey’s directed 
information from the plant observation output to the 
control input is studied to achieve the required 
control performance. The tracking control algorithm 
based on LQG is described, for instance, in [7-11]. 
A real-time trans-scale LQG tracking control 
algorithm for discrete-time stochastic systems is 
described in [11] and is based on wavelet packet 
decomposition (WPD). The stochastic systems in 
this case do not take into account the uncertain 
parameters. The covariance matrices of the input 

and observation noises are given. In [12], a 
controller with output feedback is studied for 
discrete-time stochastic systems with uncertainty 
and missing observations. Parameter uncertainty is 
bounded by the norm. The probability of the 
occurrence of missing data assumes that it is known. 
The problem is solved by linear matrix inequalities 
(LMIs). Based on the disturbance observer, studies 
in [13] propose a robust controller for linear 
continuous-time uncertain systems with a time 
delay. The observer parameters are determined by 
the solution of LMIs. State feedback control is 
treated in [13]. In [14], the H-infinity controller is 
designed for the state-space model with uncertain 
parameters in linear continuous-time stochastic 
systems. For linear discrete-time uncertain systems 
with nonlinear and unbounded uncertainties, the 
robust controller is developed in [15]. The reduced-
order disturbance observer is shown, and the state-
feedback controller is designed based on the LMI 
method. Subsection 5.3 of [16] describes the LMI 
approach for state feedback quadratic stabilization 
in linear continuous-time uncertain systems. The 
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feedback gain for the control input is computed by 
solving LMIs. [17] proposes a mixed 𝐻𝐻2 /Passivity 
controller for linear discrete-time uncertain 
stochastic systems. Some sufficient conditions 
derived by Lyapunov theory are converted into 
LMIs. In [18], the iterative tracking controller is 
designed under the influence of an unknown 
disturbance with constrained frequency and 
parameter variations. State tracking control in 
uncertain stochastic time-varying delay systems is 
developed. [19] proposes the uncertainty and 
disturbance estimator for robust tracking control of 
the reference model in linear continuous-time 
uncertain stochastic systems.  

In linear discrete-time degraded stochastic 
systems with uncertain parameters, this paper 
proposes an H-infinity tracking control method 
based on the H-infinity tracking controller [20] and 
the robust recursive least-squares (RLS) Wiener 
filter [21], [22]. The robust RLS Wiener fixed-point 
smoother is also presented in [21] and [22]. The 
robust RLS Wiener estimators in [21] are designed 
for signal estimation. The robust RLS Wiener 
estimators [22] estimate the state of the system 
using the degraded observations generated by the 
state and observation equations with uncertainties. 
Usually, the robust filter estimates the state of the 
system with uncertainties using the degraded 
observations [23]. The robust Kalman filter [24] for 
uncertain systems assumes multiplicative noise and 
norm-bounded time-varying uncertainty. For linear 
discrete-time deterministic systems without input 
and observation noises, 𝑢𝑢(𝑘𝑘)  with control and 
exogenous input components satisfies (12), (10), 
and (11) in [20]. Based on the separation principle 
of control and estimation, it is demonstrated in 
Section 2 that 𝑢𝑢(𝑘𝑘) satisfies the same equations for 
linear discrete-time stochastic systems with white 
input and observation noises as for deterministic 
systems. As a result, the tracking control algorithm 
for linear discrete-time stochastic systems with 
white input and observation noises is the same as for 
linear discrete-time deterministic systems. The 
filtered estimate 𝑥𝑥�(𝑘𝑘)  of the system state 𝑥𝑥(𝑘𝑘)  is 
used to get the estimate 𝑢𝑢�(𝑘𝑘)  of 𝑢𝑢(𝑘𝑘) . From the 
state and observation equations (12) with uncertain 
parameters, the robust RLS Wiener filter of 
Theorem 2 computes the filtered estimate 𝑥𝑥�(𝑘𝑘) , 
which is used as the filtered estimate of the system 

state 𝑥𝑥(𝑘𝑘) for the state equation (1). The robust RLS 
Wiener filter updates 𝑥𝑥�(𝑘𝑘) from 𝑥𝑥�(𝑘𝑘 − 1) with the 
degraded observed value 𝑦𝑦�(𝑘𝑘), the filtering estimate 
𝑥𝑥��(𝑘𝑘 − 1)  of the degraded state 𝑥𝑥�(𝑘𝑘 − 1) , and the 
estimate 𝑢𝑢�(𝑘𝑘 − 1)  of 𝑢𝑢(𝑘𝑘 − 1) . Then, the 
computation of the estimate 𝑢𝑢�(𝑘𝑘)  of 𝑢𝑢(𝑘𝑘)  in 
Theorem 1 uses the filtered estimate 𝑥𝑥�(𝑘𝑘)  of the 
state 𝑥𝑥(𝑘𝑘) by the robust RLS Wiener filter. 

In Section 4, a numerical simulation example 
compares the tracking control accuracy between the 
H-infinity tracking controller of Theorem 1 plus the 
robust RLS Wiener filter of Theorem 2 and the H-
infinity tracking controller of Theorem 1 plus the 
RLS Wiener filter [25]. For the white Gaussian 
observation noises 𝑁𝑁(0, 0.12) , 𝑁𝑁(0, 0.32) , 
𝑁𝑁(0, 0.52)  , and 𝑁𝑁(0,1) , the H-infinity tracking 
controller of Theorem 1 plus the robust RLS Wiener 
filter of Theorem 2 provides better tracking control 
accuracy than Theorem 1's H-infinity tracking 
controller plus the RLS Wiener filter [25].  
 
 
2 H-Infinity Tracking Control 
Problem in Linear Discrete-Time 
Stochastic Systems 
Let the nominal state-space model in linear discrete-
time stochastic systems be given by (1). 

 

𝑦𝑦(𝑘𝑘) = 𝑧𝑧(𝑘𝑘) + 𝑣𝑣(𝑘𝑘), 𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘),
𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥(𝑘𝑘) + 𝐺𝐺𝑢𝑢(𝑘𝑘) + Γ𝑤𝑤(𝑘𝑘), 

𝐺𝐺 = [𝐺𝐺1 𝐺𝐺2],𝑢𝑢(𝑘𝑘) = �𝑢𝑢1(𝑘𝑘)
𝑢𝑢2(𝑘𝑘)� ,

𝑥𝑥(0) = 𝑐𝑐,𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 𝑉𝑉𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),
𝐸𝐸[𝑤𝑤(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 𝑊𝑊𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),
𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[𝑥𝑥(0)𝑤𝑤𝑇𝑇(𝑘𝑘)] = 0,

 (1) 

Here, 𝑥𝑥(𝑘𝑘) ∈ 𝑅𝑅𝑛𝑛  is the state vector; 𝑢𝑢(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚  is 
the input vector; and 𝑧𝑧(𝑘𝑘) ∈ 𝑅𝑅𝑙𝑙  is the signal vector. 
The control and exogenous input vectors are, 
respectively, 𝑢𝑢1(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚1 , and 𝑢𝑢2(𝑘𝑘) ∈ 𝑅𝑅𝑚𝑚2 , 
𝑚𝑚1 + 𝑚𝑚2 = 𝑚𝑚. Both the input noise 𝑤𝑤(𝑘𝑘) ∈ 𝑅𝑅𝑝𝑝  and 
the observation noise 𝑣𝑣(𝑘𝑘) ∈ 𝑅𝑅𝑙𝑙  are zero-mean 
white noises that are mutually uncorrelated. 
𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠) denotes the Kronecker delta function. 𝐶𝐶 
represents the 𝑙𝑙 × 𝑛𝑛 observation matrix. 𝐺𝐺 stands for 
the 𝑛𝑛 × 𝑚𝑚 input matrix for 𝑢𝑢(𝑘𝑘), while Γ stands for 
the 𝑛𝑛 × 𝑝𝑝  input matrix for 𝑤𝑤(𝑘𝑘) . The auto-
covariance functions of the input and observation 
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noises are given in (1). Let the expectation of 
‖�̃�𝑧(𝑘𝑘)‖2

2 be given by (2), where �̃�𝑧(𝑘𝑘) represents the 
performance output [26]. 

 𝐸𝐸[‖�̃�𝑧(𝑘𝑘)‖2
2] = 𝐸𝐸[(𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘))𝑇𝑇𝑄𝑄(𝑘𝑘)

× �𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘)� + 𝑢𝑢1
𝑇𝑇(𝑘𝑘)𝑅𝑅�(𝑘𝑘)𝑢𝑢1(𝑘𝑘)]

 (2) 

Here, 𝜂𝜂(𝑘𝑘) is the desired value and the symmetric 
matrices 𝑄𝑄(𝑘𝑘) and 𝑅𝑅�(𝑘𝑘)  are positive definite. The 
H-infinity optimal tracking control problem is to 
find the control input 𝑢𝑢1(𝑘𝑘) and exogenous input 
𝑢𝑢2(𝑘𝑘) in the disturbance attenuation condition (3) 
for the minimum value of 𝛾𝛾 [20]. 𝛾𝛾 > 0 is referred 
to as the constant disturbance attenuation level.  

 

�𝐸𝐸
𝐿𝐿

𝑘𝑘=0

[(𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘))𝑇𝑇𝑄𝑄(𝑘𝑘)�𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘)�]

+�𝐸𝐸
𝐿𝐿

𝑘𝑘=0

[𝑢𝑢1
𝑇𝑇(𝑘𝑘)𝑅𝑅�(𝑘𝑘)𝑢𝑢1(𝑘𝑘)]

≤ 𝛾𝛾2 �𝐸𝐸
𝐿𝐿

𝑘𝑘=0

[𝑢𝑢2
𝑇𝑇(𝑘𝑘)𝑢𝑢2(𝑘𝑘)]

 (3) 

An equivalent transformation of the H-infinity 
tracking control problem for a finite horizon is a 
two-player, zero-sum linear quadratic dynamic 
game [27], [28]. That is, given 𝛾𝛾2 , we investigate 
the minimax problem of minimizing the value 
function 𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏,𝑢𝑢𝟐𝟐)  about 𝑢𝑢1(𝑘𝑘)  and maximizing 
𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏,𝑢𝑢𝟐𝟐) about 𝑢𝑢2(𝑘𝑘). 

 
𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏,𝑢𝑢𝟐𝟐) = �𝐸𝐸

𝐿𝐿

𝑘𝑘=0

[(𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘))𝑇𝑇𝑄𝑄(𝑘𝑘)

× (𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘)) + 𝑢𝑢1
𝑇𝑇(𝑘𝑘)𝑅𝑅�(𝑘𝑘)𝑢𝑢1(𝑘𝑘)

−𝛾𝛾2𝑢𝑢2
𝑇𝑇(𝑘𝑘)𝑢𝑢2(𝑘𝑘)]

 (4) 

Here, the worst-case disturbance 𝑢𝑢2(𝑘𝑘)  is the 
exogenous input, and 𝑢𝑢1(𝑘𝑘) is the control input. (4) 
is expressed as (5) by introducing 𝑅𝑅(𝑘𝑘) =

�
𝑅𝑅�(𝑘𝑘) 0

0 −𝛾𝛾2𝐼𝐼𝑚𝑚2×𝑚𝑚2

�. 

 

𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏,𝑢𝑢𝟐𝟐) = �𝐸𝐸
𝐿𝐿

𝑘𝑘=0

[(𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘))𝑇𝑇𝑄𝑄(𝑘𝑘)

× (𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘))
+𝑢𝑢𝑇𝑇(𝑘𝑘)𝑅𝑅(𝑘𝑘)𝑢𝑢(𝑘𝑘)]

 (5) 

In the value function (5), the discount factor is 1. 
𝑥𝑥(𝑘𝑘) is represented as (6). 

 

𝑥𝑥(𝑘𝑘) = Φ(𝑘𝑘, 0)𝑐𝑐 + �Φ
𝑘𝑘−1

𝑖𝑖=0

(𝑘𝑘, 𝑖𝑖 + 1)

× (𝐺𝐺𝑢𝑢(𝑖𝑖) + Γ𝑤𝑤(𝑖𝑖))

= Φ(𝑘𝑘, 0)𝑐𝑐 + � 1
𝐿𝐿

𝑖𝑖=0

(𝑘𝑘 − 𝑖𝑖 − 1)Φ(𝑘𝑘, 𝑖𝑖 + 1)

× (𝐺𝐺𝑢𝑢(𝑖𝑖) + Γ𝑤𝑤(𝑖𝑖))

1(𝛼𝛼) = �1,0 ≤ 𝛼𝛼,
0,𝛼𝛼 < 0,

�

Φ(𝑘𝑘, 𝑠𝑠) = �𝐴𝐴
𝑘𝑘−𝑠𝑠 , 0 ≤ 𝑠𝑠 < 𝑘𝑘,
𝐼𝐼, 𝑘𝑘 = 𝑠𝑠.

�

 (6) 

Here, Φ(𝑘𝑘, 𝑠𝑠) represents the state-transition matrix, 
and 1(𝛼𝛼)  denotes the discrete-time unit step 
sequence. Substituting (6) into (5), we get (7). 

 

𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏,𝑢𝑢𝟐𝟐) = �𝐸𝐸
𝐿𝐿

𝑘𝑘=0

[(𝜂𝜂(𝑘𝑘) − 𝐶𝐶Φ(𝑘𝑘, 0)𝑐𝑐

−𝐶𝐶� 1
𝐿𝐿

𝑖𝑖=0

(𝑘𝑘 − 𝑖𝑖 − 1)Φ(𝑘𝑘, 𝑖𝑖 + 1)(𝐺𝐺𝑢𝑢(𝑖𝑖)

+Γ𝑤𝑤(𝑖𝑖))𝑇𝑇𝑄𝑄(𝑘𝑘)(𝜂𝜂(𝑘𝑘)

−𝐶𝐶Φ(𝑘𝑘, 0)𝑐𝑐 − 𝐶𝐶� 1
𝐿𝐿

𝑖𝑖=0

(𝑘𝑘 − 𝑖𝑖 − 1)Φ(𝑘𝑘, 𝑖𝑖 + 1)

× (𝐺𝐺𝑢𝑢(𝑖𝑖) + Γ𝑤𝑤(𝑖𝑖))) + 𝑢𝑢(𝑘𝑘)𝑇𝑇𝑅𝑅(𝑘𝑘)𝑢𝑢(𝑘𝑘)]

 (7) 

Let 𝑢𝑢�(𝑘𝑘)  be the vector with the components of 
optimal control and exogenous inputs. By the 
calculus of variations [20], the necessary condition 
for 𝑢𝑢�(𝑘𝑘) to minimize the value function (7) about 
𝑢𝑢1(𝑘𝑘) and maximize (7) about 𝑢𝑢2(𝑘𝑘) is satisfied by 
(8).  

 

𝑅𝑅(𝑘𝑘)𝑢𝑢�(𝑘𝑘)

+�� 1(𝑖𝑖 − 𝑘𝑘 − 1)1(𝑖𝑖 − 𝑗𝑗 − 1)𝐺𝐺𝑇𝑇
𝐿𝐿

𝑗𝑗=0

𝐿𝐿

𝑖𝑖=0

× Φ𝑇𝑇(𝑖𝑖, 𝑘𝑘 + 1)𝐶𝐶𝑇𝑇𝑄𝑄(𝑖𝑖)𝐶𝐶Φ(𝑖𝑖, 𝑗𝑗 + 1)𝐺𝐺𝑢𝑢�(𝑗𝑗)

= � 1
𝐿𝐿

𝑖𝑖=0

(𝑖𝑖 − 𝑘𝑘 − 1)𝐺𝐺𝑇𝑇Φ𝑇𝑇(𝑖𝑖, 𝑘𝑘 + 1)𝐶𝐶𝑇𝑇

× 𝑄𝑄(𝑖𝑖)(𝜂𝜂(𝑖𝑖) − 𝐶𝐶Φ(𝑖𝑖, 0)𝑐𝑐)

 (8) 

By introducing 
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𝐾𝐾(𝑘𝑘, 𝑗𝑗)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ � 𝐺𝐺𝑇𝑇

𝐿𝐿

𝑖𝑖=𝑘𝑘+1

Φ𝑇𝑇(𝑖𝑖, 𝑘𝑘 + 1)𝐶𝐶𝑇𝑇𝑄𝑄(𝑖𝑖)𝐶𝐶Φ(𝑖𝑖, 𝑗𝑗 + 1),

0 ≤ 𝑗𝑗 ≤ 𝑘𝑘 ≤ 𝐿𝐿

� 𝐺𝐺𝑇𝑇
𝐿𝐿

𝑖𝑖=𝑗𝑗+1

Φ𝑇𝑇(𝑖𝑖,𝑘𝑘 + 1)𝐶𝐶𝑇𝑇𝑄𝑄(𝑖𝑖)𝐶𝐶Φ(𝑖𝑖, 𝑗𝑗 + 1),

0 ≤ 𝑘𝑘 ≤ 𝑗𝑗 ≤ 𝐿𝐿,

� (9) 

and 

 
𝑚𝑚(𝑘𝑘 + 1) = − � 𝐺𝐺𝑇𝑇

𝐿𝐿

𝑖𝑖=𝑘𝑘+1

Φ𝑇𝑇(𝑖𝑖, 𝑘𝑘 + 1)𝐶𝐶𝑇𝑇𝑄𝑄(𝑖𝑖)

× (𝐶𝐶Φ(𝑖𝑖, 0)𝑐𝑐 − 𝜂𝜂(𝑖𝑖)),

 (10) 

the optimal 𝑢𝑢�(𝑘𝑘) satisfies 

 
𝑅𝑅(𝑘𝑘)𝑢𝑢�(𝑘𝑘) + �𝐾𝐾

𝐿𝐿

𝑗𝑗=0

(𝑘𝑘, 𝑗𝑗)𝐺𝐺𝑢𝑢�(𝑗𝑗)

= 𝑚𝑚(𝑘𝑘 + 1). 

(11) 

Similar to [20], the sufficient condition for the value 
function 𝐽𝐽(𝑥𝑥,𝑢𝑢𝟏𝟏𝑢𝑢𝟐𝟐)  to be minimal for 𝑢𝑢𝟏𝟏(𝑘𝑘)  and 
maximal for 𝑢𝑢𝟐𝟐(𝑘𝑘) is 𝑅𝑅(𝑘𝑘)𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠) + 𝐾𝐾(𝑘𝑘, 𝑠𝑠)𝐺𝐺 >
0. In [20], the integral equation is obtained instead 
of (11) for linear continuous-time systems. Recently 
the analysis of integral equations has been studied in 
[29], [30]. 

We should note that the results obtained in (9)–
(11) for the H-infinity tracking control problem 
regarding the state-space model (1) are the same as 
the equations in (20) for the H-infinity tracking 
control problem in linear deterministic systems. 
Therefore, the H-infinity tracking control algorithm 
in [20] is equivalent to the H-infinity tracking 
control algorithm for the state-space model (1). 
Theorem 1 presents the H-infinity tracking control 
algorithm obtained from (9)–(11). The Kalman filter 
generates the filtered estimate for the discrete-time 
LQG tracking control algorithm in Section 2 of [10]. 
The LQG tracking control problem is solvable based 
on the separation principle of control and 
estimation. In [10], (11) and (12) compute the 
filtered estimate while taking the term of the control 
input into account. The filter gain in the Kalman 
filter is calculated by (13)–(15) in [10]. 

Suppose the degraded system of the nominal 
system (1) is given by (12). 

 

𝑦𝑦�(𝑘𝑘) = �̆�𝑧(𝑘𝑘) + 𝑣𝑣(𝑘𝑘), �̆�𝑧(𝑘𝑘) =𝐶𝐶↔ (𝑘𝑘)𝑥𝑥�(𝑘𝑘),

𝐶𝐶↔ (𝑘𝑘) = 𝐶𝐶 + Δ𝐶𝐶(𝑘𝑘),
 𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 𝑉𝑉𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),

𝑥𝑥�( 𝑘𝑘 + 1) =𝐴𝐴↔ (𝑘𝑘)𝑥𝑥�(𝑘𝑘) + 𝐺𝐺𝑢𝑢(𝑘𝑘) + Γ𝑤𝑤(𝑘𝑘),

𝐴𝐴↔ (𝑘𝑘) = 𝐴𝐴 + Δ𝐴𝐴(𝑘𝑘),
𝐸𝐸[𝑤𝑤(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 𝑊𝑊𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),
𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)], = 0,
𝐸𝐸[Δ𝐴𝐴(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[Δ𝐴𝐴(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 0,
𝐸𝐸[Δ𝐶𝐶(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[Δ𝐶𝐶(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 0,
𝐸𝐸[𝑥𝑥� (0)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[𝑥𝑥�(0)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 0

 (12) 

In (12), the system matrix 𝐴𝐴  and the observation 
matrix 𝐶𝐶  in (1) are replaced with the degraded 
system matrix 𝐴𝐴↔ (𝑘𝑘) and the degraded observation 
matrix 𝐶𝐶↔ (𝑘𝑘), respectively. It is assumed that Δ𝐴𝐴(𝑘𝑘) 
and Δ𝐶𝐶(𝑘𝑘)  are uncorrelated with the input noise 
𝑤𝑤(𝑘𝑘)  and the observation noise 𝑣𝑣(𝑘𝑘) . The initial 
system state 𝑥𝑥�(0) is a random vector uncorrelated to 
both system and measurement noise processes. 
Under these assumptions, the separation principle of 
control and estimation can be applied to solve the 
H-infinity tracking control problem. In other words, 
the H-infinity tracking control algorithm in Theorem 
1 for the nominal state-space model (1) utilizes the 
robust RLS Wiener filtered estimate in Theorem 2 
for the degraded systems with uncertain parameters.  
 
 
3 H-Infinity Tracking Controller and 
Robust RLS Wiener Filter 
Fig.1 illustrates the structure of the H-infinity 
tracking controller of Theorem 1 and the robust RLS 
Wiener filter of Theorem 2.  

Fig. 1: Structure of the H-infinity tracking controller 
of Theorem 1 and robust RLS Wiener filter of 
Theorem 2. 

Theorem 1 presents the H-infinity tracking control 
algorithm for the estimates of the control input, 
𝑢𝑢1(𝑘𝑘) , and the exogenous input, 𝑢𝑢2(𝑘𝑘) , with the 
filtered estimate 𝑥𝑥�(𝑘𝑘)  for 𝑥𝑥(𝑘𝑘) . The estimates of 
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𝑢𝑢1(𝑘𝑘)  and 𝑢𝑢2(𝑘𝑘)  are represented by 𝑢𝑢�1(𝑘𝑘)  and 
𝑢𝑢�2(𝑘𝑘), respectively. The robust RLS Wiener filter 
of Theorem 2 calculates the filtered estimate 𝑥𝑥�(𝑘𝑘) 
of the state 𝑥𝑥(𝑘𝑘) with the degraded observed value 
𝑦𝑦�(𝑘𝑘).  

Theorem 1 Assume that 𝑅𝑅(𝑘𝑘)  is expressed as 

𝑅𝑅(𝑘𝑘) = �
𝑅𝑅�(𝑘𝑘) 0

0 −𝛾𝛾2𝐼𝐼𝑚𝑚2×𝑚𝑚2

�  and let 𝜂𝜂(𝑘𝑘)  be the 

desired value. Assume that 𝑢𝑢(𝑘𝑘)  has the 
components of the control input 𝑢𝑢1(𝑘𝑘)  and the 
exogenous input 𝑢𝑢2(𝑘𝑘) as (1). 

 𝑢𝑢(𝑘𝑘) = �𝑢𝑢1(𝑘𝑘)
𝑢𝑢2(𝑘𝑘)� (13) 

The estimate 𝑢𝑢�(𝑘𝑘)  of 𝑢𝑢(𝑘𝑘)  is then calculated by 
(14)–(17) regarding the nominal state-space model 
(1). In (14), 𝑢𝑢�1(𝑘𝑘)  is the estimate of the control 
input 𝑢𝑢1(𝑘𝑘) , and 𝑢𝑢�2(𝑘𝑘)  is the estimate of the 
exogenous input 𝑢𝑢2(𝑘𝑘). 

 
𝑢𝑢�(𝑘𝑘) = �𝑢𝑢�1(𝑘𝑘)

𝑢𝑢�2(𝑘𝑘)� (14) 

 

 

𝑢𝑢�(𝑘𝑘) = 𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇(𝐴𝐴𝑇𝑇)−1[𝐴𝐴𝑇𝑇𝑃𝑃(𝑘𝑘 + 1)
× (𝐼𝐼 − 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝑃𝑃(𝑘𝑘 + 1))−1𝐴𝐴 + 𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝐶𝐶]
−𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝐶𝐶𝑥𝑥�(𝑘𝑘) + 𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇(𝐴𝐴𝑇𝑇)−1

× 𝐴𝐴𝑇𝑇𝑃𝑃(𝑘𝑘 + 1)(𝐼𝐼 − 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝑃𝑃(𝑘𝑘 + 1))−1

× 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝜉𝜉(𝑘𝑘 + 1) + 𝐴𝐴𝑇𝑇𝜉𝜉(𝑘𝑘 + 1)
−𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝜂𝜂(𝑘𝑘) + 𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇(𝐴𝐴𝑇𝑇)−1

× 𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝜂𝜂(𝑘𝑘)

 (15) 

 

 
𝑃𝑃(𝑘𝑘) = 𝐴𝐴𝑇𝑇𝑃𝑃(𝑘𝑘 + 1)
× ( 𝐼𝐼 − 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝑃𝑃(𝑘𝑘 + 1))−1𝐴𝐴
−𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝐶𝐶,  𝑃𝑃(𝐿𝐿 + 1) = 0

 (16) 

 

 

𝜉𝜉(𝑘𝑘) = 𝐴𝐴𝑇𝑇𝑃𝑃(𝑘𝑘 + 1)
× ( 𝐼𝐼 − 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝑃𝑃(𝑘𝑘 + 1))−1

× 𝐺𝐺𝑅𝑅−1(𝑘𝑘)𝐺𝐺𝑇𝑇𝜉𝜉(𝑘𝑘 + 1)
+𝐴𝐴𝑇𝑇𝜉𝜉(𝑘𝑘 + 1) + 𝐶𝐶𝑇𝑇𝑄𝑄(𝑘𝑘)𝜂𝜂(𝑘𝑘),  𝜉𝜉(𝐿𝐿 + 1) = 0

 (17) 

For the state 𝑥𝑥(𝑘𝑘), we utilize the filtered estimate 
𝑥𝑥�(𝑘𝑘) in (15). The robust RLS Wiener filtering 
algorithm of Theorem 2 calculates 𝑥𝑥�(𝑘𝑘) using the 
degraded observed value 𝑦𝑦�(𝑘𝑘) in (12), the filtering 
estimate  𝑥𝑥��(𝑘𝑘 − 1) of the degraded state 𝑥𝑥�(𝑘𝑘 − 1), 

and the estimate 𝑢𝑢�(𝑘𝑘 − 1) of 𝑢𝑢(𝑘𝑘 − 1). 𝑃𝑃 and 𝜉𝜉 are 
calculated in the time-reversed direction from 
time 𝑘𝑘 = 𝐿𝐿 + 1 until the steady-state values, 𝑃𝑃 
and 𝜉𝜉 , respectively, are reached. The estimate 
𝑢𝑢�(𝑘𝑘) of 𝑢𝑢(𝑘𝑘) is calculated by (15) using 𝑃𝑃  and 𝜉𝜉 . 
𝑃𝑃(𝑘𝑘 + 1)  and 𝜉𝜉(𝑘𝑘 + 1)  in (15) are replaced with 
their stationary values, 𝑃𝑃 and 𝜉𝜉, respectively. From 
the above considerations, the H-infinity tracking 
control algorithm of Theorem 1 and the robust RLS 
Wiener filtering algorithm of Theorem 2 adhere to 
the separation principle of control and estimation.  

Let's now quickly review the robust RLS Wiener 
filter [21], [22]. Assume that an AR model of order 
𝑁𝑁  is used to fit the degraded signal sequence of 
�̆�𝑧(𝑘𝑘).  

 
�̆�𝑧(𝑘𝑘) = −𝑎𝑎1�̆�𝑧(𝑘𝑘 − 1) − 𝑎𝑎2�̆�𝑧(𝑘𝑘 − 2)⋯
−𝑎𝑎𝑁𝑁�̆�𝑧(𝑘𝑘 − 𝑁𝑁) + �̆�𝑒(𝑘𝑘),
𝐸𝐸[�̆�𝑒(𝑘𝑘)�̆�𝑒𝑇𝑇(𝑠𝑠)] = 𝑄𝑄�𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠)

 (18) 

The state vector 𝑥𝑥�(𝑘𝑘) can be used to represent �̆�𝑧(𝑘𝑘) 
as follows:  

 

�̆�𝑧(𝑘𝑘) = �̆�𝐶𝑥𝑥�(𝑘𝑘),

𝑥𝑥�(𝑘𝑘) =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥�1(𝑘𝑘)
𝑥𝑥�2(𝑘𝑘)
⋮

𝑥𝑥�𝑁𝑁−1(𝑘𝑘)
𝑥𝑥�𝑁𝑁(𝑘𝑘) ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

�̆�𝑧(𝑘𝑘)
�̆�𝑧(𝑘𝑘 + 1)

⋮
�̆�𝑧(𝑘𝑘 + 𝑁𝑁 − 2)
�̆�𝑧(𝑘𝑘 + 𝑁𝑁 − 1)⎦

⎥
⎥
⎥
⎤

,

�̆�𝐶 = [𝐼𝐼𝑙𝑙×𝑙𝑙 0 0 ⋯ 0 0]

 (19) 

In light of this, the state equation for the state vector 
𝑥𝑥�(𝑘𝑘) is given by 

 

𝑥𝑥�(𝑘𝑘 + 1) = �̆�𝐴𝑥𝑥�(𝑘𝑘) + Γ�𝜁𝜁(𝑘𝑘),
𝐸𝐸[𝜁𝜁(𝑘𝑘)𝜁𝜁𝑇𝑇(𝑠𝑠)] = 𝑄𝑄�𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),

�̆�𝐴 =

⎣
⎢
⎢
⎢
⎡

0 𝐼𝐼𝑙𝑙×𝑙𝑙 0 ⋯ 0
0 0 𝐼𝐼𝑙𝑙×𝑙𝑙 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝐼𝑙𝑙×𝑙𝑙

−𝑎𝑎�𝑁𝑁 −𝑎𝑎�𝑁𝑁−1 −𝑎𝑎�𝑁𝑁−2 ⋯ −𝑎𝑎�1⎦
⎥
⎥
⎥
⎤

,

Γ� =

⎣
⎢
⎢
⎢
⎡

0
0
⋮
0
𝐼𝐼𝑙𝑙×𝑙𝑙 ⎦

⎥
⎥
⎥
⎤

, 𝜁𝜁(𝑘𝑘) = �̆�𝑒(𝑘𝑘 + 𝑁𝑁).

 (20) 

The auto-covariance function 𝐾𝐾�(𝑘𝑘, 𝑠𝑠)  of the state 
vector 𝑥𝑥�(𝑘𝑘) has the semi-degenerate functional form 
of  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2022.21.26 Seiichi Nakamori

E-ISSN: 2224-266X 242 Volume 21, 2022



 

 

 
𝐾𝐾�(𝑘𝑘, 𝑠𝑠) = �Ψ(𝑘𝑘)Ξ𝑇𝑇(𝑠𝑠),0 ≤ 𝑠𝑠 ≤ 𝑘𝑘,

Ξ(𝑘𝑘)Ψ𝑇𝑇(𝑠𝑠),0 ≤ 𝑘𝑘 ≤ 𝑠𝑠,
� ,

Ψ(𝑘𝑘) = Φ�𝑘𝑘 ,Ξ𝑇𝑇(𝑠𝑠) = Φ�−𝑠𝑠𝐾𝐾�(𝑠𝑠, 𝑠𝑠).
 (21) 

Based on the wide sense stationarity of the auto-
covariance function 𝐾𝐾�(𝑘𝑘, 𝑠𝑠) = 𝐸𝐸[�̆�𝑧(𝑘𝑘)�̆�𝑧𝑇𝑇(𝑠𝑠)] for the 
degraded signal �̆�𝑧(𝑘𝑘) , (22) provides the auto-
variance function 𝐾𝐾�(𝑘𝑘,𝑘𝑘) of the state vector 𝑥𝑥�(𝑘𝑘). 

 

𝐾𝐾�(𝑘𝑘,𝑘𝑘) = 𝐸𝐸

⎣
⎢
⎢
⎢
⎡
�

�̆�𝑧(𝑘𝑘)
�̆�𝑧(𝑘𝑘 + 1)

⋮
�̆�𝑧(𝑘𝑘 + 𝑁𝑁 − 1)

��

× �[�̆�𝑧𝑇𝑇(𝑘𝑘) �̆�𝑧𝑇𝑇(𝑘𝑘 + 1) ⋯ �̆�𝑧𝑇𝑇(𝑘𝑘 + 𝑁𝑁 − 1)]�

=

⎣
⎢
⎢
⎢
⎡

𝐾𝐾𝑧𝑧�(0) 𝐾𝐾𝑧𝑧�(−1) ⋯ 𝐾𝐾𝑧𝑧�(−𝑁𝑁 + 1)
𝐾𝐾𝑧𝑧�(1) 𝐾𝐾𝑧𝑧�(0) ⋯ 𝐾𝐾𝑧𝑧�(−𝑁𝑁 + 2)
⋮ ⋮ ⋱ ⋮

𝐾𝐾𝑧𝑧�(𝑁𝑁 − 2) 𝐾𝐾𝑧𝑧�(𝑁𝑁 − 3) ⋯ 𝐾𝐾𝑧𝑧�(−1)
𝐾𝐾𝑧𝑧�(𝑁𝑁 − 1) 𝐾𝐾𝑧𝑧�(𝑁𝑁 − 2) ⋯ 𝐾𝐾𝑧𝑧�(0) ⎦

⎥
⎥
⎥
⎤

 (22) 

Using 𝐾𝐾𝑧𝑧�(𝑖𝑖), 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁, the Yule-Walker equation 
for the AR parameters 𝑎𝑎�𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, satisfies 

 

𝐾𝐾�(𝑘𝑘, 𝑘𝑘)

⎣
⎢
⎢
⎢
⎡ 𝑎𝑎1

𝑇𝑇

𝑎𝑎2
𝑇𝑇

⋮
𝑎𝑎𝑁𝑁−1
𝑇𝑇

𝑎𝑎𝑁𝑁𝑇𝑇 ⎦
⎥
⎥
⎥
⎤

= −

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝐾𝑧𝑧�𝑇𝑇(1)

𝐾𝐾𝑧𝑧�𝑇𝑇(2)
⋮

𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁 − 1)
𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁) ⎦

⎥
⎥
⎥
⎥
⎤

,

𝐾𝐾�(𝑘𝑘, 𝑘𝑘) =

⎣
⎢
⎢
⎢
⎡

𝐾𝐾𝑧𝑧�(0) 𝐾𝐾𝑧𝑧�(1) ⋯ 𝐾𝐾𝑧𝑧�(𝑁𝑁 − 1)
𝐾𝐾𝑧𝑧�𝑇𝑇(1) 𝐾𝐾𝑧𝑧�(0) ⋯ 𝐾𝐾𝑧𝑧�(𝑁𝑁 − 2)
⋮ ⋮ ⋱ ⋮

𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁 − 2) 𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁 − 3) ⋯ 𝐾𝐾𝑧𝑧�(1)
𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁 − 1) 𝐾𝐾𝑧𝑧�𝑇𝑇(𝑁𝑁 − 2) ⋯ 𝐾𝐾𝑧𝑧�(0) ⎦

⎥
⎥
⎥
⎤

.

 (23) 

The cross-covariance function of the state vector 
𝑥𝑥(𝑘𝑘)  with 𝑥𝑥�(𝑠𝑠)  is represented by 𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘, 𝑠𝑠) =
𝐸𝐸[𝑥𝑥(𝑘𝑘)𝑥𝑥�𝑇𝑇(𝑠𝑠)]. 𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘, 𝑠𝑠) has the form of 

 
𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘, 𝑠𝑠) = 𝛼𝛼(𝑘𝑘)𝛽𝛽𝑇𝑇(𝑠𝑠),0 ≤ 𝑠𝑠 ≤ 𝑘𝑘,
𝛼𝛼(𝑘𝑘) = A𝑘𝑘 ,𝛽𝛽𝑇𝑇(𝑠𝑠) = A−𝑠𝑠𝐾𝐾𝑥𝑥𝑥𝑥�(𝑠𝑠, 𝑠𝑠)

 (24) 

with the system matrix 𝐴𝐴 for the state vector 𝑥𝑥(𝑘𝑘) in 
(1).  

Theorem 2 presents the robust RLS Wiener 
filtering algorithm based on [22]. The filtered 
estimate 𝑥𝑥�(𝑘𝑘)  is updated from 𝑥𝑥�(𝑘𝑘 − 1)  with the 
degraded observed value 𝑦𝑦�(𝑘𝑘) in (12), the filtering 
estimate  𝑥𝑥��(𝑘𝑘 − 1) of the degraded state 𝑥𝑥�(𝑘𝑘 − 1), 
and the estimate 𝑢𝑢�(𝑘𝑘 − 1)  of 𝑢𝑢(𝑘𝑘 − 1) . In 
comparison with the robust RLS Wiener filter in 
[22], the term 𝐺𝐺𝑢𝑢�(𝑘𝑘 − 1)  is inserted on the right-

hand side of (26) for the filtered estimate 𝑥𝑥�(𝑘𝑘) of 
𝑥𝑥(𝑘𝑘). 
Theorem 2 Suppose (1) provides the state-space 
model for the state 𝑥𝑥(𝑘𝑘)  in linear discrete-time 
stochastic systems. Assume that the sequence of the 
degraded signal �̆�𝑧(𝑘𝑘) is fitted to the AR model of 
order 𝑁𝑁. Assume that (22) represents the variance 
𝐾𝐾�(𝑘𝑘,𝑘𝑘) of the state 𝑥𝑥�(𝑘𝑘) concerning the degraded 
signal �̆�𝑧(𝑘𝑘) . Let (24) represent the cross-variance 
𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘,𝑘𝑘)  of the state vector 𝑥𝑥(𝑘𝑘) , for the signal 
𝑧𝑧(𝑘𝑘) in (1), with the state 𝑥𝑥�(𝑘𝑘) in (19). Let 𝑉𝑉 denote 
the variance of the white observation noise 𝑣𝑣(𝑘𝑘). 
Thus, for the filtered estimate 𝑥𝑥�(𝑘𝑘)  of the state 
𝑥𝑥(𝑘𝑘), (25)–(31) constitute the robust RLS Wiener 
filtering algorithm.  

Filtered estimate of the signal 𝑧𝑧(𝑘𝑘): �̂�𝑧(𝑘𝑘) 

 
�̂�𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘) (25) 

Filtered estimate of the state 𝑥𝑥(𝑘𝑘): 𝑥𝑥�(𝑘𝑘) 

 
𝑥𝑥�(𝑘𝑘) = 𝐴𝐴𝑥𝑥�(𝑘𝑘 − 1) + 𝐺𝐺𝑢𝑢�(𝑘𝑘 − 1)
+Θ(𝑘𝑘)(𝑦𝑦�(𝑘𝑘) − �̆�𝐶�̆�𝐴𝑥𝑥��(𝑘𝑘 − 1)),
𝑥𝑥�(0) = 0

 (26) 

Filter gain for 𝑥𝑥�(𝑘𝑘) in (26): Θ(𝑘𝑘) 

 
Θ(𝑘𝑘) = [𝐾𝐾𝑥𝑥𝑧𝑧�(𝑘𝑘, 𝑘𝑘) − 𝐴𝐴𝐴𝐴(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇�̆�𝐶𝑇𝑇]
× {𝑉𝑉 + �̆�𝐶[𝐾𝐾�(𝑘𝑘, 𝑘𝑘) − �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇]�̆�𝐶𝑇𝑇}−1

𝐾𝐾𝑥𝑥𝑧𝑧�(𝑘𝑘, 𝑘𝑘) = 𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘, 𝑘𝑘)�̆�𝐶𝑇𝑇
 (27) 

Filtered estimate of 𝑥𝑥�(𝑘𝑘): 𝑥𝑥��(𝑘𝑘) 

 
𝑥𝑥��(𝑘𝑘) = �̆�𝐴𝑥𝑥��(𝑘𝑘 − 1)
+𝑔𝑔(𝑘𝑘)(𝑦𝑦�(𝑘𝑘) − �̆�𝐶𝑥𝑥��(𝑘𝑘 − 1)),
𝑥𝑥�(0) = 0

 (28) 

Filter gain for 𝑥𝑥��(𝑘𝑘) in (28): 𝑔𝑔(𝑘𝑘) 

 

𝑔𝑔(𝑘𝑘) = [𝐾𝐾�(𝑘𝑘, 𝑘𝑘)�̆�𝐶𝑇𝑇 − �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇�̆�𝐶𝑇𝑇]
× {𝑉𝑉 + �̆�𝐶[𝐾𝐾�(𝑘𝑘, 𝑘𝑘) − �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇]�̆�𝐶𝑇𝑇}−1

𝐾𝐾𝑥𝑥𝑧𝑧�(𝑘𝑘, 𝑘𝑘) = 𝐾𝐾𝑥𝑥𝑥𝑥�(𝑘𝑘, 𝑘𝑘)�̆�𝐶𝑇𝑇
 (29) 

Auto-variance function of 𝑥𝑥��(𝑘𝑘) : 𝐴𝐴0(𝑘𝑘) =
𝐸𝐸[𝑥𝑥��(𝑘𝑘)𝑥𝑥��𝑇𝑇(𝑘𝑘)] 
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𝐴𝐴0(𝑘𝑘) = �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇

+𝑔𝑔(𝑘𝑘)�̆�𝐶[𝐾𝐾�(𝑘𝑘, 𝑘𝑘) − �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇 ,
𝐴𝐴0(0) = 0

 (30) 

Cross-variance function of 𝑥𝑥�(𝑘𝑘)  with 𝑥𝑥��(𝑘𝑘) : 
𝐴𝐴(𝑘𝑘) = 𝐸𝐸[𝑥𝑥�(𝑘𝑘)𝑥𝑥��𝑇𝑇(𝑘𝑘)] 

 
𝐴𝐴(𝑘𝑘) = 𝐴𝐴𝐴𝐴(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇

+Θ(𝑘𝑘)�̆�𝐶[𝐾𝐾�(𝑘𝑘, 𝑘𝑘) − �̆�𝐴𝐴𝐴0(𝑘𝑘 − 1)�̆�𝐴𝑇𝑇 ,
𝐴𝐴(0) = 0

 (31) 

The tracking control algorithm of Theorem 1 
calculates 𝑢𝑢�(𝑘𝑘) by (15) using the filtered estimate 
𝑥𝑥�(𝑘𝑘) calculated by (26).  

The flowchart in Fig. 2 is obtained by combining 
the robust H-infinity tracking controller of Theorem 
1 with the RLS Wiener filter of Theorem 2.

Fig. 2: Flowchart created using the H-infinity 
tracking controller from Theorem 1 and the robust 
RLS Wiener filter from Theorem 2. 

Section 4 presents a numerical simulation 
example of the tracking control characteristics of the 
H-infinity tracking controller using the estimate 

𝑥𝑥�(𝑘𝑘)  of 𝑥𝑥(𝑘𝑘)  by the robust RLS Wiener filter of 
Theorem 2 or the RLS Wiener filter [25].  
 
 
4  A Numerical Simulation Example 
Consider the observation and state equations given 
by 

 

𝑦𝑦(𝑘𝑘) = 𝑧𝑧(𝑘𝑘) + 𝑣𝑣(𝑘𝑘),  𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘),
𝐶𝐶 = [0.95 −0.4],
𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥(𝑘𝑘) + 𝐺𝐺𝑢𝑢(𝑘𝑘) + Γ𝑤𝑤(𝑘𝑘),

𝑥𝑥(𝑘𝑘) = �𝑥𝑥1(𝑘𝑘)
𝑥𝑥2(𝑘𝑘)� ,

𝑢𝑢(𝑘𝑘) = �
𝑢𝑢1(𝑘𝑘)
𝑢𝑢2(𝑘𝑘)� ,𝐴𝐴 = � 0.05 0.95

−0.98 0.2 � ,

𝐺𝐺 = �0.952 0
0.2 1� , Γ = �0.952

0.2 � ,

𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑣𝑣(𝑠𝑠)] = 𝑉𝑉𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠),
𝐸𝐸[𝑤𝑤(𝑘𝑘)𝑤𝑤(𝑠𝑠)] = 0. 52𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠).

 (32) 

In (32), 𝑢𝑢1(𝑘𝑘) is the control input, and 𝑢𝑢2(𝑘𝑘) is the 
exogenous input. Consider the following 
observation and state equations, assuming they 
produce degraded observations and a degraded 
signal. 

 

𝑦𝑦�(𝑘𝑘) = �̆�𝑧(𝑘𝑘) + 𝑣𝑣(𝑘𝑘),   �̆�𝑧(𝑘𝑘) =𝐶𝐶↔ (𝑘𝑘)𝑥𝑥�(𝑘𝑘),

𝐶𝐶↔ (𝑘𝑘) = 𝐶𝐶 + Δ𝐶𝐶(𝑘𝑘),
Δ𝐶𝐶(𝑘𝑘) = [0.3 ∗ 𝑟𝑟(𝑡𝑡) 0],

𝑥𝑥�( 𝑘𝑘 + 1) =𝐴𝐴↔ 𝑥𝑥�(𝑘𝑘) + 𝐺𝐺𝑢𝑢(𝑘𝑘) + Γ𝑤𝑤(𝑘𝑘),

𝑥𝑥�(𝑘𝑘)= �
𝑥𝑥�1 (𝑘𝑘)
𝑥𝑥�2 (𝑘𝑘)� ,𝑥𝑥�(0) = �2.3

2.5� ,

𝐴𝐴↔ (𝑘𝑘) = 𝐴𝐴 + Δ𝐴𝐴(𝑘𝑘), ,

Δ𝐴𝐴(𝑘𝑘) = �
0.1 ∗ 𝑟𝑟(𝑡𝑡) 0

0 0.2 ∗ 𝑟𝑟(𝑡𝑡)�

𝐸𝐸[Δ𝐴𝐴(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[Δ𝐴𝐴(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 0,
𝐸𝐸[Δ𝐶𝐶(𝑘𝑘)𝑤𝑤𝑇𝑇(𝑠𝑠)] = 0,𝐸𝐸[Δ𝐶𝐶(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 0.

 (33) 

Here, "𝑟𝑟(𝑡𝑡)" refers to a MATLAB or GNU Octave 
function that generates uniformly distributed 
random numbers in the range (0,1) . In (33), 
conditions such as norm-bounded uncertainty [18] 
are not imposed on the uncertain matrices Δ𝐴𝐴(𝑘𝑘) 
and Δ𝐶𝐶(𝑘𝑘) . The robust RLS Wiener filtering 
algorithm of Theorem 2 does not use the 
information on the uncertain matrices Δ𝐴𝐴(𝑘𝑘)  and 
Δ𝐶𝐶(𝑘𝑘)  at all. The robust RLS Wiener filter of 
Theorem 2 computes the filtered estimate 𝑥𝑥�(𝑘𝑘) in 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2022.21.26 Seiichi Nakamori

E-ISSN: 2224-266X 244 Volume 21, 2022



 

 

(26) to get the estimate 𝑢𝑢�(𝑘𝑘) of 𝑢𝑢(𝑘𝑘) in (15). Given 
the desired value 𝜂𝜂(𝑘𝑘) = 10 , 𝛾𝛾 = 10, 𝑅𝑅� =
0.0001, and 𝑄𝑄(𝑘𝑘) = 1, Fig. 3 illustrates the signal 
𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘) and its filtered estimate �̂�𝑧(𝑘𝑘) by the 
H-infinity tracking controller of Theorem 1 and the 
robust RLS Wiener filter of Theorem 2 vs. 𝑘𝑘 for the  
       

 

Fig. 3:  𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘) and its filtered estimate �̂�𝑧(𝑘𝑘) 
vs. 𝑘𝑘  for white Gaussian observation noise 
𝑁𝑁(0, 0.32) , given the desired value 𝜂𝜂(𝑘𝑘) = 10 , 
𝛾𝛾 = 10, 𝑅𝑅� = 0.0001, and 𝑄𝑄(𝑘𝑘) = 1.  

white Gaussian observation noise 𝑁𝑁(0, 0.32). From 
Fig. 3, the sequence of the filtered estimates �̂�𝑧(𝑘𝑘) is 
closer to the desired value of 10  than the signal 
𝑧𝑧(𝑘𝑘) . Fig. 4 illustrates the estimate 𝑢𝑢�1(𝑘𝑘)  of the 
control input 𝑢𝑢1(𝑘𝑘)  vs. 𝑘𝑘  for the white Gaussian 
observation noise 𝑁𝑁(0, 0.32) , given 𝜂𝜂(𝑘𝑘) = 10 , 
𝛾𝛾 = 10,  𝑅𝑅� = 0.0001 , and 𝑄𝑄(𝑘𝑘) = 1.  Fig. 5 
illustrates the estimate 𝑢𝑢�2(𝑘𝑘) of the exogenous input 
𝑢𝑢2(𝑘𝑘)  vs. 𝑘𝑘  for the white Gaussian observation 
noise 𝑁𝑁(0, 0.32), given 𝜂𝜂(𝑘𝑘) = 10 , 𝛾𝛾 = 10, 𝑅𝑅� =
0.0001 , and 𝑄𝑄(𝑘𝑘) = 1.  In Figs 4 and 5, the H-
infinity tracking controller of Theorem 1 and the 
robust RLS Wiener filter are used. Figs. 4 and 5 
show that the 𝑢𝑢�2(𝑘𝑘)  sequence's amplitude is 
considerably smaller than that of the 𝑢𝑢�1(𝑘𝑘) 
sequence. 

Table 1 shows the mean-square values (MSVs) 
of the tracking errors 𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘), 𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘), 
and 𝜂𝜂(𝑘𝑘) − �̂�𝑧(𝑘𝑘), �̂�𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘), 1 ≤ 𝑘𝑘 ≤ 1200, by 
the H-infinity tracking controller of Theorem 1 and 
the robust RLS Wiener filter of Theorem 2 for 
𝛾𝛾 = 10  and 𝛾𝛾 = 0.01 , given 𝜂𝜂(𝑘𝑘) = 10 , 𝑅𝑅� =
0.0001, and 𝑄𝑄(𝑘𝑘) = 1. Here, the observation noises 
are 𝑁𝑁(0, 0.12), 𝑁𝑁(0, 0.32), 𝑁𝑁(0, 0.52) , 𝑁𝑁(0,1) and 

𝑁𝑁(0, 52). The MSV of the tracking errors 𝜂𝜂(𝑘𝑘) −
�̂�𝑧(𝑘𝑘) is fairly smaller than the MSV of the tracking 
errors 𝜂𝜂(𝑘𝑘) −  𝑧𝑧(𝑘𝑘) for each observation noise. This 
indicates that the filtered estimate �̂�𝑧(𝑘𝑘)  tracks the 
desired value with high accuracy. For 𝛾𝛾 = 10 and 
𝛾𝛾 = 0.01, the MSVs of the tracking errors 𝜂𝜂(𝑘𝑘) −
𝑧𝑧(𝑘𝑘) are almost the same for each observation noise.  

 
Fig. 4:  Estimate 𝑢𝑢�1(𝑘𝑘) of control input 𝑢𝑢1(𝑘𝑘) vs. 𝑘𝑘 
for white Gaussian observation noise 𝑁𝑁(0, 0.32) , 
given the desired value 𝜂𝜂(𝑘𝑘) = 10, 𝛾𝛾 = 10, 𝑅𝑅� =
0.0001, and 𝑄𝑄(𝑘𝑘) = 1. 

 

 
Fig. 5: Estimate 𝑢𝑢�2(𝑘𝑘) of exogenous input 𝑢𝑢2(𝑘𝑘) vs. 
𝑘𝑘 for white Gaussian observation noise 𝑁𝑁(0, 0.32), 
given the desired value 𝜂𝜂(𝑘𝑘) = 10, 𝛾𝛾 = 10, 𝑅𝑅� =
0.0001, and 𝑄𝑄(𝑘𝑘) = 1. 

Similarly, for 𝛾𝛾 = 10  and 𝛾𝛾 = 0.01 , the MSVs of 
the tracking errors 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘) are almost the same 
for each observation noise. The MSVs of 𝜂𝜂(𝑘𝑘) −
𝑧𝑧(𝑘𝑘) and 𝜂𝜂(𝑘𝑘) − �̂�𝑧(𝑘𝑘) are minimums for the white 
Gaussian observation noise 𝑁𝑁(0, 52) , respectively. 
Table 2 shows the MSVs of the tracking errors 
𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘) , 𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘) and 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘) , 
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�̂�𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘) , 1 ≤ 𝑘𝑘 ≤ 1200 , by the H-infinity 
tracking controller of Theorem 1 and the RLS 
Wiener filter [25] for 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01, given 
𝜂𝜂(𝑘𝑘) = 10 , 𝑅𝑅� = 0.0001 , and 𝑄𝑄(𝑘𝑘) = 1.  Table 2 
shows that the tracking errors 𝜂𝜂(𝑘𝑘) − 𝑧𝑧(𝑘𝑘)  and 
𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘) diverge for both 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01 
in the white Gaussian observation noises 𝑁𝑁(0, 0.12) 
and 𝑁𝑁(0, 0.32). The MSVs of the tracking errors 
𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘) and 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘) are extremely large in 
both  

Table 1. Mean-square values of tracking errors 
𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘), 𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘)and 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘),  
�̂�𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘), 1 ≤ 𝑘𝑘 ≤ 1200, by H-infinity 

tracking control algorithm plus robust RLS Wiener 
filter for 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01, given 𝜂𝜂(𝑘𝑘) = 10, 

𝑅𝑅� = 0.0001, and 𝑄𝑄(𝑘𝑘) = 1. 

White 
Gaussian 
observation 
noise 

𝛾𝛾 = 10 𝛾𝛾 = 0.01 
MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧(𝑘𝑘) 

 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧�(𝑘𝑘) 
 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧(𝑘𝑘) 

 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧�(𝑘𝑘) 
 

𝑁𝑁(0, 0.12) 0.6507 0.0690 0.6485 0.0677 
𝑁𝑁(0, 0.32) 0.6583 0.0779 0.6605 0.0773 
𝑁𝑁(0, 0.52) 0.6114 0.0810 0.6215 0.0816 
𝑁𝑁(0,1) 0.6510 0.0879 0.5806  0.0814 
𝑁𝑁(0, 52) 0.2914 0.0460 0.2894 0.0465 

 Table 2. Mean-square values of tracking errors 
𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘), 𝑧𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘)and 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘),  
�̂�𝑧(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘), 1 ≤ 𝑘𝑘 ≤ 1200, by H-infinity 

tracking control algorithm plus RLS Wiener filter 
[25] for 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01, given 𝜂𝜂(𝑘𝑘) = 10, 

𝑅𝑅� = 0.0001, and 𝑄𝑄(𝑘𝑘) = 1.  

White 
Gaussian 
observation 
noise 

𝛾𝛾 = 10 𝛾𝛾 = 0.01 
MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧(𝑘𝑘) 

 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− �̂�𝑧(𝑘𝑘) 
 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− 𝑧𝑧(𝑘𝑘) 
 

MSV of 
tracking 
errors  
𝜂𝜂(𝑘𝑘)
− �̂�𝑧(𝑘𝑘) 
 

𝑁𝑁(0, 0.12) Diver-
gence 

Diver-
gence 

Diver-
gence 

Diver-
gence 

𝑁𝑁(0, 0.32) Diver-
gence 

Diver-
gence 

Diver-
gence 

Diver-
gence 

𝑁𝑁(0, 0.52) 2.2315e+198 4.5986e+198 9.5268e+198 1.9712e+199 
𝑁𝑁(0,1) 7.9888 0.3956 7.7168  0.3835 
𝑁𝑁(0, 52) 0.4185 0.0411 0.4200 0.0411 

𝛾𝛾 = 10  and 𝛾𝛾 = 0.01  for the white Gaussian 
observation noise 𝑁𝑁(0, 0.52) . The MSV of the 
tracking errors 𝜂𝜂(𝑘𝑘)− 𝑧𝑧(𝑘𝑘)  by the tracking 
controller of Theorem 1 and the robust RLS Wiener 
filter of Theorem 2 is smaller than the MSVs by the 
tracking controller of Theorem 1 and the RLS 
Wiener filter [25] for the white Gaussian 
observation noises 𝑁𝑁(0,1)  and 𝑁𝑁(0, 52)  when 
𝛾𝛾 = 10  and 𝛾𝛾 = 0.01 . In the observation noise 
𝑁𝑁(0,1), for 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01, the MSV of the 
tracking errors 𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘)  in Table 1 is smaller 
than the MSV of the tracking errors 𝜂𝜂(𝑘𝑘) − �̂�𝑧(𝑘𝑘) in 
Table 2. In the case of white Gaussian observation 
noise 𝑁𝑁(0, 52), for 𝛾𝛾 = 10 and 𝛾𝛾 = 0.01, the MSV 
of the tracking errors 𝜂𝜂(𝑘𝑘) − �̂�𝑧(𝑘𝑘)  in Table 1 is 
almost the same as the MSV of the tracking errors 
𝜂𝜂(𝑘𝑘)− �̂�𝑧(𝑘𝑘) in Table 2. For the observation noises 
𝑁𝑁(0, 0.12), 𝑁𝑁(0, 0.32), 𝑁𝑁(0, 0.52) , and 𝑁𝑁(0,1), the 
H-infinity tracking controller of Theorem 1 and the 
robust RLS Wiener filter of Theorem 2 are superior 
in tracking control accuracy to the H-infinity 
tracking controller of Theorem 1 and the RLS 
Wiener filter [25]. 

 
5 Conclusion 
This study proposed a tracking control technique 
based on the H-infinity tracking controller of 
Theorem 1 and the robust RLS Wiener filter of 
Theorem 2. In previous research, it has been shown 
that 𝑢𝑢�(𝑘𝑘)  with control and exogenous input 
components satisfies (9), (10), and (11) in linear 
discrete-time deterministic systems. For the 
stochastic systems (1), based on the separation 
principle of control and estimation, 𝑢𝑢�(𝑘𝑘)  also 
satisfies (9), (10), and (11). As a result, the tracking 
control algorithm of Theorem 1 is applied to the 
linear state-space model (1). For the degraded 
stochastic system (12), (26) in the robust RLS 
Wiener filter of Theorem 2 updates the filtered 
estimate 𝑥𝑥�(𝑘𝑘)  of 𝑥𝑥(𝑘𝑘)  from 𝑥𝑥�(𝑘𝑘 − 1)  with the 
degraded observed value 𝑦𝑦�(𝑘𝑘), the filtered estimate 
𝑥𝑥��(𝑘𝑘 − 1)  of the degraded state 𝑥𝑥�(𝑘𝑘 − 1) , and the 
estimate 𝑢𝑢�(𝑘𝑘 − 1) of 𝑢𝑢(𝑘𝑘 − 1). Estimating 𝑢𝑢�(𝑘𝑘) of 
𝑢𝑢(𝑘𝑘) in (15) uses the filtered estimate 𝑥𝑥�(𝑘𝑘) of the 
state 𝑥𝑥(𝑘𝑘) by the robust RLS Wiener filter.  
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The numerical simulation example compares the 
tracking control accuracy of the proposed method 
with that of the technique based on the H-infinity 
tracking controller of Theorem 1 and the RLS 
Wiener filter. As a result, the tracking controller of 
Theorem 1 and the robust RLS Wiener filter of 
Theorem 2 provide higher tracking control accuracy 
for the white Gaussian observation noises 
𝑁𝑁(0, 0.12), 𝑁𝑁(0, 0.32), 𝑁𝑁(0, 0.52) , and 𝑁𝑁(0,1). For 
𝛾𝛾 = 10  and 𝛾𝛾 = 0.01 , the MSV of the tracking 
errors 𝜂𝜂(𝑘𝑘) − �̂�𝑧(𝑘𝑘)  by the tracking controller and 
the robust RLS Wiener filter is almost the same as 
the MSV by the H-infinity tracking controller of 
Theorem 1 and the RLS Wiener filter in the 
observation noise 𝑁𝑁(0, 52), respectively.  

A future task is to design an H-infinity tracking 
controller with a robust RLS Wiener filter that 
estimates the degraded state in linear discrete-time 
uncertain systems. 
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